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ON N | ¢(N)D(N) +2 AND N | o(N)o(N) + 1
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Abstract

For any positive integer n, let ¢(n) denote the Euler totient function, o(n) denote the
sum of the positive divisors of n and d(n) denote the number of positive divisors of n. It is
clear that if n > 4 is an integer such that either n | p(n)d(n) + 2 or n | ¢(n)o(n) + 1, then
n is squarefree. The following results are proved: (1) Let ¢t and n be two positive integers
with ¢ > 2 and n|¢(n)d(n) + 2. If n has exactly ¢ prime factors p; < py < --- < py, then
pi < (t-200270(1 <4 <t). (2) If n is composite and n|e(n)o(n) + 1, then n has at least
three distinct prime factors.

1. Introduction

For any positive integer n, let ¢(n) denote the Euler totient function, o(n) denote the sum
of the positive divisors of n and d(n) denote the number of positive divisors of n. Obviously,
if n is prime, then it divides ¢(n)d(n)+2. Is this true for any composite n other than n = 47
The question was posed in [1, B37]. Jud McCranie finds no others with n < 10'° (see [1,
B37]). It is easy to see that if such n exists, then n is squarefree. In this paper, we prove
the following result.

Theorem 1. Let t and n be two positive integers with t > 2 and n|p(n)d(n) + 2. If n has
exactly t prime factors py < py < --- < py, then p; < (t - 2'5_1)2171(1 <1 <t).

Remark. In fact, similarly to the proof of Theorem 1, we can get a more precise inequality
pi <2t —i+1)(pr — 1)+ (pimy — 1) for 2 < i < t. By using this we have proved that
there are no integers n with 2 < ¢ <4 and n | p(n)d(n) + 2.
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Note that if n is prime, then it divides ¢(n)o(n) + 1. Now we consider the question:
Does there exist any composite n with n | ¢(n)o(n) 4+ 17 It is clear that if such an integer
n exists, it must be squarefree. For this question, we prove that:

Theorem 2. Ifn is composite and n|p(n)o(n)+ 1, then n has at least three distinct prime
factors.

Remark. If n | p(n)d(n) + 2 and n | p(n)o(n) + 1, then we have n | p(n)(20(n) — d(n)).
By n | ¢(n)o(n) + 1 we have (n,o(n)) = 1 and n is squarefree. Thus n | 20(n) — d(n). It is
not difficult to prove that there are no squarefree composite n with n | 20(n) — d(n) except

for n = 70. But 70 1 ¢(70)d(70) + 2. So there is no composite n with n | ¢(n)d(n) + 2 and
n | ¢(n)o(n) + 1. We pose the following question.

Question. Determine all composite numbers such that n | 20(n) — d(n).

Remark. There are only 14 such n < 108, namely 18, 70, 88, 132, 780, 11096, 17816,
518656, 1713592, 9928792, 11547352, 13499120, 17999992 and 89283592. It is easy to prove
that if 281 — k — 2 is prime, then 2¥(2**! — k — 2) is such an integer. We have found that
2k+1 _ k —2is prime for k = 3,9, 13, 15, 25,49, 55,69, 115. We pose the following conjectures.

Conjecture 1. There are infinitely many primes of the form 2**! — k — 2, where k is a
positive integer.

Conjecture 2. There are no odd composite n such that

n | 20(n) —d(n).

2. Proof of the Theorems

Proof of Theorem 1. We use induction on 7 to prove
pi< (t-201)2T << (1)

By n | p(n)d(n)+2 we have pips - - - py | 2(p1—1)(p2—1) - - - (pr — 1) +2. Now we consider the
case p; > 3. Then pipy---p; | 287 (py — 1)(p2 — 1) - -+ (pr — 1) + 1. So there exists a positive
integer k such that

Qt_l(pl_1)(]72_1)"'(pt_1)+1:kp1p2"‘pt- (2)

If k& > 271, then by (2) we have 27! (p; — 1)(po — 1)+ (ps — 1) + 1 > 2" 'pypy - - - py. Thus,
27 (pipo - pr — (p1 — ) (p2 — 1)+ - (pr — 1)) < 1. Obviously, this is impossible for ¢ > 2.
Hence, k < 2071 — 1. By (2) we have

1 1 1 1

21— (1= ) (L= =k (3)
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So
1 t
2t 1> k> (1 - =) > 21— —).
b1 p1

The last inequality is based on the fact that (1 —2)* > 1 —az for 0 <z < 1 and a > 1.
Hence p; < 271, Now suppose that (1) is true for i < j < t. Since

1 1 1
ko= 271 2) (1 —) 4 ——
P1 Dt Dbip2 - Pe
1 1 1 1 1
= 21— ) (- )= ) (I )
P1 Pj-1 Py Dt pip2 Pt
1 1 1 1
< 27— =) (- )l - )+ ————
1 Pj—1 Dy pPip2 - Pj
1 1 1 1
— 21— ). (1 Q——+ )
( p1) ( pj—l) pi 25Ypr—1)-(pjo1 — D)p;
1 1
< 21— =)- (1= —),
( pl) ( pH)
we have 1 1
2711 — =) (1 - ) —k>0.
P1 Pj—1

Since the left-side of the above inequality is a positive rational number, it is at least as large
as 1/(p1p2---pj—1). Thus

1 1 1
2t_1(1——)---(1— )—k> —.
b1 Pj-1 pip2 - Pj—1
Hence
1 1 1
E<ot-'1——)...(1 - — (1— ) 4
a ( pl) ( pjfl) 2“1(]?1—1)(272—1)"'(193‘71—1) ( )
By (3) we have
1 1 1 1
E = 2'1-—)y1—-—)---(1—--)4 ——
( p1>( p2) ( pt) Pip2 - - - Dt
1 1 1
> 271 o) (- )1 - )
D1 Pj—1 pj
1 1 t
> 2l — ) (1 — —)(1——2).
e R (e ey

Combining the above inequality with (4), we have

t 1
1——<1- .
p; 27 p = Dp2 = 1) -+ (pj-1 — 1)

Thus, by the induction hypothesis, we have

p; < 27N (py — 1) (pj_g — 1) < (#2071 (20 )RR (ot 1y
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So when p; > 3 we have proved that p; < (t20=1)2"" for all 1 < i < t. Now, we consider the
case p; = 2. By n | ¢(n)d(n) + 2, we have 2py -« - p; | 28(p2 — 1) - -+ (pr — 1) + 2. That is,

peope |27 (e = 1) (= 1) + 1.
Similarly to the case p; > 3, we can prove that p; < (£2071)27 (1 < i <t) when py =2. O

Before the proof of Theorem 2, we first introduce a lemma.
Lemma. There do not exist positive integers a,b with a > 1 and b > 1 such that abla®+b*—2.

Proof of the lemma. Without loss of generality, we may assume that a < b. Now we use
induction on b to prove the lemma.

It is easy to see that ab { a® 4+ b? — 2 when b = 2. Suppose that the lemma is true for
b < k. Now we consider the case b = k. Suppose that there is an integer a with & > a > 2
and ak | a® + k* — 2. Then there exists a positive integer [ with

a®+ k* — 2 = lak. (5)
By the Euclidean algorithm, there exist nonnegative integers ¢, with 0 < r < a such that
k = aq+ r. By (5) we have

a?+k -2 a*+(ag+r)?—2 +r(aq+r)—|—a2—2

[ = —
ak alaq+r) 1 a(aq +r)

Since
r(aq+r)+a*—2

a(aq + )
and by the above equation it is an integer, we have
rlag+r)+a*—2
alaq+r)
and [ =g+ 1. By (6) and [ = ¢ + 1 we have

la(a—r)=a*+ (a—1)* - 2. (7)

0< <2

1 (6)

If r = 0, then by (7) we have a? | 2, a contradiction with @ > 1. Sor > 0 and k = aqg+r > a.
By (7) and the induction hypothesis, we have a —r = 1. Thus by (7) we have la = a* — 1.
Hence a | 1, which is impossible for a > 1. O

Proof of Theorem 2. Assume that n = pip;, where pj,py are distinct primes. By n |
o(n)o(n) + 1 we have pips | (p? — 1)(p2 — 1) + 1. Hence, p1p2 | p? + p3 — 2. Now Theorem 2
follows from the lemma. O
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