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Abstract

Let Fp = Z/pZ. The height of a point a = (a1, . . . , ad) ∈ Fd
p is

hp(a) = min

{
d∑

i=1

(kai mod p) : k = 1, . . . , p− 1

}
.

Explicit formulas and estimates are obtained for the values of the height function in the case
d = 2, and these results are applied to the problem of determining the minimum number
of edges that must be deleted from a finite directed graph so that the resulting subgraph is
acyclic.

1. Heights in Finite Projective Space

Let F be a field and let F ∗ = F \ {0}. For d ≥ 2, we define an equivalence relation on
the set of nonzero d-tuples F d \ {(0, . . . , 0)} as follows: (a1, . . . , ad) ∼ (b1, . . . , bd) if there
exists k ∈ F ∗ such that (b1, . . . , bd) = (ka1, . . . , kad). We denote the equivalence class of
(a1, . . . , ad) by 〈a1, . . . , ad〉. The set of equivalence classes is called the (d − 1)-dimensional
projective space over the field F , and denoted Pd−1(F ).

We consider projective space over the finite field Fp = Z/pZ. For every x ∈ Fp, we denote
by x mod p the least nonnegative integer in the congruence class x. We define the height of

the point a = 〈a1, . . . , ad〉 ∈ Pd−1(Fp) by hp(a) = min
{∑d

i=1(kai mod p) : k = 1, . . . , p− 1
}

.
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For every nonempty set A ⊆ Pd−1(Fp), we define Hp(A) = {hp(a) : a ∈ A}. Then Hp(A) is
a set of positive integers.

For a = 〈a1, . . . , ad〉 ∈ Pd−1(Fp), let d∗(a) denote the number of nonzero components of a,
that is, the number of ai (= 0. The function d∗(a) is well-defined, that is, independent of the
representative of the equivalence class of a. For A ⊆ Pd−1(Fp), we define

d∗(A) = max{d∗(a) : a ∈ A}.
Then hp(a) ≤ d∗(a)(p−1) for all a ∈ Pd−1(Fp). We can reduce this upper bound by a simple
averaging argument.

For every real number t, let [t] denote the greatest integer not exceeding t.

Lemma 1. For every point a ∈ Pd−1(Fp), hp(a) ≤
[

d∗(a)p
2

]
.

Proof. If a ∈ F∗
p, then {ka mod p : k = 1, . . . , p− 1} = {1, . . . , p− 1} and so

p−1∑

k=1

(ka mod p) =
p−1∑

k=1

k =
p(p− 1)

2
.

It follows that for every a = 〈a1, . . . , ad〉 ∈ Pd−1(Fp), we have
p−1∑

k=1

d∑

i=1

(kai mod p) =
d∑

i=1

p−1∑

k=1

(kai mod p) =
d∗(a)p(p− 1)

2
.

Since the minimum of a set of numbers does not exceed the average of the set, we have

hp(a) ≤ 1

p− 1

p−1∑

k=1

d∑

i=1

(kai mod p) =
d∗(a)p

2
.

The lemma follows from the fact that the heights are positive integers. !
Lemma 2. For every odd prime p and d ≥ 2,

max
(
Hp(Pd−1(Fp))

)
=

dp

2
if d is even

(d− 1)p

2
+ 1 ≤ max

(
Hp(Pd−1(Fp))

)
≤ dp− 1

2
if d is odd.

Proof. If 2r ≤ d and a1, . . . , ar, a2r+1, . . . , ad are nonzero elements of the field Fp, then the
point a = 〈a1, a2, . . . , ar,−a1,−a2 . . . ,−ar, a2r+1, . . . , ad〉, satisfies d∗(a) = d and

d∑

i=1

(kai mod p) =
r∑

i=1

((kai mod p) + (−kai mod p)) +
d∑

i=2r+1

(kai mod p)

≥ rp + d− 2r

for all k = 1, . . . , p− 1. If d− 2r ≤ p− 1, we can choose distinct elements a2r+1, . . . , ad and
d∑

i=1

(kai mod p) ≥ rp +
(d− 2r)(d− 2r + 1)

2
.
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Applying Lemma 1 and the inequality with r = [d/2], we obtain hp(a) = dp/2 if d is even

and (d−1)p
2 + 1 ≤ hp(a) ≤ dp−1

2 if d is odd. This completes the proof. !

2. Heights on the Finite Projective Line

The projective line P1(Fp) consists of all equivalence classes of pairs (a1, a2), where a1, a2 ∈ Fp

and a1 and a2 are not both 0. If a1 = 0, then 〈0, a2〉 = 〈0, 1〉 and hp(〈0, 1〉) = 1. If a2 = 0,
then 〈a1, 0〉 = 〈1, 0〉 and hp(〈1, 0〉) = 1. If a1 (= 0 and a2 (= 0, then 〈a1, a2〉 = 〈1, a−1

1 a2〉.
Thus, for all a ∈ P1(Fp), if a (= 〈1, 0〉 and a (= 〈0, 1〉, then a = 〈1, a〉 for some a ∈ F∗

p, and
hp(〈1, a〉) ≥ 2.

Lemma 3. Let p be an odd prime and a ∈ F∗
p. Then

(i) hp(〈1, a〉) ≤ 1 + (a mod p) for all a,
(ii) hp(〈1, a〉) = 1 + (a mod p) if a mod p <

√
p,

(iii) hp(〈1, a〉) = 2 if and only if a = 1 + pZ,
(iv) hp(〈1, a〉) = 3 if and only if a = 2 + pZ or a = (p + 1)/2 + pZ,
(v) hp(〈1, a〉) = p if and only if a = p− 1 + pZ,
(vi) Let a = p− b + pZ for 1 ≤ b ≤ p− 1. Then hp(〈1, a〉) ≤ (p + (b− 1)2) /b.

Proof. For all a ∈ F∗
p and k ∈ {1, . . . , p− 1} we have ka mod p ∈ {1, . . . , p− 1}, and so

hp(〈1, a〉) = min{k + (ka mod p) : k = 1, . . . , p− 1} ≤ 1 + (a mod p).

Note that ka mod p ≤ k(a mod p) for all k ≥ 1. If k ≥ a mod p, then k+(ka mod p) ≥ (a
mod p) + 1. If 1 ≤ k ≤ (a mod p)− 1 and (a mod p) <

√
p, then

ka mod p ≤ k(a mod p) ≤ ((a mod p)− 1)(a mod p) ≤ (a mod p)2 < p

It follows that ka mod p = k(a mod p) and

k + (ka mod p) = k + k(a mod p) ≥ 1 + (a mod p).

and so hp(〈1, a〉) = 1 + (a mod p). This proves (i) and (ii).

We have k + (ka mod p) = 2 if and only if k = 1 and ka mod p = a mod p = 1, that
is, a = 1 + pZ. Similarly, k + (ka mod p) = 3 if and only if either k = 1 and ka mod p = a
mod p = 2, or k = 2 and ka mod p = 2a mod p = 1. In the first case, a = 2 + pZ and, in
the second case, a = (p + 1)/2 + pZ. This proves (iii) and (iv).

If a = −1 + pZ, then k + (ka mod p) = k + (p − k) = p for all k = 1, . . . , p − 1 and so
hp(1, a) = p. Conversely, if hp(1, a) = p, then k + (ka mod p) = p for some k, and so ka
mod p = −k mod p and a = −1 + pZ. This proves (v).

Finally, to prove (vi), we let p = qb + r, where q = [p/b] and 1 ≤ r ≤ p− 1. Then

qa =
[p

b

]
(p− b) + pZ = p−

[p

b

]
b + pZ = r + pZ
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and so qa mod p = r. Therefore,

hp(〈1, a)〉) ≤ q + r =
p + r(b− 1)

b
≤ p + (b− 1)2

b
.

This completes the proof. !

Theorem 1. Let p be an odd prime and a ∈ Fp. Then hp(〈1, a〉) = (p + 1)/2 if and only if
a = (p− 1)/2 + pZ or a = p− 2 + pZ. If a /∈ {(p− 1)/2 + pZ, p− 2 + pZ, p− 1 + pZ}, then
hp(〈1, a〉) ≤ p−1

2 .

Proof. The theorem is true for p = 3, 5, and 7, so we can assume that p ≥ 11. Let a =
p− 2 + pZ. If 1 ≤ k ≤ (p− 1)/2, then

k + (ka mod p) = k + (p− 2k) = p− k ≥ p + 1

2
and k + (ka mod p) = (p + 1)/2 when k = (p − 1)/2. If k ≥ (p + 1)/2, then k + (ka
mod p) ≥ (p + 3)/2. Therefore, hp(〈1, a)〉) = (p + 1)/2.

Let a = (p− 1)/2 + pZ. If j = 1, . . . , (p− 1)/2 and k = 2j, then

k + (ka mod p) = 2j + (j(p− 1) mod p) = 2j + (p− j) = p + j ≥ p + 1.

If k = 2j − 1, then

k + (ka mod p) = (2j − 1) +

(
(2j − 1)(p− 1)

2
mod p

)

= (2j − 1) +

(
p + 1

2
− j

)

=
p + 2j − 1

2
≥ p + 1

2
.

Since 1 + (a mod p) = (p + 1)/2, it follows that hp(〈1, a〉) = (p + 1)/2.

If a ∈ F∗
p and (a mod p) ∈ {0, 1, 2, . . . , (p− 3)/2}, then hp(〈1, a〉) ≤ 1+ (a mod p) ≤ p−1

2

by Lemma 3 (i). If a ∈ F∗
p and (a mod p) = (p + 1)/2, then hp(〈1, a〉) = 3 < (p + 1)/2 by

Lemma 3 (iv).

Let a ∈ F∗
p and (p + 3)/2 ≤ a mod p ≤ p− 3. There is an integer b such that

3 ≤ b ≤ p− 3

2
and a = p− b + pZ.

By Lemma 3 (vi) we have hp(〈1, a〉) ≤ (p + (b− 1)2) /b, and so hp(〈1, a〉) ≤ (p− 1)/2 if

2b + 1 +
4

b− 2
≤ p.

If 4 ≤ b ≤ (p−3)/2, then 2b+1+ 4
b−2 ≤ 2b+3 ≤ p. If b = 3, then hp(〈1, a〉) = hp(〈1, p−3〉) ≤

(p− 1)/2 since

2b + 1 +
4

b− 2
= 11 ≤ p.

This completes the proof. !
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Table of Heights for Primes 11 ≤ p ≤ 29

prime p a mod p hp(〈1, a〉) prime p a mod p hp(〈1, a〉)
11 2 3 23 2 3

3 4 3 4
4 4 4 5
5 6 5 6
6 3 6 5
7 5 7 8
8 5 8 4
9 6 9 7

13 2 3 10 8
3 4 11 12
4 5 12 3
5 5 13 5
6 7 14 6
7 3 15 9
8 5 16 5
9 4 17 8
10 5 18 7
11 7 19 8

17 2 3 20 9
3 4 21 12
4 5 29 2 3
5 6 3 4
6 4 4 5
7 6 5 6
8 9 6 6
9 3 7 8
10 5 8 7
11 7 9 10
12 5 10 4
13 5 11 7
14 7 12 7
15 9 13 10

19 2 3 14 15
3 4 15 3
4 5 16 5
5 5 17 7
6 7 18 8
7 5 19 11
8 7 20 5
9 10 21 8
10 3 22 5
11 5 23 9
12 7 24 9
13 4 25 8
14 7 26 11
15 7 27 15
16 7
17 10
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3. Problems on Heights

Problem 1. Let d ≥ 2 and a = 〈a1, . . . , ad〉 ∈ Pd−1(Fp). Is there a simple formula to
compute hp(a)? Is there a simple formula to estimate hp(a)? This is not known even for the
projective line d = 2.

Problem 2. By Theorem 1 and Lemma 3, we have Hp(P1(Fp))
⋂(

p + 1

2
, p

)
= ∅. For

which positive integers r does there exist a number cr such that

Hp(P1(Fp))
⋂(

p

r + 1
+ cr,

p

r
− cr

)
= ∅

for all sufficiently large p?

Problem 3. Is there an upper bound for the heights of points in the projective plane P2(Fp)
analogous to the upper bound in Theorem 1 for the projective line?

Problem 4. The following problem arises in graph theory. Let k ≥ 2 and let A ⊆ Pd−1(Fp)
be a nonempty subset of projective space such that

(1) If a = 〈a1, . . . , ad〉 ∈ A, then the coordinates ai are pairwise distinct.
(2) For ! = 1, . . . , k, none of the equations x1 + x2 + · · · + x! = 0 has a solution with

x1, . . . , xk ∈ {a1, a2, . . . , ad}. (These conditions are homogeneous and independent of
the representative of the equivalence class of a.)

Find an upper bound for Hp(A).

Problem 5. Find a good definition of the height of a point in the projective space Pd−1(Fq)
over any finite field Fq.

4. Cayley Graphs with Vertex Set Fp

Let G = (V,E) be a directed graph with vertex set V and edge set E ⊆ V ×V. A directed path
of length n in G is a sequence of vertices vi0 , vi1 , vi2 , . . . , vin such that (vij , vij+1) is an edge
for j = 0, 1, . . . , n− 1. A directed cycle of length n in G is a directed path vi0 , vi1 , vi2 , . . . , vin

such that vin = vi0 . A loop is a directed cycle of length 1, a digon is a directed cycle of
length 2, and a triangle is a directed cycle of length 3. A 3-free or triangle-free graph is a
graph with no loop, digon, or triangle. The graph G = (V,E) is called directed acyclic if it
has no directed cycle.

The outdegree of the vertex v is the number of edges of the form (v, v′) for some vertex
v′. The pigeonhole principle implies that in a finite directed graph, if the outdegree of every
vertex is at least 1, then the graph contains a cycle. Thus, every finite directed acyclic graph
contains at least one vertex with outdegree 0.

Theorem 2. Let {k0, k1, . . . , km−1} be a set of m distinct integers, and let G be a finite
directed graph with vertex set V = {vk0 , vk1 , . . . , vkm−1}. The graph G is directed acyclic if
and only if there is a one-to-one map σ : {0, 1, . . . ,m − 1} → {k0, k1, . . . , km−1} such that,
if (vσ(i), vσ(j)) is an edge of the graph, then i < j. If {k0, k1, . . . , km−1} = {0, 1, . . . ,m − 1},
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then G is directed acyclic if and only if there is a permutation σ of {0, 1, . . . ,m − 1} such
that r < s for every edge (vσ(r), vσ(s)) of the graph.

Proof. Let σ : {0, 1, . . . ,m − 1} → {k0, k1, . . . , km−1} be a one-to-one map such that, if
(vσ(i), vσ(j)) is an edge of the graph, then i < j. If vσ(i0), vσ(i1), . . . , vσ(in) is a path in G, then
i0 < i1 < i2 < · · · < in and so in (= i0, that is, vσ(in) (= vσ(i0), and so no path in G is a cyclic.

To prove the converse, we use induction on m. The Lemma holds for m = 1 and m = 2.
Assume that m ≥ 2 and that the lemma is true for every finite acyclic graph with m vertices.
If G is an acyclic directed graph with m + 1 vertices {vk0 , vk1 , . . . , vkm}, then there exists
a vertex vkr with outdegree 0. Consider the induced subgraph G′ of G on the vertex set
{vk0 , vk1 , . . . , vkr−1 , vkr+1, . . . , vkm}. By the induction hypothesis, there is a one-to-one map
σ′ from {0, 1, . . . ,m− 1} into {k0, k1, . . . , kr−1, kr+1, . . . , km} such that if (vσ′(i), vσ′(j)) is an
edge of the graph G′, then i < j. Extend this map to a function σ of {0, 1, . . . ,m} by defining
σ(i) = σ′(i) for i = 0, 1, . . . ,m− 1 and σ(m) = kr. Since vkr = vσ(m) has outdegree 0, there
is no edge of the form (vσ(m), vσ(j)) for j ≤ m. This completes the proof. !
Corollary 1. Let G = (V,E) be a finite directed graph with vertex set {v0, v1, . . . , vm−1},
and let σ be a permutation of {0, 1, . . . ,m− 1}. Let Bσ be the set of edges (vσ(r), vσ(s)) ∈ E
with r ≥ s. Then the subgraph G′ = (V,E \ Bσ) is acyclic.

Proof. This follows immediately from Theorem 2. !

Let β(G) denote the minimum size of a set X of edges such that the graph G′ = (V,E \X)
is directed acyclic.

Corollary 2. Let G = (V,E) be a finite directed graph with vertex set {v0, v1, . . . , vm−1},
and let Σm be a set of permutations of {0, 1, . . . ,m − 1}. For σ ∈ Σm, let Bσ be the set of
edges (vσ(r), vσ(s)) ∈ E with r ≥ s. Then β(G) ≤ min {card(Bσ) : σ ∈ Σm} .

Proof. This follows immediately from Corollary 1. !

Let γ(G) denote the number of pairs of nonadjacent vertices in the undirected graph ob-
tained from G by replacing each directed edge with an undirected edge. A tournament is a
directed graph with no loops and exactly one edge between every two vertices. If G is a tour-
nament, then γ(G) = 0. Let G be a finite, triangle-free tournament. If G contains directed
cycles, then the minimum length n of a directed cycle in G is 4. Let vi0 , vi1 , vi2 , . . . , vin be a
cycle in G of minimum length n. Since γ(G) = 0, it follows that either (vi0 , vi2) or (vi2 , vi0)
is an edge. If (vi0 , vi2) is an edge, then vi0 , vi2 , . . . , vin is a cycle in G of length n− 1, which
contradicts the minimality of n. If (vi2 , vi0) is an edge, then vi0 , vi1 , vi2 is a triangle in G,
which is impossible. It follows that every finite, triangle-free tournament is directed acyclic.
Equivalently, if G is triangle-free and γ(G) = 0, then β(G) = 0.

This is a special case of a theorem of Chudnovsky, Seymour, and Sullivan[1], who proved
that if G is a triangle-free digraph, then β(G) ≤ γ(G). They conjectured that if G is a
triangle-free digraph, then β(G) ≤ γ(G)/2.
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We shall consider the special case of the CSS conjecture in which the triangle-free graph
is a Cayley graph G = (Fp, EA) whose vertex set is the additive group of the finite field Fp

and whose edge set EA is determined by a nonempty subset A of F∗
p by the following rule:

EA = {(x, x + a) : x ∈ Fp and a ∈ A}.
Let d = card(A). If the Cayley graph has neither loops nor digons, then the number of pairs
of adjacent vertices is the same as the number of directed edges, which is dp, and so the
number of pairs of nonadjacent vertices is

γ(G) =

(
p

2

)
− dp =

p(p− 1− 2d)

2
.

In this case the CSS conjecture asserts that

β(G) ≤ p(p− 1− 2d)

4
.

Lemma 4. Let p be a prime number and A = {a1, a2, . . . , ad} ⊆ F∗
p. Let G = (Fp, EA) be

the Cayley graph constructed from A. Let Σp be a set of permutations of {0, 1, 2, . . . , p− 1}.
For i ∈ {0, 1, . . . , p− 1} and j ∈ {1, . . . , d}, define ti,j ∈ {0, 1, . . . , p− 1} by

(σ(i) + pZ) + aj = σ(ti,j) + pZ.

Then EA = {(σ(i) + pZ,σ(ti,j) + pZ) : i = 0, . . . , p− 1 and j = 1, . . . , d}. Let

Bσ = {(σ(i + pZ),σ(ti,j + pZ)) : ti,j < i}.
The graph G′ = (Fp, EA \ Bσ) is directed acyclic for every permutation σ ∈ Σp, and

β(G) ≤ min{card(Bσ) : σ ∈ Σp}.

Proof. This follows immediately from Corollary 2. !
Theorem 3. Let p be prime and A = {a1, a2, . . . , ad} ⊆ F∗

p. Let G = (Fp, EA) be the Cayley

graph constructed from A. Then β(G) ≤ hp(〈a1, a2, . . . , ad〉) ≤ dp
2 .

Proof. Let Σp = {σk}p−1
k=1 be the set of permutations of {0, 1, 2, . . . , p− 1} defined by

σk(i) ≡ ki (mod p) for i = 0, 1, . . . , p− 1.

Fix k ∈ {1, 2, . . . , p−1}. For i ∈ {0, 1, . . . , p−1} and j ∈ {1, . . . , d}, define ti,j ∈ {0, 1, . . . , p−
1} \ {i} by (σk(i) + pZ) + aj = σk(ti,j) + pZ. Let uk denote the least nonnegative integer
such that kuk ≡ 1 (mod p). Then {u1, u2, . . . , up−1} = {1, 2, . . . , p− 1}. Defining rj = ukaj

mod p, we have rj ∈ {1, 2, . . . , p− 1} and aj = krj + pZ. Then

σk(ti,j) + pZ = (σk(i) + pZ) + aj

= (ki + pZ) + (krj + pZ)

= k(i + rj) + pZ
= σk(i + rj) + pZ

and so ti,j ≡ i + rj (mod p). If i + rj ≤ p − 1, then ti,j = i + rj > i. If i + rj ≥ p, then
ti,j = i+ rj − p < i. It follows that ti,j < i if and only if i+ rj ≥ p, that is, p− rj ≤ i ≤ p− 1
and so card(Bσk

) =
∑d

j=1 rj =
∑d

j=1(ukaj mod p).
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By Corollary 2,

β(G) ≤ min{card(Bσk
) : k = 1, . . . , p− 1} = min

{
d∑

j=1

(ukaj mod p) : k = 1, . . . , p− 1

}

= min

{
d∑

j=1

(kaj mod p) : k = 1, . . . , p− 1

}

= hp(〈a1, . . . , ad〉).
The upper bound for the height comes from Lemma 2. !

We return to the CSS conjecture. Since dp/2 ≤ p(p−1−2d)/4 if and only if d ≤ (p−1)/4,
it follows that, for a fixed prime p, we only need to consider sets A of cardinality d > p/4. In
the other direction, Hamidoune [2, 3] proved the Caccetta-Haggkvist conjecture for Cayley
graphs: If A ⊆ F∗

p and d = |A| ≥ p/r, then the Cayley graph (Fp, EA) contains a cycle
of length no greater than r. In particular, if the graph has no directed loops, digons, or
triangles, then d < p/3. Therefore, to prove the CSS conjecture for the group Fp, it suffices
to consider only sets A of size d, where p/4 < d < p/3.

The following result uses heights to prove a special case of the CSS conjecture.

Theorem 4. Let p be a prime number, p ≥ 7, and let A = {a1, a2} ⊆ F∗
p with a1 (= a2. Let

G = (Fp, EA) be the Cayley graph constructed from A. If G is a triangle-free digraph, then

β(G) ≤ p− 1

2
≤ γ(G)

2
.

Proof. Since 〈a1, a2〉 = 〈1 + pZ, a〉 in P1(Fp) with a = a−1
1 a2 (= 1 + pZ, and since β(G) ≤

hp(〈a1, a2〉) = hp(〈1 + pZ, a〉), it suffices to consider the case A = {1 + pZ, a}. The Cayley
graph G is triangle-free if and only if none of the equations

x = pZ, x + y = pZ, and x + y + z = pZ
has a solution with x, y, z ∈ {1 + pZ, a}. The first equation implies that a (= pZ, the second
that a (= p− 1 + pZ, and that third that 2a + 1 (= pZ and a + 2 (= pZ, or, equivalently, that
a (= (p− 1)/2 + pZ or p− 2 + pZ. It follows from Theorem 1 that

β(G) ≤ hp(〈1 + pZ, a〉) ≤ p− 1

2
≤ p(p− 5)

4
=

γ(G)

2
if p ≥ 7. This completes the proof. !
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