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Abstract

A lattice Delaunay polytope is perfect if its Delaunay sphere is its only circumscribed ellip-
soid. A perfect Delaunay polytope naturally corresponds to a positive quadratic function on
Zn that can be recovered uniquely from the data consisting of its minimum and all points
of Zn where this minimum is achieved – a quadratic function with this uniqueness property
is also called perfect. We develop a structural theory of perfect Delaunay polytopes and
quadratic functions. We also describe all known perfect Delaunay polytopes in dimensions
one through eight: our conjecture is that this list is complete.

1. Introduction

A point lattice is a discrete set of points in Rn such that the difference vectors form a
subgroup of Rn. If Λ is a point lattice in Rn (n ≥ 0), then a convex polytope P ⊂ Rn is
called a lattice polytope (or Λ-polytope) if all of its vertices are lattice points. Consider the
lattice Zn ⊂ Rn, and a convex Zn-polytope P . If P can be circumscribed by an ellipsoid

E = {x ∈ Rn QE(x− cE) ≤ ρ2
E}

with no interior Zn-elements so that the boundary Zn-elements of E are exactly the vertices
of P , we will say that P is a Delaunay polytope with respect to the form QE defined by E ;
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more informally, we will say that a lattice polytope is Delaunay if it can be circumscribed
by an empty ellipsoid. Ellipsoid is commonly used to refer to both hypersurfaces defined by
positive definite quadratic forms and solid bodies bounded by such surfaces: the meaning
of our usage will be clear from the context. Typically, there is a family of empty ellipsoids
that can be circumscribed about a given Delaunay polytope P , but, if there is only one, so
that E is uniquely determined by P , we will say that P is a perfect Delaunay polytope in Zn.
Perfect Delaunay polytopes are also sometimes referred to as extreme. Perfect Delaunay
polytopes are fascinating geometrical objects – examples are the six- and seven-dimensional
[27] polytopes with 27 and 56 vertices respectively, which appear in the Delaunay tilings of
the root lattices E6 and E7 (see, e.g., [6] for a description). In this paper we describe, up to
an isometries and dilations, all known perfect Delaunay polytopes in Rn for n ≤ 8; we also
present a study of the geometry and combinatorics of these polytopes. We suspect that the
list of perfect Delaunay polytopes that we give here is complete for n ≤ 8. Erdahl [20, 21]
proved that 0 and [0, 1] are the only perfect Delaunay polytopes for n ≤ 5; Dutour [16] proved
that there is only one perfect Delaunay polytope in R6 – the Gosset 6-polytope (Coxeter’s
221), which is described in Section 6. Only two perfect Delaunay polytopes are known in R7:
they are Gosset’s 7-polytope (Coxeter’s 321) and a 35-tope found by Erdahl and Rybnikov
[24], which are described in Section 7. We list twenty-seven 8-dimensional perfect Delaunay
polytopes, they are identified by numbers, 1 through 27; Section 8 contains a detailed de-
scription of these polytopes. There are infinite series of perfect Delaunay polytopes – the
first such series was found by Erdahl and Rybnikov in 2001 [32]. This series was further
generalized in [23] to a 3-parametric series (where one parameter is the dimension) of perfect
Delaunay polytopes. Another infinite series has been found by Dutour [13]. Prior to 2001
only sporadic examples of perfect Delaunay polytopes had been known, besides the cases for
n ≤ 7 mentioned above, all of them were found by Deza, Grishukhin and Laurent [9] and all
of their examples were constructed as sections of the Leech and Barnes-Wall lattices.

2. Definitions and Notation

Formally speaking, the subject of this paper is the study of zero-sets of positive Q-valued
quadratic functions on free Z-modules of finite rank. Since any free Z-module of finite rank
Λ can be realized as a discrete subgroup of Rn for any n ≥ rankΛ, we can think of Λ
geometrically as a discrete set of vectors in vector space Rn or as a discrete set of points
in affine space Rn. Whenever we approach a Z-module from this point of view, we call it a
lattice.

Definition 1. A quadratic lattice is a pair (Λ, R), where Λ is a free Z-module of finite rank
and Q : Λ → R is a quadratic form.

A function F on a module is called quadratic if it can be written as QFormF + A, where
QFormF is a quadratic form and A is an affine function. In general, we denote the quadratic
form part of a polynomial P by QFormP .
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Definition 2. An affine quadratic lattice is a pair Aff(Λ, Q), where Λ is free Z-module of
finite rank and Q : Λ → R is a quadratic function.

Sometimes, to stress that we consider a quadratic lattice, as opposed to an affine quadratic
lattice, we call the former a linear or homogeneous quadratic lattice. Aff(Λ, Q) (resp. (Λ,Q))
is called degenerate if rank QFormQ < rankΛ (resp. rankQ < rankΛ). Quadratic lattices
(Λ,Q) and (Λ1,Q1) are called isomorphic if there is a Z-module isomorphism L : Λ → Λ1

such that Q(x) = Q1(Lx) for any x ∈ Λ. Affine quadratic lattices Aff(Λ, Q) and Aff(Λ1, Q1)
are called isomorphic if there is a Z-module isomorphism L : Λ → Λ1 and some z ∈ Λ1

such that Q(x) = Q1(Lx − z) for any x ∈ Λ. We allow quadratic forms and functions to
take values not only in Z, the ground ring of the modules under consideration, but also in
Q and its extensions, unlike the classical case of (linear) quadratic modules, where forms
are supposed to be valued in the ground ring of the module (as in, e.g., [34]). Since we
restrict ourselves to rankΛ < ∞, any Q-valued function on Λ can be rescaled into a Z-valued
quadratic function.

Suppose Q1 and Q2 are valued in R. Two affine quadratic lattices Aff(Λ1, Q1) and
Aff(Λ2, Q2) are called equivalent up to scaling if there is a Z-module isomorphism L : Λ1 →
Λ2, some z ∈ Λ2 and a real c > 0 such that Q1(x) = cQ2(Lx− z).

A quadratic form Q induces a symmetric bilinear form on Λ× Λ by

(x,y) )→ 1

2
{Q[x + y]−Q[x]−Q[y]} ;

we will denote this bilinear form also by Q – normally, there is no confusion, since a quadratic
form has one arguments, while the corresponding bilinear form has two. We call a number
a positive (resp. negative) if a ≥ 0 (resp. a ≤ 0); same terminology is applied to functions.
Thus, a form Q is called positive if Q[x] ≥ 0 for any x. A form Q is called positive definite
if Q[x] > 0 for any x *= 0.

Suppose a quadratic function Q is valued in R. A number b ∈ R is called the arithmetic
minimum of an affine quadratic lattice Aff(Λ, Q) if b = min

z∈Λ
Q(z). The vectors of Λ on

which the minimum of Aff(Λ, Q) is attained are called the minimal vectors of Aff(Λ, Q).
The definition of the arithmetic minimum of an affine quadratic lattice is slightly different
from that of a homogeneous quadratic lattice: in the case of a homogeneous quadratic lattice
the minimum is taken over all non-zero vectors z ∈ Λ.

Definition 3. Let Q : Λ → R be a fixed quadratic function with positive QFormQ, and let X
be a quadratic function with unknown coefficients. Let b = min

z∈Λ
Q(z). The affine quadratic

lattice Aff(Λ, Q) is called perfect if the system of equations

{X(m) = b m is a minimal vector of Q}

has the only solution X = Q.
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When we refer to a function as perfect without specifying Λ, the meaning of Λ is clear
from the context. If a concrete formula for the function is given, Λ is presumed to be
Zn. We will often use a shorthand such as e.g. k-lattice (polytope, cell, etc.), instead of
k-dimensional lattice (polytope, cell, etc.).

From now on all quadratic functions are valued in Q or R. In this context a symmetric
bilinear form is a scalar product on Λ ⊗ Q ∼= Qn or Λ ⊗ R ∼= Rn. There are two canonical
ways to describe an affine quadratic lattice, one by fixing the lattice to be Zn and the other
by fixing the quadratic form part of the function to be, say

∑
x2

i . The first method is more
flexible, since it allows for quadratic forms of arbitrary signature. Furthermore, in any kind
of machine computations it is far more convenient to deal with the former representation.

In each dimension there are only finitely many non-isomorphic perfect affine quadratic
lattices, up to scale. This follows from Voronoi’s L-type reduction theory (see, e.g., [10]).
Namely, in each dimension there is a strict L-type reduction domain D, which has finitely
many extreme rays. The quadratic part of a perfect quadratic function is always arithmeti-
cally equivalent to a form lying on an extreme ray of D (but not vice versa). This implies
the finiteness.

Proposition 4. For n = 0 the only perfect affine quadratic lattice is (Z0, 0). For n = 1 the
only perfect affine quadratic lattice, up to isomorphisms and scaling, is Aff(Z1, (x− 1

2)
2).

Perfect quadratic functions are inhomogeneous analogs of perfect quadratic forms intro-
duced in the middle of 19-th century by Korkine and Zolotareff [30] and later studied by
Voronoi, Barnes, Conway and Sloane, Stacey, Martinet, and others (see [31] for a survey).
The interest to perfect forms has been mostly fueled by the theorem, proven by Korkine
and Zolotareff [30], that forms that are extreme points of the ball packing density function
are perfect. We prefer not to use the term inhomogeneous form, employed in some number-
theoretic literature (e.g., [28]) since a form is by definition a homogeneous polynomial.

2.1. Delaunay Tilings

The language of Delaunay tilings provides a geometric way of thinking about quadratic
functions with positive quadratic part. We denote the vertex set of a polytope P by vertP .
A convex Λ-polytope D is called a Delaunay polytope in a (linear) quadratic lattice (Λ,Q),
where Q[x] > 0 for x *= 0, if there is an ellipsoid Q(x) ≤ 0, with QFormQ = Q, whose
boundary contains vertD, but no points of Λ ! vertD. If dimD < rankΛ such an ellipsoid
is not unique; however, the intersection of any such ellipsoid with the affine span of D is
unique (for fixed (Λ,Q)). In particular, such an ellipsoid is unique when D is of maximal
dimension – in this case this ellipsoid is called the Delaunay ellipsoid (or empty ellipsoid) of
D.

For any S ⊂ Λ, we denote the affine span of S in Λ⊗R by aff S. The affine span of S in
Λ⊗Q is denoted by affQ S, and the lattice spanned by all vectors x−y, where x,y ∈ S, by
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affZ S. Note that when 0 ∈ S, the linear span of S, linS, and the affine span of S, aff S, are
the same. Often lattices arise as sections of other lattices by affine subspaces of the ambient
affine Euclidean space. Γ ⊂ Rn is called an affine lattice if

−→
Γ = {x − y x,y ∈ Γ} is a

Z-module of finite rank. In such situations it is convenient to have the notion of isomorphism
for affine lattices. Let Γ ⊂ Rn and Γ′ ⊂ Rm be affine lattices. A map f : Γ → Γ′ is called an
affine isomorphism if there are o ∈ Γ and o′ ∈ Γ′ such that x− o )→ fx− o′ is a Z-module

isomorphism from
−→
Γ onto

−→
Γ′ . Two functions ϕ : Γ → S, ψ : Γ′ → S on affine lattices Γ and

Γ′ are called arithmetically equivalent if there is an affine isomorphism f : Γ → Γ′ such that
ϕ(x) = ψ(fx). A Λ-polyhedron P can be thought of as the indicator function, which is 1 on
P∩Λ and 0 elsewhere on Λ. Then, arithmetic equivalence of lattice polyhedra is a special case
of the arithmetic equivalence between functions. If Γ = Γ′ = Zn, the arithmetic equivalence
is the same as the equivalence with respect to Aff(n, Z), the group of all transformations
of type z )→ Lz + t, where L ∈ GL(n, Z) and t ∈ Zn.

It is a theorem of Delaunay [8] that for a positive definite quadratic form Q : Λ −→ R
the space aff Λ is partitioned into the relative interiors of Delaunay Λ-polytopes with respect
to Q; this partition is organized so that the intersection of any family of Delaunay polytopes
is again a Delaunay polytope (we add the empty polytope ∅ to the partition) – in other
words the resulting Delaunay tiling is face-to-face. This theorem also says that a Delaunay
tiling for (Λ,Q) is unique. In studying Delaunay tilings and L-types of lattices it is often
beneficial not to restrict to positive definite forms, but to use the concept of Delaunay tiling
with respect to any positive Q-valued quadratic form. Since traditionally, in the geometric
context, quadratic forms are valued in R, we will say a few words about the case where Q is
R-valued.

Definition 5. The rational closure of the cone of positive-definite quadratic forms on Λ is the
set of all positive R-valued forms Q that satisfy the condition rank(Λ∩KerR Q) = dimKerR Q.

It is easy to see that the rational closure of the cone of positive-definite quadratic forms
on Λ is a convex cone over R. When Λ = Zn we denote by Sym(n, R) the space of R-valued
quadratic forms on Zn, and by Sym+(n, R) cone of all positive-definite quadratic forms in
Sym(n, R). Then the real closure of Sym+(n, R) in Sym(n, R) is denoted by Sym+(n, R), and

the rational closure of Sym+(n, R) by Sym
Q
+(n, R). When we consider an arbitrary lattice Λ,

rather than Zn, we write Sym(Λ, ∗) instead of Sym(n, ∗).

Sym
Q
+(n, R) can also be described as the real cone spanned by rank-one forms in indeter-

minates (x1, . . . , xn) = x of type (v · x)2 where v runs over Zn (see, e.g., [19]).

Sometimes the condition rank(Zn∩KerR Q) = dimKerR Q is phrased as thatQ has rational
kernel, although this expression can be somewhat misleading, since KerR Q ∩ Zn is always a

rational subspace of Qn. Since, Sym
Q
+(n, R) ∩ Sym(n, Q) consists of all positive forms with

rational coefficients, perhaps, it would be more elegant to consider only Q-valued forms on
Qn, but we decided to follow the tradition and embed the cone of positive Q-valued forms

into Sym
Q
+(n, R). Let us denote by Q̃P+(n, R) the cone of all real quadratic polynomials on



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A39 6

Rn whose quadratic form parts belong to Sym
Q
+(n, R). It is easy to see that Q̃P+(n, R) is a

convex cone in the space QP(n, R) of quadratic polynomials on Rn.

When Q : Λ → R is positive semidefinite, it defines a tiling of Λ⊗ R only when

rank(KerR Q ∩ Λ) = dimKerR Q,

i.e., when Q ∈ Sym
Q
+(Λ, R) (see, e.g., [19]). In this case vertP should be interpreted as

∂P ∩ Λ rather than as the set of vertices of P in the sense of convex geometry in Rn; for
simplicity, we still call elements of vertP vertices.

Definition 6. Let (Λ,Q) be a quadratic lattice with Q ∈ Sym
Q
+(Λ, R). A convex polyhedron

P ⊂ Λ ⊗ R is a Delaunay polyhedron for (Λ,Q) if there is a quadratic polynomial EP on
Λ⊗ R, with QFormEP = Q, such that EP (z) = 0 for any z ∈ Λ ∩ P and EP (z) > 0 for any
z ∈ Λ!P .

In particular, the empty polytope ∅ and the whole space Λ⊗R are Delaunay polyhedra
in (Λ, 0): polynomials E∅ = 1 and EΛ⊗R = 0 can serve as witnesses. It is not difficult to
show that when Q : Λ −→ Q is positive semidefinite, aff Λ is covered by Delaunay polyhedra
of various dimensions: some of these polyhedra are polytopes and some are cylinders over
Delaunay polytopes of lower dimensions. We often refer to a Delaunay polyhedron as a
Delaunay cell. In the semidefinite case the relative interiors of Delaunay cells also form a
face-to-face partition of Λ⊗R, but the elements of Λ can no longer be considered as 0-cells
of the tiling – the tiling in this case does not have any 0-cells unless rankΛ = 0. We denote
the set of all cells of the Delaunay tiling of Λ ⊗ R with respect to a semidefinite form Q
by Del(Λ,Q). Del(Λ,Q) has a poset structure, namely, F / C if and only if F ⊂ ∂C.
Furthermore, since both ∅ and Λ ⊗ R are in Del(Λ,Q), it is a lattice. In discussions of
concrete Delaunay polytopes it is often more convenient to refer to faces by their vertex sets.
The partial order on Del(Λ,Q) induces a partial order on the vertex (in the generalized sense
explained above) sets of Delaunay cells of Del(Λ,Q). We will need the notion of Delaunay
tiling for degenerate quadratic lattices only in Subsection 3.2, so, for the exception of that
part of the paper, the reader may safely assume that Q is positive definite and all Delaunay
cells are polytopes.

For formal definitions and detailed information on Delaunay tilings of lattices we refer
to [10]. We only remark that the Delaunay tilings for lattices are classically defined [8]
with the Euclidean norm x2

1 + . . . + x2
n (in geometry of numbers the norm of a vector is

its squared length), but are most effectively studied by isomorphically mapping the lattice
Λ onto Zn, and replacing the Euclidean norm by a positive quadratic form Q that makes
(Zn,Q) and (Λ,

∑
x2

i ) equivalent. This allows us to think in terms of Euclidean lattices, i.e.
geometrically, but to compute in terms of quadratic forms.

Definition 7. Let (Λ,Q) be a quadratic lattice with Q ∈ Sym
Q
+(Λ, R). Suppose P ∈

Del(Λ,Q). P is called perfect if its Delaunay ellipsoid (or elliptic cylinder, if rankQ < rankΛ)
with respect to Q is the only quadric circumscribed about P in Λ⊗ R.
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Indeed, the notion of perfection, that was introduced in 19th century by the Italian school
of algebraic geometry, is independent of the Delaunay property of P and nature of Q. More
generally, let F be a finite-dimensional linear space of R-valued functions on Λ. Then a set
R ⊂ Λ is called perfect with respect to F if the system of linear inhomogeneous equations
{f(r) = c r ∈ R} on the coefficients of f has a unique solution in F for any c *= 0.

We have a natural bijection between perfect affine quadratic lattices Aff(Λ, Q) and triples
(Λ, P, ρ2), where P is a perfect Delaunay polyhedron and ρ2 ≥ 0 is the squared radius of its
Delaunay ellipsoid. Thus, there are only finitely many arithmetically inequivalent perfect
Delaunay polyhedra in each dimension, up to rescaling. Furthermore, since for perfect
Delaunay polyhedra arithmetic equivalence implies isometry, there are only finitely many
nonisometric perfect Delaunay polytopes in each dimension, up to rescaling. For n = 0
there is only one perfect Delaunay and it is 0. For n = 1 the polytope [0,1] is perfect and
Delaunay in (Z1, x2), and it is unique up to arithmetic equivalence.

3. Geometric Structure of Delaunay Cells

It is easy to see that a section of the vertex set of a Delaunay polytope by a rational affine
subspace is the vertex set of a Delaunay polytope in the induced sublattice. This observation
suggests a recursive approach to Delaunay polytopes where each newly discovered Delaunay
polytope is represented as a disjoint union of Delaunay polytopes of smaller dimensions lying
in parallel subspaces. Indeed, for n > 1 such a representation is never unique. It has been
observed that dealing with a smaller numbers of big laminae is easier than studying a large
number of small laminae. In other words, one is usually working with a representation in
which the number of laminae is as small as possible.

Definition 8. The lamina number l(P ) of a lattice polytope P in a lattice Λ is the minimal
number of disjoint affine subspaces of Λ⊗R whose intersections with vertP form a partition
of vertP into proper subsets.

The natural question is what laminar constructions lead to perfect Delaunay polytopes.
In particular, is it possible to construct perfect Delaunay polytopes by using non-trivial
(of dimension greater than 1) lower-dimensional perfect Delaunay polytopes as some of the
laminae? It turns out for n = 6− 8 such constructions are rather common, although not all
of these polytopes have sections that are non-trivial perfect polytopes of smaller dimensions.
The only perfect Delaunay 6-polytope, Gosset’s G6, does not have non-trivial perfect sections.
The only two known perfect 7-polytopes, Gosset’s G7 and the 35-tope found by Erdahl and
Rybnikov, each have a section isometric to G6. Our study showed that of the 27 known
perfect Delaunay 8-polytopes 17 have a section which is isometric to G6, of which 10 have
a section isometric to the 35-tope and one has a section isometric to G7. The remaining 10
perfect 8-polytopes do not have non-trivial perfect sections.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A39 8

The lamina number l(P ) is closely related to the notion of lattice width. Denote by
Λ∗Q ⊂ aff Λ the dual of Λ with respect to the bilinear form Q: Λ∗Q consists of all vectors of
aff Λ whose Q-products with vectors of Λ are integer. If B is a convex body in aff Λ, then
the width w(B) of B with respect to (Λ,Q) is defined as the minimal natural number w
such that B lies between hyperplanes Q(a∗,x) = k and Q(a∗,x) = k + w, for some a∗ ∈ Λ∗.
It is widely believed (see e.g. Barvinok, 2002) that a body in aff Λ whose interior is empty
of Λ-points cannot have lattice width exceeding rankΛ.

Proposition 9. If P is a Delaunay polytope, then l(P ) = w(P ) + 1.

We do not know of any Delaunay polytopes whose lattice width exceeds 2. On the other
hand, we have

Theorem 10. If P is a perfect (need not be Delaunay) polytope of dimension n > 1, then
w(P ) + 1 = l(P ) > 2.

Proof. Let (Λ,Q) be the lattice in which P is perfect. Since the partition into laminae must
be proper, l(P ) > 1. If l(P ) = 2, then there are affine sublattices L1 and L2 of codimension
1 such that vertP = (vertP ∩ L1) 0 (vertP ∩ L1). There exists an affine function A on Λ,
which is 1 on L1 and 0 on L2. Then the quadric Ax (Ax − 1) = 0 is circumscribed about
P . If Q is the quadratic function defined by P uniquely up to scale, then Q + A(A − 1)
must be proportional to Q, which means that QFormQ is of rank 1. Since P is perfect,
dimP = rankΛ. Since P is a polytope, rankΛ = rank QFormQ = 1 and dimP = 1.

It turns out that all perfect Delaunay polytopes in dimensions n = 6−8 have the lamina
number l equal to 3.

Theorem 11. Each perfect Delaunay polytope P described in Sections 6–8 has l(P ) = 3

Proof. vertG6 has a 3-laminae partition into a vertex, a 5-half-cube, and a 5-cross-polytope
[25]; another partition is into a 5-simplex, a 15-vertex polytope, and another 5 simplex (see
[21]). The partition of vertG7 into the union of the vertex sets of a 6-half-cube and two
6-cross-polytopes is given in Lemma 7.1. The partition of the 35-tope Υ7 is given in Lemma
7.2 The partitions of the vertex sets of perfect 8-polytopes into layers follow from their
coordinate representation given in Section 8.

3.1. Perfect Delaunay Polytopes with Small Number of Vertices

The smallest number of vertices that a perfect Delaunay polytope of dimension n can have is
n(n+1)

2 + n. We call such polytopes vertex-minimal. It was noticed in [25] that any subset of
vertices of Gosset’s 6-polytope is the vertex set of some lattice Delaunay polytope. It turns
out that this universality property holds for all vertex-minimal perfect Delaunay polytopes.
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Theorem 12. Let P be a vertex-minimal perfect Delaunay polytope of dimension n in
[Zn,Q]. Then for any S ⊂ vertP there is a positive definite quadratic form QS such that
conv S is a Delaunay polytope in [Zn,QS].

Proof. Consider the linear space F0 of real quadratic polynomials in n indeterminates with
zero constant terms. The dimension of this space is n(n+1)

2 +n. Let c be the Delaunay center
and let ρ > 0 be the radius of P so that the equation of the ellipsoid isQ[x]−2Q(x, c)+Q[c] =
ρ2. Let us denote Q[x]−2Q(x, c) by FP (x). Any x ∈ Rn can be regarded as a linear function
on F0 that takes F ∈ F0 to F (x) – when we consider x as such we write x(F ). We can
also view FP as a point in the affine version of F0. The point FP lies at the intersection of
n(n+1)

2 + n distinct affine hyperplanes v(FP ) = ρ2 −Q[c] corresponding to the vertices of P .
If a point F ∈ F0 is sufficiently close to FP , then the quadratic function F − (ρ2 − Q[c])
is strictly positive on Zn \ vertP . For each v ∈ vertP denote by Hv the affine hyperplane
{X ∈ F0 v(X) = ρ2 −Q[c]}. Let F = FP + εn where ε > 0 and n is a non-zero vector in
F0. For each of the hyperplanes Hv the sign of v(n) determines whether F (v) > ρ2 −Q[c]
or F (v) < ρ2 − Q[c], where the former corresponds to v lying outside of the ellipsoid
F (x) = ρ2 − Q[c] and the latter to v lying inside of the ellipsoid F (x) = ρ2 − Q[c]. For
each v ∈ vertP we can pick a vector nv that lies in each of the hyperplanes Hw for all
w ∈ vertP \ v, but does not lie in Hv. We can also adjust the direction of nv, if necessary,
so that for F = FP + εnv we have F (v) > ρ2 −Q[c]. Then any perturbation F̃ of FP , such
that F̃ (v) ≥ ρ2 − Q[c] for all v ∈ vertP , can be written as FP +

∑
v∈vertP εvnv for some

εv ≥ 0. Suppose εv’s are all restricted to 0 or 1. Then for each v ∈ vertP we know that
εv = 0 if and only if F̃ (v) = ρ2 −Q[c], and εv = 1 if and only if F̃ (v) > ρ2 −Q[c]. Note
that if all of nv are sufficiently short, then F̃ − ρ2 −Q[c] is strictly positive on Zn \ vertP .
Thus, for any subset S of vertP we can pick the values of parameters εv ∈ {0, 1} so that
FS = FP +

∑
v∈vertP εvnv defines a Delaunay ellipsoid FS(x) = ρ2 − Q[c] circumscribed

about conv S.

3.2. Structure of Perfect Affine Lattices

Recall that a pair Aff(Λ, Q), where Λ is a lattice and Q : Λ → R a quadratic function, is
called perfect if the coefficients of Q are uniquely determined from equations
X(m) = min{Q(z) z ∈ Λ}, where m runs over all minimal vectors of Q and X is an
unknown quadratic function on Λ. In general, for a function F defined on a lattice Λ denote
by V(F ) (the variety of F ) the set of lattice points where F is 0. Perfection is a very natural
notion as illustrated by the following theorem of Erdahl [21]. If L is an affine sublattice of

a lattice Γ, then
−→
L stands for the lattice L− L.

Theorem 13. Aff(Λ, Q) is perfect if and only if V(Q) = {v + z v ∈ vertP, z ∈ Γ}, where

P is a perfect Delaunay polytope in Aff(
−−−−−−→
Λ ∩ aff P,Q|−−→

aff P
) and Γ is a sublattice of Λ such that

Λ is the direct sum of Z-modules
−−−−−−→
Λ ∩ aff P and Γ, i.e.,

Λ = {(x− x′) + z x,x′ ∈ Λ ∩ aff P, z ∈ Γ}.
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On the basis of this characterization Erdahl and Rybnikov proved the following theorem
[23].

Theorem 14. Let P be a perfect polytope in Del(Λ,Q) and let QP be its perfect quadratic
function, i.e., vertP = V(QP ) and Q = QFormQP . Suppose D ∈ Del(Λ,Q) is another
Delaunay cell of full dimension, which is not a Λ-translate of P . If e /∈ Λ⊗R, then there is
a positive form Q′ on Λ⊕Ze, which is not equivalent to Q extended by 0 to Ze, and a perfect
polyhedron P ′ in Del(Λ⊕ Ze,Q′) such that P ′ ∩ aff Λ = P and P ′ ∩ {aff Λ + e} = D + e.

The delicate part here is the case where P and D have identical Delaunay radii. By using
a refinement of Erdahl’s theorem [21] it is possible to prove that under in the Theorem 14
when P and D have different radii, the resulting perfect polyhedron P ′ must be a polytope
(see [23]). On the basis of Theorem 14 we can make a few useful observations.

• If P is an antisymmetric perfect polytope in Del(Λ,Q), then there is a perfect polytope
P ′ in Del(Λ⊕ Ze,Q′), for some form Q, with a section isometric to P . For example,
for P = G6 (Gosset’s 6-polytope) there are two perfect 7-polytopes that have G6 as
a section, namely G7 and the 35-tope. G7 can be obtained by taking D = −P in
Theorem 14, while the 35-tope cannot be obtained by a direct application of Theorem
14.

• We know only one example of a Delaunay tiling formed by translates of a centrally-
symmetric perfect Delaunay polytope: this is the tiling of Z1 by unit intervals. Inci-
dently, we do not know of any Delaunay polytope, except for the n-cube, that tiles Rn

by translation. We conjecture that for n > 1 there are no such examples. If this is
true, then Theorem 14 gives a guaranteed construction for a new type of perfect De-
launay polyhedron in dimension n + 1 from a perfect Delaunay polytope in dimension
n. However, this construction is not uniquely defined, since in Theorem 14 there may
be different choices of D.

• When P is a centrally symmetric perfect n-polytope in Del(Λ,Q) and there is an
antisymmetric n-polytope D in Del(Λ,Q), it may happen that the center of the perfect
polytope P ′ coincides with the center of P . Then P ′ has at least three n-dimensional
layers, which are translates of −D, P , and D respectively. The only 8-dimensional
polytope from our list that has a section isometric to G7 arises from this construction.
The role of D is played by a Delaunay simplex of double volume in the Delaunay tiling
(of lattice E7) defined by G7 (see [21] for a description).

• For many a perfect 8-polytope the Delaunay tiling has a significant number of arith-
metically inequivalent 8-cells. This suggests that starting from n = 9 the number of
perfect Delaunay n-polytopes explodes. (see http://www.liga.ens.fr/∼dutour for
the enumeration ) It is likely that n = 8 is the highest dimension in which a complete
classification is within reach.
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4. Symmetries of Perfect Delaunay Polytopes

Recall that the group O(Zn,Q) of linear automorphisms of a quadratic lattice (Zn,Q) is
defined as the full subgroup of O(Rn,Q) that maps Zn onto itself, in other words, the set-
stabilizer of Zn in O(Rn,Q):

O(Zn,Q) = {τ ∈ O(Rn,Q) τ(Zn) = Zn}.

The group O(Zn,Q) can also be seen as the subgroup of GLn(Z) that consists of transfor-
mations preserving Q:

O(Zn,Q) = {τ ∈ GL(n, Z) ∀z ∈ Zn : Q[τz] = Q[z]}.

Denote by Iso(Rn,Q) the group of affine automorphisms of Rn which preserve Q. If D is a
Zn-polytope, then Iso(D,Q) denotes the group of all transformations from Iso(Rn,Q) that
map D onto itself. Denote by LatIso(D,Q) the group of all transformations from O(Zn,Q)
that map D to itself. Clearly LatIso(D,Q) ≤ Iso(D,Q). When {x−y x,y ∈ vertD} = Zn

the polytope D is called generating. All known perfect Delaunay polytopes are generating.
Obviously, for generating polytopes Iso(D,Q) = LatIso(D,Q).

An important invariant of a perfect Delaunay polytope P in (Zn,Q) is the dimension of
the subspace of quadratic forms in n variables preserved by O(Zn,Q). We denote this space
by QuadInv[O(Zn,Q)] = QuadInv[D].

The metric geometry of a Delaunay polytope D is reflected in the norm spectrum of D,
which is just the set of all possible value for Q[x− y], where x,y ∈ vertD. We denote the
norm spectrum by Spec(D).

We have classified the isometry groups of all known perfect Delaunay polytopes for n ≤ 8.
The isometry groups of six- and seven-dimensional perfect polytopes are distinct. Among
the isometry groups of the 27 8-polytopes there are 21 non-isomorphic. Polytopes in the
following five groups have isomorphic groups: #2 and #5; #3 and #13; #12 and #21; #14,
#19, and #25; #24 and #27. The most interesting is the case of #2 and #5: both polytopes
have 72 vertices in two orbits of size 56. Their group contains S8 as a subgroup of index 2.

5. Perfect Affine Quadratic Lattices for n < 6

Aff(0, 0) is a perfect affine lattice of rank 0. All perfect affine lattices of rank 1 are obviously
equivalent, up to scaling, to Aff(Z1, (x − 1

2)
2). The inequality (x − 1

2)
2 ≤ 1

4 describes the
Delaunay ellipsoid for the Delaunay polytope [0, 1]. The Delaunay tiling for (Z1, QForm(x−
1
2)

2) = (Z1, x2) consists of points of Z1, which are 0-dimensional polytopes, and segments
[k, k+1], where k ∈ Z, which are 1-dimensional polytopes of the tiling. The symmetry group
of [0, 1] consists of 2 elements and is generated by reflection about 1

2 . Surprisingly, there are
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no perfect affine modules of ranks 2, 3, 4, and 5. This was first proven by Erdahl [20] in
1975 (see also [21]).

6. Perfect Affine Quadratic Lattices of Rank 6

The affine lattice Aff(Z6, E6[x− c]), where E6 is given by

E6(x) = xt

4 3 3 3 3 5
3 4 3 3 3 5
3 3 4 3 3 5
3 3 3 4 3 5
3 3 3 3 4 5
5 5 5 5 5 8

x and c =
1

3

1
1
1
1
1

−2

,

turns out to be perfect, which was first observed by Erdahl [20]. Quadratic form E6 is of type
E6, i.e., (Z6, E6[x]) is equivalent, up to scaling, to (E6,

∑
x2

i ), where E6 is a well-known root
lattice in R6 (see, e.g., [7]). Lattice (E6,

∑
x2

i ) has first been constructed by Korkine and
Zolotareff [30], to which they referred as the fifth perfect form in 6 variables and denoted it
by X.

Inequality E6[x−c] ≤ 4
3 defines the Delaunay ellipsoid for a Delaunay polytope in (Z6, E6).

The set of 27 vertices of this polytope is given by the following table ([−1, 04;−1] means
the entry 0 is repeated 4 times and all permutations of the first 5 positions are taken – the
last entry is separated by semicolon and is not permuted; the other records of the table are
interpreted similarly).

x6 = −3 x6 = −2 x6 = −1 x6 = 0 x6 = 1

[15;−3]× 1 [0,14;−2]× 5 [12,03;−1]× 10 [06]× 1 [1,04;−1]× 5

[1,04;0]× 5

This polytope is known as Gosset’s 6-dimensional semiangular polytope [27], which we
denote by G6. It is a two distance set and Spec(G6) = {2, 4}. Typically, G6 is described as a
Delaunay polytope for (E6,

∑
x2

i ), in which case it is commonly denoted by 221 – the notation
going back to Coxeter (see [6] for some history). G6 has two orbits of facets, regular simplices
and regular cross-polytopes. It does not have interior diagonals and all segments joining its
vertices are either edges, or diagonals of its facets. The 1-skeleton of G6 is a strongly regular
graph known as the Schlafli graph. G6’s isometry group Iso(G6, E6), of order 51840, is the
famous group of automorphisms of the 27 lines on a general cubic surface. Iso(G6, E6) is
isomorphic to the semidirect product of a 2-element group generated by a reflection and a
reflection-free normal subgroup that consists of 26 × 34 × 5 = 25920 elements; the latter



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A39 13

group is simple and has a number of descriptions as a group of Lie type (see [5] for more
details). The isometry group of G6 is transitive on its vertex set. For more details see [6]
and [25].

6.1. Laminar Structure of Gosset’s G6

Let us denote by J(n, s) the polytope formed by all {0, 1}-vectors in (Zn,
∑n

i=1 x2
i ) with the

sum of the coordinates equal to s. It is known that for each s, such that 0 ≤ s < n, the
polytope J(n, s) is isometric to a Delaunay polytopes in (An−1,

∑n−1
i=1 x2

i ), where An−1 is a
root lattice of type A of rank n−1. G6 can be represented as the union of 3 laminae that are
isometric to J(6, 1), J(6, 2), and J(6, 1), where the regular 6-simplices J(6, 1) are parallel
(see [21]). Another lamination of G6 is into 3 layers that consist of a 0-simplex, a 5-halfcube,
and a 5-cross-polytope (see [25]). These two laminations correspond to the subdiagrams of
types A5 and D5, respectively, of the Coxeter diagram E6, which represents the isometry
group of G6 (see [29]).

It was long suspected that Aff(Z6, E6[x − c]) is the only perfect affine lattice of rank 6
up to scaling. Finally, Dutour [15], using his EXT-HYP7 program, created in 2002, proved
that this is the case.

7. Perfect Affine Quadratic Lattices of Rank 7

7.1. Gosset Polytope in Lattice E7

The affine lattice Aff(Z7, E7[x− c]), where E7 is given by

E7(x) = xt

4 3 3 3 3 5 4
3 4 3 3 3 5 4
3 3 4 3 3 5 4
3 3 3 4 3 5 4
3 3 3 3 4 5 4
5 5 5 5 5 8 6
4 4 4 4 4 6 6

x and c =
1

2

0
0
0
0
0
0
1

turns out to be perfect, which was first observed by Erdahl [20]. Quadratic form E7 is of type
E7, that is (Z7, E7) is equivalent, up to scaling, to (E7,

∑
x2

i ), where E7 is a well-known root
lattice in R7 (see, e.g., [7]). Lattice (E7,

∑
x2

i ) has first been constructed by Korkine and
Zolotareff [30], to which they referred as the sixth perfect form in 7 variables and denoted it
by Y .
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Inequality E7[x − c] ≤ 3 defines the Delaunay ellipsoid for a polytope in Del(Z7, E7),
whose vertex set is given below.

x7 = −1 x7 = 0 x7 = 1 x7 = 2

[15;−2;−1]× 1 [07]× 1 [06;1]× 1 [−15;2;2]× 1

[1,04;0;0]× 5 [−1,04;0;1]× 5

[−1,04;1;0]× 5 [1,04;−1;1]× 5

[12,03;−1;0]× 10 [−12,03;1;1]× 10

[0,14;−2;0]× 5 [0,−14;2;1]× 5

[15;−3;0]× 1 [−15;3;1]× 1

This centrally-symmetric polytope has 56 vertices and is known as Gosset’s 7-dimensional
semiregular polytope [27], which we denote by G7. It is a 3-distance set and Spec(G7) =
{2, 4, 6}. Typically, G7 is described as a Delaunay polytope for (E7,

∑
x2

i ), in which case it
is commonly denoted by 321 after Coxeter (see [6] for some history). The 1-skeleton of G7 is
known as the Gosset graph, which is a strongly-regular graph. G7 has 28 interior diagonals
passing through its center; in fact, Patrick du Val discovered that G7 can be thought of as the
convex hull of seven congruent 3-dimensional cubes in R7 with common center (attributed to
du Val by Coxeter [6]). The isometry group of G7 is transitive on vertices and is isomorphic
to the semidirect product of a 2-element group generated by a reflection and a reflection-free
normal subgroup of 4× 9! = 1451520 elements; the latter group is simple and is isomorphic,
among other groups of Lie type, to O7(2) (see [5]).

Lemma 7.1. l(G7) = 3 and vert(G7) is the union of the vertex sets of two 6-cross-polytopes
and a 6-half-cube.

Proof. The fact l(G7) = 3 follows from the representation of G7 as the following subset of
the 7-cube [−1, +1]7. Consider all cyclic permutations of 8 vectors (±1,±1; 0;±1; 0, 0, 0).
This defines a 56-element subset V of [−1, +1]7. du Val had shown that the convex hull of
these 56 points is the Gosset 7-polytope with respect to the usual metric

∑
x2

i . Note that
conv V /∈ Del(Z7,

∑
x2

i ), since conv V obviously contains the origin.

In each of the coordinate directions conv V has three layers defined by inequalities xi =
−1, 0, +1 and thus l(conv V ) = l(G7) = 3. It is easy to see that the sections xi = −1 and
xi = +1 are 6-cross-polytopes and the section xi = 0 is a 6-half-cube.

7.1.1. Laminar Structure of Gosset’s G7

G7 can be represented as the union of 4 laminae that are isometric to J(7, 1), J(7, 2), J(7, 2),
and J(7, 1) (where J(7, 1) is regular simplex). The above Lemma gives a lamination of vertG7
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is into 3 laminae that consists of vertex sets of a 6-cross-polytope, 6-halfcube, and another
6-cross-polytope. Yet another lamination is given in the above table, where the layers are a
0-simplex, a copy of G6, another copy of G6, and another 0-simplex. These three laminations
correspond to the unique subdiagrams of types A6, D6, and E6 of the Coxeter diagram E7,
which represents the isometry group of G7 (see [29]).

7.2. The 35-tope

The only known perfect affine lattice of rank 7, that is not equivalent to Aff(Z7, E7[x− c]),
was constructed by Erdahl and Rybnikov in 2000 (see [25] and [32]). It is Aff(Z7, ER7[x−c]),
where ER7 is given by

ER7(x) = xt

8 6 6 6 6 6 9
6 8 6 6 6 6 9
6 6 8 6 6 6 9
6 6 6 8 6 6 9
6 6 6 6 8 6 9
6 6 6 6 6 8 9
9 9 9 9 9 9 13

x and c =
1

16

5
5
5
5
5
5

−14

The lattice (Λ, ER7) has 12 shortest vectors and detΛER7 = 256. The order of O(Λ, ER7)
is 2880 and the dimension of the space of invariant forms is 3. (Λ, ER7) is not perfect, but
the lattice obtained from (Λ, ER7) by adding the centers of perfect ellipsoids is perfect with
70 shortest vectors.

Inequality ER7[x − c] ≤ 43
16 defines the Delaunay ellipsoid for a perfect Delaunay Υ7 in

Del(Z7, ER7), whose vertex set is given below.

x7 = −4 x7 = −3 x7 = −1 x7 = 0 x7 = 1

[16;−4]× 1 [0,15;−3]× 6 [12,04;−1]× 15 [07]× 1 [−1,05;1]× 6

[1,05;0]× 6

Spec(Υ7) = {3, 4, 5, 7, 8, 9}. Polytope Υ7 generalizes to an infinite series of perfect De-
launay polytopes Υn (n ≥ 7) with n(n+3)

2 vertices (see [24]):

xn = −(n− 3) xn = −(n− 4) xn = −1

[1n−1;−(n− 3)]× 1 [0,1n−2;−(n− 4)]× (n− 1) [12,0n−3;−1]× (n−1)(n−2)
2

[1,0n−2;0]× (n− 1)
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xn = 0 xn = 1

[0n]× 1 [−1,0n−2;1]× (n− 1)

[1,0n−2;0]× (n− 1)

Polytope Υ7 has lamina number l(Υ7) = 3 and can be represented as the union of Gosset
polytope G6 and regular simplices of dimensions 2 and 4 lying in parallel subspaces of R7:

Lemma 7.2. The vertex set of Υ7 is the disjoint union of the vertex sets of a Gosset polytope
G6, a regular 5-simplex, and a 1-simplex.

Proof. Consider the following partition

vertΥ7 = S1

⊔
S2

⊔
S3 =

{[−1, 05; 1]× 6, [0, 15;−3]× 6, [12, 04;−1]× 15}
⊔

{[05, 1; 0]× 6}
⊔

{[07], [16;−4]}.

Let us show that the affine rank of the first subset is 6. The first subset S1 can be represented
as S11

⊔
S12

⊔
S13, where {S11 = [−1, 05; 1]×6}, {S12 = [0, 15;−3]×6}, {S13 = [12, 04;−1]×

15}.

Notice that

[−1, 0, 0, 0, 0, 0, 1] = [0, 1, 1, 0, 0, 0,−1] + ([0, 0, 0, 1, 1, 0,−1]− [1, 1, 1, 1, 1, 0,−3])

Applying cyclic permutations of the first six characters to the above identity, we see
that, each element of S11 can be written as p1 + (p2 − p), where p1,p2 ∈ S3 and p ∈ S2.
Therefore, aff(S11 ∪S12 ∪S13) = aff(S12 ∪S13). Since both S12 and S13 lie on the hyperplane
2(x1 +x2 +x3 +x4 +x5 +x6)+3x7 = 1, dim aff(S1∪S2∪S3) = 6. Notice that this argument
does not work if we replace Υ7 with Υn for n > 7. It turns out that for n > 7 we have
aff(S11 ∪ S12 ∪ S13) *= aff(S12 ∪ S13).

It is clear that the affine subspaces generated by S2 and S3 are parallel to that generated
by S1. Computing squared distances between the elements of S1 with metric ER7 shows
that it is a two-distance set isometric to G6 (dilated by a factor of 2). The second and the
third sets are obviously regular simplices.

8. Perfect Affine Quadratic Lattices of Rank 8

We denote the perfect quadratic functions by Q8
i [x−c], where c ∈ Qn, and the corresponding

perfect Delaunay polytopes by D8
i . For each Q8

i [x− c] we give
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• an integer Gram matrix,

• the center c of the perfect ellipsoid,

• the order of the group O(Z8,Q8
i ) (the group’s generators are available from the first

author upon request), together with the size of the maximal symmetric subgroup,

• the number s(Z8,Q8
i ) of shortest vectors,

• the dimension of the subspace of Sym(8, R) that consists of forms Q such that Q[Tz] =
Q[z] for every T ∈ O(Z8,Q8

i ), we denote this subspace by QuadInv [O(Z8,Q8
i )].

For each D8
i we give

• the coordinates of the vertices,

• |Iso(D8
i ,Q8

i )| = Order of the isometry group of D8
i ,

• Whether D8
i is Centrally-symmetric or Antisymmetric,

• Maximal non-trivial perfect polytope of smaller dimension (i.e. G6, G7, or the 35-tope)
contained in D8

i ,

• Information on certain types of Delaunay polytopes contained in D8
i . If X is an arith-

metic type of a lattice Delaunay polytope such as, e.g., J(n, s), and D8
i contains a copy

of J(n, s), which is not a proper subpolytope of a J(n′, s′) ⊂ D8
i , then we state that

J(n, s) is maximally included into D8
i .

• the norm spectrum Spec(D8
i ).

• the lamina number l(D8
i ) (always 3).

The coordinatization of all polytopes is chosen so that the three laminae structure is
transparent. For some of the polytopes we give additional geometric information.

8.1. Delaunay Tilings of Lattices An and Dn

The geometric structure of 8-dimensional perfect Delaunay polytopes can be analyzed by
relating the geometry of these polytopes to the geometry of Delaunay tilings of lattices An

and Dn, which is explicit in our 8-dimensional data. In this section let e1, . . . , en be the
standard basis of Zn ⊂ En, and let I = {x ∈ Rn ∀i : 0 ≤ x · ei ≤ 1} denote the standard
unit cube.

An can be defined as (Zn,
∑n

i=1 x2
i +

∑
1≤i<j≤n xixj) or, in terms of the Euclidean space

En, as the lattice based on a regular n-simplex. Lattice Dn can be defined as (Zn,
∑n

i=1 x2
i +
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x1x3 +
∑

2≤i<j≤n xixj) or, in terms of the Euclidean space En, as the sublattice of Zn that
consists of all points with even sum of the coordinates; another Euclidean construction of Dn

is obtained by taking Zn and adding to it the centers of all facets of the unit n-cubes with
integral vertices – this is an n-dimensional generalization of what is known in crystallography
as the face-centered cubic lattice, or fcc. Note that for n = 3, An and Dn coincide.

Delaunay tilings of An have been described by Barnes [3] and Delaunay tilings of Dn

have been described by Ryshkov and Shushbaev [33]. Below we give a brief description of
these tilings borrowed from Baranovskii [1].

Let d =
∑

ei. Consider the sections of the standard unit cube I by hyperplanes per-
pendicular to d and passing through the points q

nd for q = 1, . . . , n. These hyperplanes
induce a tiling of I by n n-polytopes P (q) , where each P (q) is squeezed between hyper-
planes

∑
xi = q − 1 and

∑
xi = q. It can be shown (see [3] or [1]) that with respect to

quadratic form
∑n

i=1 x2
i +

∑
1≤i<j≤n xixj these polytopes are Delaunay. Thus, any Delaunay

n-polytope in An is a translate of one of these polytopes. The 1-skeletons of the faces of
P (q) that are defined by P (q) ∩ {x ∈ Rn

∑
xi = q − 1} and P (q) ∩ {x ∈ Rn

∑
xi = q}

are Johnson graphs J(n, q − 1) and J(n, q). We also use J(n, q − 1) and J(n, q) to refer to
the arithmetic classes of these polytopes. Note that J(n, q) and J(n, n − q) are isometric
with respect to any quadratic form on Zn, since one of them can be obtained from the other
by a combination of a lattice translation and an inversion with respect to a lattice point; in
the terminology of geometry of numbers such polytopes are called homologous.

Let us consider Dn as the sublattice of Zn ⊂ En that consists of all points with even
sum of the coordinates. Then any Delaunay n-polytopes in Dn is homologous to one of the
following:

1. a cross-polytope, with vertices in Dn, centered at x ∈ Zn, where
∑

xi ≡ 1 mod 2,

2. the convex hull of points of Dn that belong to the standard cube I,

3. the convex hull of points of Dn that belong to the shifted cube I + en.

The polytopes in 2) and 3) are known as n-halfcubes (or semicubes). Note that for
n = 3 a halfcube is a tetrahedron and for n = 4 a halfcubes is a cross-polytope; the latter
fact explains why the Delaunay tiling of D4 is formed by three homology classes of cross-
polytopes.
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Perfect affine quadratic lattice Aff(Z8,Q8
1[x− c]), where Q8

1 is given by

Q8
1(x) = xt

4 1 1 1 1 1 1 −5
1 4 1 1 1 1 1 −5
1 1 4 1 1 1 1 −5
1 1 1 4 1 1 1 −5
1 1 1 1 4 1 1 −5
1 1 1 1 1 4 1 −5
1 1 1 1 1 1 4 −5
−5 −5 −5 −5 −5 −5 −5 19

x and c =
1

10

7
7
7
7
7
7
7

10

.

• |O(Z8,Q8
1)| = 20160; S7 < O(Z8,Q8

1)

• s(Z8,Q8
1) = 14

• dimQuadInv[Z8,Q8
1] = 3

Inequality Q8
1[x − c] ≤ 43

10 defines the Delaunay ellipsoid for a perfect polytope D8
1 ∈

Del(Z8,Q8
1), whose vertex set (| vertD8

1| = 44) is given below.

x8 = 0 x8 = 1 x8 = 2

[08]× 1 [02,15;1]× 21 [17;2]× 1

[06,1;0]× 7 [0,16;1]× 7 [16,2;2]× 7

• Spec(D8
1) = 4, 6, 7, 9, 10, 12, 13, 15

• |Iso(D8
1,Q8

1)| = 10080

• l(D8
1) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(2), 1
2H(4), J(8, 6)
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Perfect affine quadratic lattice Aff(Z8,Q8
2[x− c]), where Q8

2 is given by

Q8
2(x) = xt

8 6 6 6 6 10 8 4
6 8 6 6 6 10 8 5
6 6 8 6 6 10 8 6
6 6 6 8 6 10 8 4
6 6 6 6 8 10 8 4
10 10 10 10 10 16 12 7
8 8 8 8 8 12 12 7
4 5 6 4 4 7 7 7

x and c =
1

2

0
0
0
0
0
0
1
0

.

• |O(Z8,Q8
2)| = 80640; S8 < O(Z8,Q8

2)

• s(Z8,Q8
2) = 16

• dimQuadInv[Z8,Q8
2] = 2

Inequality Q8
2[x− c] ≤ 3 defines the Delaunay ellipsoid for a perfect polytope

D8
2 ∈ Del(Z8,Q8

2), whose vertex set (| vertD8
2| = 72) is given below.

x8 = −1 x8 = 0 x8 = 1

[−12;0;−12;22;−1]× 1 [−15;22;0]× 1 [0;−12;02;1;0;1]× 1

[−1;02;−12;1;2;−1]× 1 [−15;3;1;0]× 1 [02;−1;0,1;02;1]× 2

[−1;02;−12;2;1;−1]× 1 [−14,0;2;1;0]× 5 [07;1]× 1

[−1;0;1;03;1;−1]× 1 [−12,03;12;0]× 10 [1;0;−1;04;1]× 1

[06;1;−1]× 1 [−1,04;0;1;0]× 5 [1;02;12;−2;0;1]× 1

[02;1;−1,0;0;1;−1]× 2 [−1,04;1;02]× 5 [1;02;12;−12;1]× 1

[0;12;02;−1;1;−1]× 1 [08]× 1 [12;0;12;−2;−1;1]× 1

[06;1;0]× 1

[04,1;−1;1;0]× 5

[04,1;03]× 5

[03,12;−1;02]× 10

[0,14;−2;02]× 5

[15;−3;02]× 1

[15;−2;−1;0]× 1

• Spec(D8
2) = 3, 4, 5, 7, 8, 9, 12

• |Iso(D8
2,Q8

2)| = 80640

• l(D8
2) = 3

• Centrally-symmetric

• Maximally contained subpolytopes: 35− tope, H(3), 1
2H(6), J(9, 7)
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Perfect affine quadratic lattice Aff(Z8,Q8
3[x− c]), where Q8

3 is given by

Q8
3(x) = xt

11 8 8 8 −3 4 −20 4
8 11 8 8 −3 4 −20 4
8 8 11 8 −3 4 −20 4
8 8 8 11 −3 4 −20 4
−3 −3 −3 −3 3 −1 6 −1
4 4 4 4 −1 4 −10 1
−20 −20 −20 −20 6 −10 48 −10
4 4 4 4 −1 1 −10 4

x and c =
1

92

30
30
30
30
36

−42
5

−42

.

• |O(Z8,Q8
3)| = 96; S4 < O(Z8,Q8

3)

• s(Z8,Q8
3) = 2

• dimQuadInv[Z8,Q8
3] = 12

Inequality Q8
3[x − c] ≤ 189

46 defines the Delaunay ellipsoid for a perfect polytope D8
3 ∈

Del(Z8,Q8
3), whose vertex set (| vertD8

3| = 47) is given below.

x5 = −1 x5 = 0 x5 = 1

[04;−1;03]× 1 [−1,03;0;−13]× 4 [04;1;−2;−12]× 1

[05;−2;−1;−2]× 1 [04;1;−12;−2]× 1

[05;−2;−12]× 1 [04;1;−13]× 1

[05;−12;−2]× 1 [03,1;1;03]× 4

[08]× 1 [02,12;1;−1;0;−1]× 6

[07;1]× 1 [0,13;1;0;1;0]× 4

[05;1;02]× 1 [15;−1;1;−1]× 1

[03,1;0;−1;02]× 4 [15;−1;1;0]× 1

[03,1;03;−1]× 4 [15;0;1;−1]× 1

[03,1;04]× 4

[0,13;02;1;0]× 4

• Spec(D8
3) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

• |Iso(D8
3,Q8

3)| = 48

• l(D8
3) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
4[x− c]), where Q8

4 is given by

Q8
4(x) = xt

3 1 1 1 −2 2 0 −2
1 3 1 1 −2 2 0 −2
1 1 3 1 −2 2 0 −2
1 1 1 3 −2 2 0 −2
−2 −2 −2 −2 6 −1 3 4
2 2 2 2 −1 6 3 −1
0 0 0 0 3 3 6 3
−2 −2 −2 −2 4 −1 3 6

x and c =
1

12

7
7
7
7
4

−4
4
4

.

• |O(Z8,Q8
4)| = 1728; S4 < O(Z8,Q8

4)

• s(Z8,Q8
4) = 8

• dimQuadInv[Z8,Q8
4] = 4

Inequality Q8
4[x − c] ≤ 7

2 defines the Delaunay ellipsoid for a perfect polytope D8
4 ∈

Del(Z8,Q8
4), whose vertex set (| vertD8

4| = 54) is given below.

x5 = −1 x5 = 0 x5 = 1

[04;−1;0;1;0]× 1 [08]× 1 [02,12;1;03]× 6

[06;1;−1]× 1 [0,13;1;03]× 4

[06;1;0]× 1 [15;−1;02]× 1

[05;1;02]× 1 [15;−1;0;1]× 1

[03,1;04]× 4 [15;−1;1;0]× 1

[03,1;02;1;0]× 4 [15;0;−1;1]× 1

[02,12;0;−1;1;0]× 6 [15;02;1]× 1

[02,12;03;1]× 6 [13,2;1;−1;0;1]× 4

[0,13;0;−1;1;0]× 4

[0,13;03;1]× 4

[14;0;−1;0;1]× 1

[14;0;−1;12]× 1

• Spec(D8
4) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

• |Iso(D8
4,Q8

4)| = 864

• l(D8
4) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
5[x− c]), where Q8

5 is given by

Q8
5(x) = xt

15 11 11 11 11 11 11 11
11 9 8 8 8 8 8 8
11 8 9 8 8 8 8 8
11 8 8 9 8 8 8 8
11 8 8 8 9 8 8 8
11 8 8 8 8 9 8 8
11 8 8 8 8 8 9 8
11 8 8 8 8 8 8 9

x and c =
1

8

−3
−3
−3
−3
−3
−3
−3
−3

.

• |O(Z8,Q8
5)| = 161280; S8 < O(Z8,Q8

5)

• s(Z8,Q8
5) = 56

• dimQuadInv[Z8,Q8
5] = 2

Inequality Q8
5[x − c] ≤ 15

8 defines the Delaunay ellipsoid for a perfect polytope D8
5 ∈

Del(Z8,Q8
5), whose vertex set (| vertD8

5| = 72) is given below.

∑
xi = −4

∑
xi = −3

∑
xi = −2

[2;−16,0]× 7 [−13,05]× 56 [−3;06,1]× 7

[3;−17]× 1 [−2;07]× 1

• Spec(D8
5) = 2, 3, 4, 5, 6

• |Iso(D8
5,Q8

5)| = 80640

• l(D8
5) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(5), J(8, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
6[x− c]), where Q8

6 is given by

Q8
6(x) = xt

8 6 6 6 6 6 9 5
6 8 6 6 6 6 9 5
6 6 8 6 6 6 9 5
6 6 6 8 6 6 9 4
6 6 6 6 8 6 9 6
6 6 6 6 6 8 9 5
9 9 9 9 9 9 13 7
5 5 5 4 6 5 7 6

x and c =
1

8

3
3
3
2
4
3

−8
−2

.

• |O(Z8,Q8
6)| = 768; S4 < O(Z8,Q8

6)

• s(Z8,Q8
6) = 2

• dimQuadInv[Z8,Q8
6] = 5

Inequality Q8
6[x − c] ≤ 11

4 defines the Delaunay ellipsoid for a perfect polytope D8
6 ∈

Del(Z8,Q8
6), whose vertex set (| vertD8

6| = 54) is given below.

x8 = −1 x8 = 0 x8 = 1

[03;−1;1;0;1;−1]× 1 [−1,05;1;0]× 6 [07;1]× 1

[06;1;−1]× 1 [08]× 1 [03;1;−1;02;1]× 1

[04;1;02;−1]× 1 [05,1;02]× 6 [03;1;02;−1;1]× 1

[02,1;0;12;−12]× 3 [04,12;−1;0]× 15

[0,12;0;1;0;−12]× 3 [0,15;−3;0]× 6

[0,12;0;12;−2;−1]× 3 [16;−4;0]× 1

[13;0;1;0;−2;−1]× 1

[13;0;2;1;−3;−1]× 1

[16;−3;−1]× 1

[14;2;1;−4;−1]× 1

• Spec(D8
6) = 2, 3, 4, 5, 6, 7, 8, 9, 10

• |Iso(D8
6,Q8

6)| = 384

• l(D8
6) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
7[x− c]), where Q8

7 is given by

Q8
7(x) = xt

12 9 9 9 9 −15 9 8
9 12 9 9 9 −15 9 11
9 9 12 9 9 −15 10 9
9 9 9 12 9 −15 10 9
9 9 9 9 12 −15 10 9
−15 −15 −15 −15 −15 24 −15 −14
9 9 10 10 10 −15 12 8
8 11 9 9 9 −14 8 13

x and c =
1

66

22
4

13
13
13
32
9

18

.

• |O(Z8,Q8
7)| = 72; S3 < O(Z8,Q8

7)

• s(Z8,Q8
7) = 2

• dimQuadInv[Z8,Q8
7] = 12

Inequality Q8
7[x − c] ≤ 91

22 defines the Delaunay ellipsoid for a perfect polytope D8
7 ∈

Del(Z8,Q8
7), whose vertex set (| vertD8

7| = 46) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;15;−12]× 1 [−1,04;−1;02]× 5 [0;−1;−12,0;−1;12]× 3

[05;−12;0]× 1 [0;−1;−1,02;−1;0;1]× 3

[08]× 1 [0;−1;04;12]× 1

[06;1;0]× 1 [07;1]× 1

[04,1;03]× 5 [05;13]× 1

[03,12;1;02]× 10 [1;−1;05;1]× 1

[0,14;2;02]× 5 [1;−1;03;13]× 1

[15;2;−1;0]× 1 [1;04;1;0;1]× 1

[15;3;02]× 1

[02;14;−1;0]× 1

[0;1;03;12;0]× 1

[1;04;12;0]× 1

• Spec(D8
7) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15

• |Iso(D8
7,Q8

7)| = 36

• l(D8
7) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
8[x− c]), where Q8

8 is given by

Q8
8(x) = xt

8 6 6 6 6 6 9 5
6 8 6 6 6 6 9 6
6 6 8 6 6 6 9 6
6 6 6 8 6 6 9 5
6 6 6 6 8 6 9 5
6 6 6 6 6 8 9 7
9 9 9 9 9 9 13 8
5 6 6 5 5 7 8 8

x and c =
1

20

7
4
4
7
7
1

−16
6

.

• |O(Z8,Q8
8)| = 384; S4 < O(Z8,Q8

8)

• s(Z8,Q8
8) = 2

• dimQuadInv[Z8,Q8
8] = 7

Inequality Q8
8[x − c] ≤ 14

5 defines the Delaunay ellipsoid for a perfect polytope D8
8 ∈

Del(Z8,Q8
8), whose vertex set (| vertD8

8| = 52) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;12;02;1;−12]× 1 [−1,05;1;0]× 6 [0;−12;02;−1;2;1]× 1

[08]× 1 [0;−1;03;−1;12]× 1

[05,1;02]× 6 [02;−1;02;−1;12]× 1

[04,12;−1;0]× 15 [07;1]× 1

[0,15;−3;0]× 6 [03;0,1;−1;0;1]× 2

[16;−4;0]× 1 [03;0,1;0;−1;1]× 2

[03;12;−12;1]× 1

[1;04;−1;0;1]× 1

[1;05;−1;1]× 1

[1;02;0,1;−12;1]× 2

[1;02;12;0;−2;1]× 1

[1;0;13;0;−3;1]× 1

[12;0;12;0;−3;1]× 1

• Spec(D8
8) = 2, 3, 4, 5, 6, 7, 8, 9, 10

• |Iso(D8
8,Q8

8)| = 192

• l(D8
8) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
9[x− c]), where Q8

9 is given by

Q8
9(x) = xt

6 4 4 4 4 4 −5 6
4 6 4 4 4 4 −5 6
4 4 6 4 4 4 −5 6
4 4 4 6 4 4 −5 6
4 4 4 4 6 4 −5 6
4 4 4 4 4 6 −5 6
−5 −5 −5 −5 −5 −5 9 −6
6 6 6 6 6 6 −6 9

x and c =
1

8

3
3
3
3
3
3
6

−4

.

• |O(Z8,Q8
9)| = 2880; S6 < O(Z8,Q8

9)

• s(Z8,Q8
9) = 12

• dimQuadInv[Z8,Q8
9] = 5

Inequality Q8
9[x − c] ≤ 27

8 defines the Delaunay ellipsoid for a perfect polytope D8
9 ∈

Del(Z8,Q8
9), whose vertex set (| vertD8

9| = 58) is given below.

x7 = 0 x7 = 1 x7 = 2

[−1,05;0;1]× 6 [06;12]× 1 [16;2;−2]× 1

[08]× 1 [04,12;1;0]× 15

[07;1]× 1 [03,13;1;−1]× 20

[05,1;02]× 6 [0,15;1;−2]× 6

[17;−3]× 1

• Spec(D8
9) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

• |Iso(D8
9,Q8

9)| = 1440

• l(D8
9) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
10[x− c]), where Q8

10 is given by

Q8
10(x) = xt

8 6 6 6 6 6 9 4
6 8 6 6 6 6 9 4
6 6 8 6 6 6 9 3
6 6 6 8 6 6 9 3
6 6 6 6 8 6 9 2
6 6 6 6 6 8 9 3
9 9 9 9 9 9 13 4
4 4 3 3 2 3 4 5

x and c =
1

26

6
6
7
7
8
7

−18
2

.

• |O(Z8,Q8
10)| = 576; S3 < O(Z8,Q8

10)

• s(Z8,Q8
10) = 4

• dimQuadInv[Z8,Q8
10] = 4

Inequality Q8
10[x − c] ≤ 35

13 defines the Delaunay ellipsoid for a perfect polytope D8
10 ∈

Del(Z8,Q8
10), whose vertex set (| vertD8

10| = 55) is given below.

x8 = −1 x8 = 0 x8 = 1

[12;0;1;0;1;−2;−1]× 1 [−1,05;1;0]× 6 [−14;02;3;1]× 1

[13;02;1;−2;−1]× 1 [08]× 1 [−13;02;−1;3;1]× 1

[14;02;−2;−1]× 1 [05,1;02]× 6 [−13;03;2;1]× 1

[14;0;1;−3;−1]× 1 [04,12;−1;0]× 15 [−12;0;−1;0;−1;3;1]× 1

[1,2;14;−4;−1]× 2 [0,15;−3;0]× 6 [−12;0;−1;02;2;1]× 1

[22;12;0;1;−4;−1]× 1 [16;−4;0]× 1 [−12;03;−1;2;1]× 1

[22;14;−5;−1]× 1 [−12;02;1;0;12]× 1

[−1,0;04;12]× 2

[−1,0;02;1;02;1]× 2

[07;1]× 1

• Spec(D8
10) = 2, 3, 4, 5, 6, 7, 8, 9

• |Iso(D8
10,Q8

10)| = 288

• l(D8
10) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
11[x− c]), where Q8

11 is given by

Q8
11(x) = xt

24 18 18 18 18 18 27 15
18 24 18 18 18 18 27 15
18 18 24 18 18 18 27 15
18 18 18 24 18 18 27 15
18 18 18 18 24 18 27 15
18 18 18 18 18 24 27 11
27 27 27 27 27 27 39 20
15 15 15 15 15 11 20 17

x and c =
1

90

36
36
36
36
36
22

−91
−21

.

• |O(Z8,Q8
11)| = 480; S5 < O(Z8,Q8

11)

• s(Z8,Q8
11) = 4

• dimQuadInv[Z8,Q8
11] = 8

Inequality Q8
11[x − c] ≤ 124

15 defines the Delaunay ellipsoid for a perfect polytope D8
11 ∈

Del(Z8,Q8
11), whose vertex set (| vertD8

11| = 44) is given below.

x8 = −1 x8 = 0 x8 = 1

[06;1;−1]× 1 [−1,05;1;0]× 6 [07;1]× 1

[0,14;0;−2;−1]× 5 [08]× 1 [05;1;−1;1]× 1

[16;−3;−1]× 1 [05,1;02]× 6

[04,12;−1;0]× 15

[0,15;−3;0]× 6

[16;−4;0]× 1

• Spec(D8
11) = 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 27, 28, 31

• |Iso(D8
11,Q8

11)| = 240

• l(D8
11) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
12[x− c]), where Q8

12 is given by

Q8
12(x) = xt

12 9 9 9 9 −15 7 6
9 12 9 9 9 −15 10 6
9 9 12 9 9 −15 8 5
9 9 9 12 9 −15 8 5
9 9 9 9 12 −15 8 5
−15 −15 −15 −15 −15 24 −12 −9
7 10 8 8 8 −12 12 5
6 6 5 5 5 −9 5 6

x and c =
1

31

9
3
6
6
6
9
6

−3

.

• |O(Z8,Q8
12)| = 96; S3 < O(Z8,Q8

12)

• s(Z8,Q8
12) = 14

• dimQuadInv[Z8,Q8
12] = 8

Inequality Q8
12[x − c] ≤ 126

31 defines the Delaunay ellipsoid for a perfect polytope D8
12 ∈

Del(Z8,Q8
12), whose vertex set (| vertD8

12| = 45) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;−14;−3;1;−1]× 1 [−1,04;−1;02]× 5 [07;1]× 1

[0;−1;−12,0;−2;1;−1]× 3 [08]× 1 [02;13;2;0;1]× 1

[0;−1;03;−1;1;−1]× 1 [06;1;0]× 1 [0;14;2;−1;1]× 1

[05;−1;0;−1]× 1 [04,1;03]× 5 [15;3;0;1]× 1

[0;1;05;−1]× 1 [03,12;1;02]× 10

[1;06;−1]× 1 [0,14;2;02]× 5

[15;3;02]× 1

[0;−12;02;−1;1;0]× 1

[0;−1;0;−1;0;−1;1;0]× 1

[0;−1;02;−12;1;0]× 1

[1;−1;04;1;0]× 1

[1;2;13;3;−1;0]× 1

• Spec(D8
12) = 2, 3, 4, 5, 6, 7

• |Iso(D8
12,Q8

12)| = 48

• l(D8
12) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(2), 1
2H(5), J(6, 4)
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Perfect affine quadratic lattice Aff(Z8,Q8
13[x− c]), where Q8

13 is given by

Q8
13(x) = xt

24 18 18 18 18 18 27 6
18 24 18 18 18 18 27 10
18 18 24 18 18 18 27 10
18 18 18 24 18 18 27 10
18 18 18 18 24 18 27 10
18 18 18 18 18 24 27 12
27 27 27 27 27 27 39 12
6 10 10 10 10 12 12 16

x and c =
1

74

22
16
16
16
16
13

−40
9

.

• |O(Z8,Q8
13)| = 96; S4 < O(Z8,Q8

13)

• s(Z8,Q8
13) = 2

• dimQuadInv[Z8,Q8
13] = 12

Inequality Q8
13[x − c] ≤ 300

37 defines the Delaunay ellipsoid for a perfect polytope D8
13 ∈

Del(Z8,Q8
13), whose vertex set (| vertD8

13| = 44) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;15;−3;−1]× 1 [−1,05;1;0]× 6 [0;−13,0;−1;3;1]× 4

[15;2;−4;−1]× 1 [08]× 1 [05;−1;12]× 1

[05,1;02]× 6 [07;1]× 1

[04,12;−1;0]× 15 [1;04;−1;0;1]× 1

[0,15;−3;0]× 6

[16;−4;0]× 1

• Spec(D8
13) = 5, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28

• |Iso(D8
13,Q8

13)| = 48

• l(D8
13) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
14[x− c]), where Q8

14 is given by

Q8
14(x) = xt

9 5 5 5 −15 0 3 −12
5 9 5 5 −15 0 3 −12
5 5 9 5 −15 0 3 −12
5 5 5 9 −15 0 3 −12
−15 −15 −15 −15 42 3 −9 33
0 0 0 0 3 6 0 3
3 3 3 3 −9 0 4 −8
−12 −12 −12 −12 33 3 −8 28

x and c =
1

16

7
7
7
7
4
4
4
4

.

• |O(Z8,Q8
14)| = 576; S4 < O(Z8,Q8

14)

• s(Z8,Q8
14) = 6

• dimQuadInv[Z8,Q8
14] = 6

Inequality Q8
14[x − c] ≤ 41

8 defines the Delaunay ellipsoid for a perfect polytope D8
14 ∈

Del(Z8,Q8
14), whose vertex set (| vertD8

14| = 46) is given below.

x6 = −1 x6 = 0 x6 = 1

[14;0;−1;1;2]× 1 [04;−1;02;1]× 1 [−1,03;0;1;−12]× 4

[14;0;−1;22]× 1 [08]× 1 [04;−1;1;0;1]× 1

[15;−1;2;1]× 1 [06;1;0]× 1 [05;1;−2;−1]× 1

[03,1;04]× 4 [05;1;−12]× 1

[02,12;02;12]× 6 [05;1;02]× 1

[0,13;03;1]× 4 [05;12;0]× 1

[0,13;1;03]× 4 [04;12;−1;−2]× 1

[0,13;1;0;1;0]× 4 [03,1;0;1;02]× 4

[14;02;1;2]× 1

[14;02;22]× 1

[15;03]× 1

[15;0;2;1]× 1

• Spec(D8
14) = 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18

• |Iso(D8
14,Q8

14)| = 288

• l(D8
14) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
15[x− c]), where Q8

15 is given by

Q8
15(x) = xt

8 6 6 6 6 6 9 2
6 8 6 6 6 6 9 3
6 6 8 6 6 6 9 3
6 6 6 8 6 6 9 3
6 6 6 6 8 6 9 3
6 6 6 6 6 8 9 4
9 9 9 9 9 9 13 4
2 3 3 3 3 4 4 4

x and c =
1

20

6
7
7
7
7
8

−20
−2

.

• |O(Z8,Q8
15)| = 384; S4 < O(Z8,Q8

15)

• s(Z8,Q8
15) = 24

• dimQuadInv[Z8,Q8
15] = 6

Inequality Q8
15[x − c] ≤ 27

10 defines the Delaunay ellipsoid for a perfect polytope D8
15 ∈

Del(Z8,Q8
15), whose vertex set (| vertD8

15| = 45) is given below.

x8 = −1 x8 = 0 x8 = 1

[05;1;0;−1]× 1 [−1,05;1;0]× 6 [05;−1;12]× 1

[0;0,13;1;−2;−1]× 4 [08]× 1 [07;1]× 1

[0;15;−3;−1]× 1 [05,1;02]× 6 [1;04;−1;0;1]× 1

[15;2;−4;−1]× 1 [04,12;−1;0]× 15

[0,15;−3;0]× 6

[16;−4;0]× 1

• Spec(D8
15) = 3, 4, 5, 6, 7, 8, 9

• |Iso(D8
15,Q8

15)| = 192

• l(D8
15) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
16[x− c]), where Q8

16 is given by

Q8
16(x) = xt

8 6 6 6 6 6 9 6
6 8 6 6 6 6 9 5
6 6 8 6 6 6 9 5
6 6 6 8 6 6 9 6
6 6 6 6 8 6 9 6
6 6 6 6 6 8 9 5
9 9 9 9 9 9 13 8
6 5 5 6 6 5 8 7

x and c =
1

14

4
5
5
4
4
5

−14
2

.

• |O(Z8,Q8
16)| = 288; S3 < O(Z8,Q8

16)

• s(Z8,Q8
16) = 24

• dimQuadInv[Z8,Q8
16] = 5

Inequality Q8
16[x − c] ≤ 19

7 defines the Delaunay ellipsoid for a perfect polytope D8
16 ∈

Del(Z8,Q8
16), whose vertex set (| vertD8

16| = 45) is given below.

x8 = −1 x8 = 0 x8 = 1

[06;1;−1]× 1 [−1,05;1;0]× 6 [07;1]× 1

[1;02;12;0;−12]× 1 [08]× 1 [05;1;−1;1]× 1

[05,1;02]× 6 [0;0,1;03;−1;1]× 2

[04,12;−1;0]× 15 [0;12;02;1;−2;1]× 1

[0,15;−3;0]× 6 [0;12;0;12;−3;1]× 1

[16;−4;0]× 1 [0;13;0;1;−3;1]× 1

[13;02;1;−3;1]× 1

• Spec(D8
16) = 3, 4, 5, 6, 7, 8, 9

• |Iso(D8
16,Q8

16)| = 144

• l(D8
16) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
17[x− c]), where Q8

17 is given by

Q8
17(x) = xt

8 6 6 6 6 6 9 4
6 8 6 6 6 6 9 4
6 6 8 6 6 6 9 4
6 6 6 8 6 6 9 6
6 6 6 6 8 6 9 4
6 6 6 6 6 8 9 4
9 9 9 9 9 9 13 6
4 4 4 6 4 4 6 6

x and c =
1

10

3
3
3
2
3
3

−8
1

.

• |O(Z8,Q8
17)| = 5760; S6 < O(Z8,Q8

17)

• s(Z8,Q8
17) = 2

• dimQuadInv[Z8,Q8
17] = 4

Inequality Q8
17[x − c] ≤ 27

10 defines the Delaunay ellipsoid for a perfect polytope D8
17 ∈

Del(Z8,Q8
17), whose vertex set (| vertD8

17| = 44) is given below.

x8 = −1 x8 = 0 x8 = 1

[03;1;03;−1]× 1 [−1,05;1;0]× 6 [03;−1;02;12]× 1

[13;2;12;−4;−1]× 1 [08]× 1 [03;−1;0;1;0;1]× 1

[05,1;02]× 6 [03;−1;1;02;1]× 1

[04,12;−1;0]× 15 [07;1]× 1

[0,15;−3;0]× 6 [02,1;−1;03;1]× 3

[16;−4;0]× 1

• Spec(D8
17) = 2, 3, 4, 5, 6, 7, 8, 9

• |Iso(D8
17,Q8

17)| = 2880

• l(D8
17) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(8, 6)
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Perfect affine quadratic lattice Aff(Z8,Q8
18[x− c]), where Q8

18 is given by

Q8
18(x) = xt

11 6 6 6 −7 11 4 3
6 11 6 6 −7 11 4 3
6 6 11 6 −7 11 4 3
6 6 6 11 −7 11 4 3
−7 −7 −7 −7 12 −8 −4 4
11 11 11 11 −8 20 4 8
4 4 4 4 −4 4 8 0
3 3 3 3 4 8 0 13

x and c =
1

76

6
6
6
6

23
25
25
10

.

• |O(Z8,Q8
18)| = 288; S4 < O(Z8,Q8

18)

• s(Z8,Q8
18) = 6

• dimQuadInv[Z8,Q8
18] = 8

Inequality Q8
18[x − c] ≤ 501

76 defines the Delaunay ellipsoid for a perfect polytope D8
18 ∈

Del(Z8,Q8
18), whose vertex set (| vertD8

18| = 44) is given below.

x6 = −1 x6 = 0 x6 = 1 x6 = 2

[0,13;1;−1;02]× 4 [04;−1;02;1]× 1 [−14;−2;13]× 1 [−15;2;1;0]× 1

[15;−12;0]× 1 [08]× 1 [−13,0;−1;13]× 4 [−15;2;12]× 1

[15;−1;02]× 1 [07;1]× 1 [−1,03;0;1;02]× 4

[14;2;−1;02]× 1 [06;1;0]× 1 [−1,03;0;12;0]× 4

[06;12]× 1 [05;1;02]× 1

[03,1;04]× 4 [04;12;02]× 1

[02,12;1;03]× 6 [04;13;0]× 1

[0,13;2;02;−1]× 4

• Spec(D8
18) = 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24

• |Iso(D8
18,Q8

18)| = 144

• l(D8
18) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
19[x− c]), where Q8

19 is given by

Q8
19(x) = xt

8 5 5 5 1 1 8 4
5 8 5 5 1 1 8 4
5 5 8 5 1 1 8 4
5 5 5 8 1 1 8 4
1 1 1 1 7 3 2 0
1 1 1 1 3 7 6 4
8 8 8 8 2 6 15 8
4 4 4 4 0 4 8 8

x and c =
1

46

−11
−11
−11
−11

29
−32

49
12

.

• |O(Z8,Q8
19)| = 576; S4 < O(Z8,Q8

19)

• s(Z8,Q8
19) = 8

• dimQuadInv[Z8,Q8
19] = 6

Inequality Q8
19[x − c] ≤ 229

46 defines the Delaunay ellipsoid for a perfect polytope D8
19 ∈

Del(Z8,Q8
19), whose vertex set (| vertD8

19| = 49) is given below.

x8 = −1 x8 = 0 x8 = 1

[06;1;−1]× 1 [−14;1;−2;3;0]× 1 [−14;1;−3;3;1]× 1

[−13,0;1;−2;3;0]× 4 [−14;1;−2;3;1]× 1

[−12,02;1;−1;2;0]× 6 [−14;2;−3;3;1]× 1

[−1,03;02;1;0]× 4 [−13,0;1;−2;2;1]× 4

[−1,03;1;−1;1;0]× 4 [−1,03;1;−1;12]× 4

[08]× 1 [07;1]× 1

[06;1;0]× 1 [04;1;−1;0;1]× 1

[05;1;02]× 1 [04;1;02;1]× 1

[04;1;−1;1;0]× 1

[04;1;03]× 1

[03,1;04]× 4

[02,12;0;1;−1;0]× 6

• Spec(D8
19) = 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18

• |Iso(D8
19,Q8

19)| = 288

• l(D8
19) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
20[x− c]), where Q8

20 is given by

Q8
20(x) = xt

12 9 9 9 9 −15 3 3
9 12 9 9 9 −15 4 5
9 9 12 9 9 −15 4 3
9 9 9 12 9 −15 4 5
9 9 9 9 12 −15 4 4
−15 −15 −15 −15 −15 24 −6 −6
3 4 4 4 4 −6 4 3
3 5 3 5 4 −6 3 5

x and c =
1

20

6
7
7
7
7

13
−3

0

.

• |O(Z8,Q8
20)| = 48; S3 < O(Z8,Q8

20)

• s(Z8,Q8
20) = 4

• dimQuadInv[Z8,Q8
20] = 11

Inequality Q8
20[x − c] ≤ 81

20 defines the Delaunay ellipsoid for a perfect polytope D8
20 ∈

Del(Z8,Q8
20), whose vertex set (| vertD8

20| = 47) is given below.

x8 = −1 x8 = 0 x8 = 1

[03;1;03;−1]× 1 [−1,04;−1;02]× 5 [0;−1;03;−12;1]× 1

[0;1;05;−1]× 1 [08]× 1 [03;−1;0;−12;1]× 1

[0;1;0;1;0;12;−1]× 1 [06;1;0]× 1 [07;1]× 1

[0;1;0;13;0;−1]× 1 [04,1;03]× 5 [02;1;03;−1;1]× 1

[0;14;2;0;−1]× 1 [03,12;1;02]× 10 [02;1;0;12;−1;1]× 1

[12;0;12;2;0;−1]× 1 [0,14;2;02]× 5 [1;0;1;02;1;−1;1]× 1

[12;0;12;2;1;−1]× 1 [15;3;02]× 1 [1;0;1;02;1;0;1]× 1

[04;1;0;−1;0]× 1

[03;1;02;−1;0]× 1

[02;1;03;−1;0]× 1

[0;1;04;−1;0]× 1

[0;14;2;−1;0]× 1

• Spec(D8
20) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

• |Iso(D8
20,Q8

20)| = 24

• l(D8
20) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(3), 1
2H(5), J(6, 4)
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Perfect affine quadratic lattice Aff(Z8,Q8
21[x− c]), where Q8

21 is given by

Q8
21(x) = xt

12 9 9 9 9 −15 6 5
9 12 9 9 9 −15 3 4
9 9 12 9 9 −15 4 3
9 9 9 12 9 −15 4 3
9 9 9 9 12 −15 4 3
−15 −15 −15 −15 −15 24 −6 −5
6 3 4 4 4 −6 6 4
5 4 3 3 3 −5 4 5

x and c =
1

50

19
20
17
17
17
37
3

−6

.

• |O(Z8,Q8
21)| = 96; S3 < O(Z8,Q8

21)

• s(Z8,Q8
21) = 4

• dimQuadInv[Z8,Q8
21] = 8

Inequality Q8
21[x − c] ≤ 201

50 defines the Delaunay ellipsoid for a perfect polytope D8
21 ∈

Del(Z8,Q8
21), whose vertex set (| vertD8

21| = 47) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;1;04;1;−1]× 1 [−1,04;−1;02]× 5 [−1;04;−1;0;1]× 1

[0;1;02,1;12;−1]× 3 [08]× 1 [0;−1;03;−12;1]× 1

[1;06;−1]× 1 [06;1;0]× 1 [07;1]× 1

[12;03;12;−1]× 1 [04,1;03]× 5 [1;0;13;2;−1;1]× 1

[12;0,12;2;0;−1]× 3 [03,12;1;02]× 10

[2;14;3;0;−1]× 1 [0,14;2;02]× 5

[15;3;02]× 1

[−1;04;−1;1;0]× 1

[−1;1;04;1;0]× 1

[1;05;−1;0]× 1

[1;0;13;2;−1;0]× 1

[2;14;3;−1;0]× 1

• Spec(D8
21) = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• |Iso(D8
21,Q8

21)| = 48

• l(D8
21) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(3), 1
2H(5), J(6, 4)
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Perfect affine quadratic lattice Aff(Z8,Q8
22[x− c]), where Q8

22 is given by

Q8
22(x) = xt

3 1 0 0 0 0 0 0
1 4 2 2 2 2 2 2
0 2 2 1 1 1 1 1
0 2 1 2 1 1 1 1
0 2 1 1 2 1 1 1
0 2 1 1 1 2 1 1
0 2 1 1 1 1 2 1
0 2 1 1 1 1 1 2

x and c =
1

10

8
−9

4
4
4
4
4
4

.

• |O(Z8,Q8
22)| = 645120; S7 < O(Z8,Q8

22)

• s(Z8,Q8
22) = 84

• dimQuadInv[Z8,Q8
22] = 2

Inequality Q8
22[x − c] ≤ 9

5 defines the Delaunay ellipsoid for a perfect polytope D8
22 ∈

Del(Z8,Q8
22), whose vertex set (| vertD8

22| = 79) is given below.

x1 = 0 x1 = 1 x1 = 2

[08]× 1 [1;−3;16]× 1 [2;−3;16]× 1

[02;05,1]× 6 [1;−2;02,14]× 15

[0;1;−1,05]× 6 [1;−2;0,15]× 6

[0;1;06]× 1 [1;−1;04,12]× 15

[1;−1;03,13]× 20

[1;07]× 1

[1;0;05,1]× 6

• Spec(D8
22) = 2, 3, 4, 5, 6

• |Iso(D8
22,Q8

22)| = 322560

• l(D8
22) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(7), J(8, 6)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A39 41

Perfect affine quadratic lattice Aff(Z8,Q8
23[x− c]), where Q8

23 is given by

Q8
23(x) = xt

7 4 4 4 4 2 7 4
4 7 4 4 4 2 7 4
4 4 7 4 4 2 7 4
4 4 4 7 4 2 7 4
4 4 4 4 7 2 7 4
2 2 2 2 2 7 7 0
7 7 7 7 7 7 14 4
4 4 4 4 4 0 4 8

x and c =
1

20

−7
−7
−7
−7
−7
−7
27
14

.

• |O(Z8,Q8
23)| = 1920; S5 < O(Z8,Q8

23)

• s(Z8,Q8
23) = 10

• dimQuadInv[Z8,Q8
23] = 4

Inequality Q8
23[x − c] ≤ 49

10 defines the Delaunay ellipsoid for a perfect polytope D8
23 ∈

Del(Z8,Q8
23), whose vertex set (| vertD8

23| = 49) is given below.

x8 = 0 x8 = 1 x8 = 2

[−1,05;1;0]× 6 [−15;−2;4;1]× 1 [−16;3;2]× 1

[08]× 1 [−16;3;1]× 1

[06;1;0]× 1 [−14,0;−1;3;1]× 5

[05,1;02]× 6 [−13,02;−1;2;1]× 10

[−12,03;0;12]× 10

[−1,04;0;12]× 5

[07;1]× 1

[05;1;0;1]× 1

• Spec(D8
23) = 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16

• |Iso(D8
23,Q8

23)| = 960

• l(D8
23) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(3), 1
2H(4), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
24[x− c]), where Q8

24 is given by

Q8
24(x) = xt

24 18 18 18 18 18 27 13
18 24 18 18 18 18 27 13
18 18 24 18 18 18 27 15
18 18 18 24 18 18 27 19
18 18 18 18 24 18 27 15
18 18 18 18 18 24 27 15
27 27 27 27 27 27 39 21
13 13 15 19 15 15 21 19

x and c =
1

36

11
11
12
14
12
12

−33
−3

.

• |O(Z8,Q8
24)| = 144; S3 < O(Z8,Q8

24)

• s(Z8,Q8
24) = 2

• dimQuadInv[Z8,Q8
24] = 9

Inequality Q8
24[x − c] ≤ 97

12 defines the Delaunay ellipsoid for a perfect polytope D8
24 ∈

Del(Z8,Q8
24), whose vertex set (| vertD8

24| = 44) is given below.

x8 = −1 x8 = 0 x8 = 1

[03;1;03;−1]× 1 [−1,05;1;0]× 6 [07;1]× 1

[03;13;−12]× 1 [08]× 1 [0,1;0;−1;03;1]× 2

[02;12;0,1;−12]× 2 [05,1;02]× 6

[02;14;−2;−1]× 1 [04,12;−1;0]× 15

[13;2;12;−4;−1]× 1 [0,15;−3;0]× 6

[16;−4;0]× 1

• Spec(D8
24) = 5, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27

• |Iso(D8
24,Q8

24)| = 72

• l(D8
24) = 3

• Antisymmetric

• Maximally contained subpolytopes: 35− tope, H(2), 1
2H(5), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
25[x− c]), where Q8

25 is given by

Q8
25(x) = xt

10 6 6 6 5 −13 2 0
6 10 6 6 5 −13 2 0
6 6 10 6 5 −13 2 0
6 6 6 10 5 −13 2 0
5 5 5 5 10 −5 0 0
−13 −13 −13 −13 −5 31 0 5
2 2 2 2 0 0 8 5
0 0 0 0 0 5 5 10

x and c =
1

64

21
21
21
21
0

20
−4
24

.

• |O(Z8,Q8
25)| = 576; S4 < O(Z8,Q8

25)

• s(Z8,Q8
25) = 8

• dimQuadInv[Z8,Q8
25] = 6

Inequality Q8
25[x − c] ≤ 207

32 defines the Delaunay ellipsoid for a perfect polytope D8
25 ∈

Del(Z8,Q8
25), whose vertex set (| vertD8

25| = 44) is given below.

x6 = −2 x6 = −1 x6 = 0 x6 = 1

[−2,−13;2;−2;12]× 4 [−12,02;1;−1;0;1]× 6 [08]× 1 [0,13;−1;1;02]× 4

[−14;1;−2;12]× 1 [07;1]× 1 [0,13;0;1;02]× 4

[−14;2;−2;12]× 1 [06;1;0]× 1 [14;−1;1;−1;0]× 1

[04,1;03]× 5 [14;−1;1;−1;1]× 1

[04,1;02;1]× 5 [14;−1;1;02]× 1

[04;1;0;1;0]× 1

x6 = 2 x6 = 3

[13,2;−1;2;−1;0]× 4 [24;−2;3;−2;0]× 1

[24;−2;3;−12]× 1

[24;−2;3;−1;0]× 1

• Spec(D8
25) = 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

• |Iso(D8
25,Q8

25)| = 288

• l(D8
25) = 3

• Antisymmetric

• Maximally contained subpolytopes: H(2), 1
2H(4), J(7, 5)
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Perfect affine quadratic lattice Aff(Z8,Q8
26[x− c]), where Q8

26 is given by

Q8
26(x) = xt

12 9 9 9 9 −15 6 3
9 12 9 9 9 −15 4 5
9 9 12 9 9 −15 7 5
9 9 9 12 9 −15 6 3
9 9 9 9 12 −15 7 5
−15 −15 −15 −15 −15 24 −9 −6
6 4 7 6 7 −9 8 4
3 5 5 3 5 −6 4 6

x and c =
1

3

1
1
1
1
1
2
0
0

.

• |O(Z8,Q8
26)| = 2592; S3 < O(Z8,Q8

26)

• s(Z8,Q8
26) = 18

• dimQuadInv[Z8,Q8
26] = 2

Inequality Q8
26[x − c] ≤ 4 defines the Delaunay ellipsoid for a perfect polytope D8

26 ∈
Del(Z8,Q8

26), whose vertex set (| vertD8
26| = 45) is given below.

x8 = −1 x8 = 0 x8 = 1

[0;1;02;13;−1]× 1 [−1,04;−1;02]× 5 [0;−12;0;−1;−2;0;1]× 1

[0;12;02;12;−1]× 1 [08]× 1 [0;−1;03;−12;1]× 1

[0;12;0;12;0;−1]× 1 [06;1;0]× 1 [07;1]× 1

[0;14;2;0;−1]× 1 [04,1;03]× 5 [1;−1;0;1;02;−1;1]× 1

[0;2;03;12;−1]× 1 [03,12;1;02]× 10 [1;02;1;0;1;0;1]× 1

[13;0;1;2;0;−1]× 1 [0,14;2;02]× 5 [1;0;13;2;−1;1]× 1

[15;3;02]× 1

[02;14;−1;0]× 1

[0;1;−1;03;1;0]× 1

[0;1;02;−1;0;1;0]× 1

[1;0;1;0;12;−1;0]× 1

[1;0;13;2;−1;0]× 1

• Spec(D8
26) = 2, 3, 4, 5, 6

• |Iso(D8
26,Q8

26)| = 1296

• l(D8
26) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(2), 1
2H(5), J(7, 5)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A39 45

Perfect affine quadratic lattice Aff(Z8,Q8
27[x− c]), where Q8

27 is given by

Q8
27(x) = xt

12 9 9 9 9 −15 7 3
9 12 9 9 9 −15 6 2
9 9 12 9 9 −15 6 3
9 9 9 12 9 −15 6 3
9 9 9 9 12 −15 8 5
−15 −15 −15 −15 −15 24 −9 −5
7 6 6 6 8 −9 11 3
3 2 3 3 5 −5 3 5

x and c =
1

12

1
3
2
2

−2
1
3
3

.

• |O(Z8,Q8
27)| = 144; S3 < O(Z8,Q8

27)

• s(Z8,Q8
27) = 24

• dimQuadInv[Z8,Q8
27] = 8

Inequality Q8
27[x − c] ≤ 17

4 defines the Delaunay ellipsoid for a perfect polytope D8
27 ∈

Del(Z8,Q8
27), whose vertex set (| vertD8

27| = 44) is given below.

x8 = −1 x8 = 0 x8 = 1

[04;1;02;−1]× 1 [−15;−3;1;0]× 1 [−1;0;−12;−2;−3;12]× 1

[−1,04;−1;02]× 5 [−1;03;−12;12]× 1

[08]× 1 [04;−2;−1;12]× 1

[06;1;0]× 1 [04;−12;0;1]× 1

[04,1;03]× 5 [07;1]× 1

[03,12;1;02]× 10 [0;1;02;−1;02;1]× 1

[0,14;2;02]× 5 [0;1;0,1;0;1;0;1]× 2

[15;3;02]× 1 [12;03;1;0;1]× 1

[−12;02;−1;−2;1;0]× 1

[−1;0;−1;0;−1;−2;1;0]× 1

[−1;02;−12;−2;1;0]× 1

[−1;03;−12;1;0]× 1

[14;2;3;−1;0]× 1

• Spec(D8
27) = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

• |Iso(D8
27,Q8

27)| = 72

• l(D8
27) = 3

• Antisymmetric

• Maximally contained subpolytopes: G6, H(2), 1
2H(5), J(7, 5)
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9. Computational Methods

In this section we explain how we obtained the perfect Delaunay polytopes presented here.
The six- and seven-dimensional polytopes, as well as some of the 8-dimensional ones have
been constructed by hands. However, most of the 8-dimensional polytopes on our list have
been found by a computer search. The search algorithm was based on the adjacency method
for the hypermetric cone: below we give an outline of this method. The overall description
can be found in (Dutour, 2005).

An affine basis of an n-dimensional lattice polytope P is a family {v0, . . . ,vn} of vertices
of P such that for every vertex v of P there exists a unique vector b = (b0, . . . , bn)t ∈ Zn+1,
such that

n∑

i=0

bivi = v and
n∑

i=0

bi = 1 .

There exist Delaunay polytopes without affine bases (see [17]) and we cannot exclude the
possibility that there exist perfect Delaunay polytopes without affine bases. The adjacency
method presented here can only be used for finding perfect Delaunay polytopes that have
affine bases.

A symmetric matrix D = (dij)0≤i,j≤n ∈ Sym(n + 1, R) is called an (n + 1)-hypermetric if
it satisfies the following hypermetric inequalities:

1

2
trace(bbtD) =

∑

0≤i<j≤n

bibjdij ≤ 0 for any b = (bi)0≤i≤n ∈ Zn+1 with
n∑

i=0

bi = 1 . (1)

Hypermetrics form a cone HY Pn+1 in Sym(n + 1, R) called the hypermetric cone. Since
Sym(n + 1, R) is isomorphic to RN , where N =

(
n+1

2

)
, we can identify hypermetrics with

distance vectors (dij)0≤i<j≤n ∈ RN , satisfying (1). We will denote the left hand side of (1)
by Hb[d]. Although HY Pn+1 is defined by an infinite set of inequalities, only finitely many
of them are independent (see, e.g., [10]), which implies that the cone is polyhedral. It is
easy to see that if P is an n-dimensional lattice Delaunay polytopes and {v0, . . . ,vn} an
affine basis of P , then the distance vector d = (dij) = (‖vi − vj‖2)0≤i<j≤n, is a hypermetric.
Moreover, one has Hb[d] = 0 if and only if b0v0 + · · ·+ bnvn is a vertex of P . The rank of the
Delaunay polytope P is the dimension of the minimal face of HY Pn+1 containing d. The
rank does not depend on the chosen affine basis. A Delaunay polytope is perfect if and only
if its rank is equal to 1, i.e., d generates an extreme ray of HY Pn+1. Two extreme rays are
called adjacent if they belong to the same 2-face of the cone.

The adjacency method is an iterative search procedure and we will now describe one
iteration of the method. Suppose we know a perfect n-dimensional Delaunay polytope P ,
which happens to admit an affine basis. We first compute an affine basis {v0, . . . ,vn} of P .
Then for every vertex v of P we compute the vector bv such that bv0v0 + · · · + bvnvn = v.
The set of equalities Hbv [d] = 0 determine d up to a constant factor. Next we compute the
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set of extreme rays {R+dr}1≤r≤M of HY Pn+1, which are adjacent to the extreme ray R+d
(see [14]). The list of adjacent extreme rays gives some new perfect Delaunay polytopes of
dimensions not exceeding n – these polytopes are called adjacent to P .

When a Delaunay polytope has an affine basis, it often has a lot of such bases; for
example, G6, G7, Υ7 (the 35-tope) have, respectively, 26, 374, 8430 orbits of affine bases.
A priori, the arithmetic types of adjacent Delaunay polytopes depend on the choice of the
affine basis {v0, . . . ,vn}. In our computations we used only one affine basis for each perfect
Delaunay polytope. Furthermore, in general, extreme rays of HY Pn+1 correspond to perfect
Delaunay polytopes of dimensions 1 through n and the extreme rays corresponding to lower
dimensional perfect Delaunay polytopes have very high incidence numbers, which makes
their computation particularly difficult. This is one of the reasons why we cannot claim
that the list of presented perfect Delaunay polytopes is complete. The starting point of the
enumeration was the Delaunay polytope Υn. In dimension 7 (i.e. for HY P8), we found only
G7 as other Delaunay polytope. By doing the computation in dimension 8, we found twenty
four perfect Delaunay polytopes. Three more perfect Delaunay polytopes of dimension 8
were obtained from running our algorithm in dimension 9.

The analysis of the geometric and combinatorial properties of the discovered polytopes
was done with the software package polyhedral [17] based on the computer algebra system
GAP. The search of sections and subpolytopes was done via exhaustive enumeration schemes
that used symmetries to reduce the complexity of the computation.

After this paper was submitted for publication, Dutour and Rybnikov [12] found a bet-
ter method for discovering perfect Delaunay polytopes. This new method does not depend
on the assumption of the existence of affine basis. When the method is “run in dimension
n”, it attempts to discover all perfect Delaunay polytopes in this dimension. All compu-
tations have been redone with this new method for n ≤ 8. No new polytopes have been
discovered; however, the three above-mentioned polytopes that were previously discovered
by running the HY Pn+1 method in dimension n = 9, were found by the new method running
in dimension n = 8.
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