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Abstract

A combination of elementary methods and Dirichlet’s theorem on the infinitude of primes
in arithmetic progressions is used to prove that a certain interesting set is dense in the unit
square. The construction of the set involves how an element is related to its multiplicative
inverse in the group (Z/pZ)∗.

1. Introduction

The main aim of this paper is to present a short proof of the density of a certain subset of the
unit square. The set whose density is proved is the set

⋃
p{(x

p , y
p) : 1 ≤ x, y < p, and xy =

1 mod p}. The results obtained here follow from known results on Kloosterman and hyper-
Kloosterman sums. Stronger results can be obtained by using estimates for Kloosterman and
hyper-Kloosterman sums. What actually happens (but is not proved here) is the following:
Let µ be the normalized Haar measure on the unit square T2. Let Yp = {(x

p , y
p) : 1 ≤

x, y < p, xy = 1 mod p}. Clearly, |Yp| = p − 1. Let Ω be a domain in T2 with piecewise
smooth boundary. Then |Yp

⋂
Ω| = µ(Ω)(p − 1)+ “nice error term”. Therefore, if Ω is a

circle of radius ε, |Yp

⋂
Ω| > 1 for p sufficiently large. This implies density. See for example

[1],[2],[3],[4] and the references therein. It is worth noting that although this proof is short,
it uses Dirichlet’s theorem on the infinitude of primes in arithmetic progressions.

2. The Construction of the Set

Definition 1 Here, (Z/pZ)∗ will consist of the numbers 1, 2, . . . , p − 1 rather than the
equivalence classes pZ+ i. Then x

p is naturally a rational number between 0 and 1 and (x
p , y

p)
is naturally a point in the unit square with rational coordinates for x, y ∈ (Z/pZ)∗. By
imposing the condition xy = 1 (mod p) for the point (x

p , y
p) and taking all such points for a

given prime p, one obtains a finite number of points. By taking the union over all primes p
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of such a set, one obtains a countable subset of the unit square:

A =
⋃

p

{(x
p
,
y

p
) : xy = 1 mod p, x, y ∈ (Z/pZ)∗}.

Definition 2 We denote the set B by B = {( a
n , n

b ) : (a, n) = (b, n) = 1, a < n < b}.

3. Proof of Density

Lemma 1 The set B is dense in the unit square.

Proof. Take n to be prime to make the proof easier. For fixed n, the x-coordinates a
n are

distance 1
n apart while the distance between the y-coordinates n

b is bounded by

max( n
(n+1)(n+2) ,

2n
(2n−1)(2n+1)).

As n → ∞, the distances between the x and y coordinates go to zero. !

Lemma 2 For any point b ∈ B, there exist points in A that are arbitrarily close to b.

Proof. Let p ≡ −a−1b (mod n) and p ≡ −1 (mod b). This is possible due to the Chinese
Remainder Theorem. Then x = ap+b

n and y = n(p+1)
b are integers. Furthermore, it is easily

verified that xy ≡ 1 (mod p). Then applying Dirichlet’s Theorem on the infinitude of
primes in arithmetic progressions, there are infinitely many primes satisfying this property.
Furthermore, as p → ∞, x

p → a
n and y

p → n
b . !

From Lemmas 1 and 2 we have the following result.

Theorem 1 A is dense in the unit square.

4. Generalizations to Congruence Classes.

Let C = uZ+v be any congruence class with infinitely many primes. So (u, v) = 1. Theorem
1 can be strengthened as follows.

Theorem 2 The set
⋃

p∈C

{(x
p
,
y

p
) : xy ≡ 1 (mod p), x, y ∈ (Z/pZ)∗} is dense in the unit

square.

Proof. Modify the set B to the following set {( a
n , n

b ) : (a, n) = (b, n) = (u, n) = (u, b) = 1}.
This set is still dense in the unit square because u is divisible by a finite number of primes.
If n is a fixed odd prime not dividing u, the distance between the x-coordinates is still
1
n while the distance between the y-coordinates is still bounded by something depending
only on n and the number of prime factors of u which is constant. More rigorously, let
Lu,n = {l ∈ Z : l > n, (l, n) = (l, u) = 1}. Let a(u, n) be the difference between the
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minimum of Lu,n and n. Since u is fixed, we can always find infinitely many primes n so that
n + 1 ∈ Lu,n which for those n would give a(u, n) = 1. Let r(u, n) be the largest possible
difference between consecutive numbers in Lu,n. Then for fixed n, the difference between
the y-coordinates in B is bounded by z(u, n) = n

n+a(u,n) −
n

n+a(u,n)+r(u,n) . As n → ∞, r(u, n)

is bounded for fixed u, so z(u, n) → 0. Now, since p ∈ C, the proof of Lemma 2 can be
modified by adding the extra condition p ≡ v (mod u). The Chinese remainder theorem and
Dirichlet’s theorem can still be applied. !

5. Generalizations to the Unit Hypercube

It would be interesting to try to generalize this in the following way: Let f(x1, x2, . . . , xk) ∈
Z[x1, x2, . . . , xk] and consider

⋃
p{(

x1
p , . . . , xk

p ) : f(x1, x2, . . . , xk) ≡ 0 (mod p), x1, x2, . . . , xk ∈
(Z/pZ)∗}. For what functions f is this dense in the k-dimensional unit hypercube? Here
we shall consider f =

∏
i xi − 1 and shall not even prove density but shall mimic the case

f = xy − 1 to say something about the distribution of points.

Define the following sets:

Ak =
⋃

p{(
x1
p , x2

p , . . . , xk
p ) :

∏
xi ≡ 1 (mod p), xi ∈ (Z/pZ)∗};

Bk = {(a0
a1

, a1
a2

, . . . , ak−1

ak
) : (ai, aj) = 1 for i, j > 0, (a0, a1) = 1, ai < ai+1}.

Theorem 3 For any point b ∈ Bk, there are points in Ak that are arbitrarily close to b.

Proof. Let p = −a−1
0 ak mod a1 and p = −1 mod ai for i = 2, . . . , k. This is possible by the

Chinese Remainder Theorem. Let x1 = a0p+ak

a1
, xi = ai−1(p+1)

ai
for i = 2, . . . , k. Then for all

i, xi ∈ Z and
∏

xi = 1 (mod p). Then apply Dirichlet’s Theorem and let p → ∞. Then
x1
p → a0

a1
and xi

p → ai−1

ai
for i = 2, . . . , k. !
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