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Abstract
In this paper we study a generalization of the Fibonacci sequence in which rabbits
are mortal and take more that two months to become mature. In particular we give
a general recurrence relation for these sequences (improving work by Hoggat and
Lind) and we calculate explicitly their general term (extending work by Miller). In
passing, and as a technical requirement, we also study the behavior of the positive
real roots of the characteristic polynomial of the considered sequences.

1. Introduction

Fibonacci numbers arose in the answer to a problem proposed by Leonardo of Pisa
who asked for the number of rabbits at the nth month if there is one pair of rabbits
at the 0th month which becomes mature one month later and that breeds another
pair in each of the succeeding months, and if these new pairs breed again in the
second month following birth. It can be easily proved by induction that the number
of pairs of rabbits at the nth month is given by fn, with fn satisfying the recurrence
relation:

f0 = f1 = 1;

fn = fn−1 + fn−2, for every n ≥ 2.

It is not the point here to state any of the many properties of these numbers (see
[9] for a good account of them); nevertheless we will recall that if r1 < r2 are the
roots of the polynomial g(x) = x2 − x− 1 then we can see that:

fn =
rn
1

r1 − r2
+

rn
2

r2 − r1
. (1)

In [7] the k-generalized Fibonacci numbers f (k)
n are defined as follows:

f (k)
n = 1 for every 0 ≤ n ≤ k − 1;

f (k)
n =

k∑

i=1

f (k)
n−i for every n ≥ k.
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In this paper Miles proves, among other results, that if r1, . . . , rk are the (distinct)
roots of gk(x) = xk − xk−1 − · · ·− x− 1 then:

f (k)
n =

k∑

i=1




∏

i"=j, 1≤j≤k

(ri − rj)−1



 rn
i , (2)

which, of course, reduces to (1) if we set k = 2.
Later, in [6], Hoggat and Lind consider the so-called “dying rabbit problem”,

previously introduced in [1] and studied in [2] or [4], which consists of letting rabbits
die.

The goal of this paper is to give a new look at the dying rabbit problem. In the
second section we study a family of polynomials, focusing on the behavior of their
positive roots. Although motivated by technical requirements, this study turns out
to be of intrinsic interest. In the third section we will find a general recurrence
relation for the sequence arising in this problem (which is given in [6] for only some
particular cases) and we will deduce an explicit formula (which also generalizes the
work by Miles) for the total number of live pairs at the nth time point. Finally, in
an appendix, we give a procedure written using Maple! to calculate terms of the
considered sequences.

2. A Family of Polynomials and Their Roots

Given natural numbers h, k ≥ 1 we define the following polynomial:

gk,h(x) = xk+h−1 − xk−1 − · · ·− x− 1.

In this section we will study the behavior of the roots of this polynomial in terms of k
and h. In particular we will be interested in the unique positive real root of gk,h(x).
We will also study the polynomial fk,h(x) = (x−1)gk,h(x) = xk+h−xk+h−1−xk+1.
These polynomials are closely related to those defined in [7] and [8]. In fact, if h = 1
they coincide.
Proposition 1. If k > 1 the polynomial gk,h(x) has a unique positive real root αk,h

which lies in the interval (1, 2).

Proof. Apply Descartes’ rule of signs and observe that gk,h(1) < 0 < gk,h(2). !

Remark. Note that α1,h = 1 for all h ≥ 1.

As a consequence of the previous proposition we have the following technical
result.

Lemma 2. The following hold:

(a) The real number y ≥ 0 satisfies y > αk,h if and only if gk,h(y) > 0.
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(b) The real number y ≥ 0 satisfies 1 < y < αk,h if and only if fk,h(y) < 0.

c) The polynomial gk,h(x) has no complex root with modulus in the interval
(1,αk,h).

Proof. Parts (a) and (b) are a direct consequence of the previous proposition. For
part (c), if gk,h(w) = 0 = fk,h(w) it follows that |wk+h−1 + wk| = |wk+h + 1| ≤
|w|k+h + 1 which cannot be true if |w| ∈ (1,αk,h). !

Now, the following result shows that the sequences ϕ = {αk,h}k≥1 and ψ =
{αk,h}h≥1 are monotone.

Proposition 3. The following hold:

(a) The sequence ϕ is strictly increasing.

(b) The sequence ψ is strictly decreasing for k > 1 and constant for k = 1.

Proof. We start with (a). By definition we know that gk+1,h(αk+1,h) = 0. Now, we
have that

αk+h−1
k+1,h =

αk+h
k+1,h

αk+1,h
=

αk
k+1,h + αk−1

k+1,h + · · · + αk+1,h + 1
αk+1,h

> αk−1
k+1,h+· · ·+αk+1,h+1,

so gk,h(αk+1,h) > 0 and the result follows from the previous lemma.
Moving onto (b), again by definition we have gk,h(αk,h) = 0 and we can write

gk,h+1(αk,h) = αk+h
k,h −αk−1

k,h −· · ·−αk,h−1 = αk+h
k,h −αk+h−1

k,h = αk+h−1
k,h (αk,h−1) ≥ 0,

with the equality holding if and only if k = 1. An application of Lemma 2 completes
the proof. !

Observe that since αk,h is in the segment (1, 2), the sequences ϕ and ψ are
bounded and therefore they are convergent. Let αh denote the unique positive root
of the polynomial ph(x) = xh − xh−1 − 1.

Proposition 4. The sequences ϕ and ψ converge to αh and 1, respectively.

Proof. Let us fix h ≥ 1. Then for any k ≥ 2 we have αk+h−1
k,h = 1 + αk,h +

· · · + αk−1
k,h = αk

k,h−1

αk,h−1 and thus αh
k,h − αh−1

k,h − 1 = −1
αk

k,h
. Now, as we know that

αh = limk→∞ αk,h > 1 it is enough to take limits in the previous equality to obtain
the result.

Now let us fix k ≥ 1. Then for any h ≥ 2 we have αk+h−1
k,h = 1 + αk,h + · · · +

αk−1
k,h so, we obtain the equality log αk,h =

log(1+αk,h+···+αk−1
k,h )

k+h−1 . Finally, writing
βk = lim

h→∞
αk,h and taking limits in the previous expression we arrive at log βk = 0

for every k ≥ 1 and the proof is complete. !
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The previous propositions can be summarized in the following diagram:

α1,1 < α2,1 < α3,1 < α4,1 < . . . < αk,1 < . . . → α1

! ∨ ∨ ∨ ∨ ∨
α1,2 < α2,2 < α3,2 < α4,2 < . . . < αk,2 < . . . → α2

! ∨ ∨ ∨ ∨ ∨
α1,3 < α2,3 < α3,3 < α4,3 < . . . < αk,3 < . . . → α3

! ∨ ∨ ∨ ∨ ∨
α1,4 < α2,4 < α3,4 < α4,4 < . . . < αk,4 < . . . → α4

! ∨ ∨ ∨ ∨ ∨
α1,5 < α2,5 < α3,5 < α4,5 < . . . < αk,5 < . . . → α5

! ∨ ∨ ∨ ∨ ∨
...

...
...

...
. . .

...
. . .

...
! ∨ ∨ ∨ ∨ ∨

α1,h < α2,h < α3,h < α4,h < . . . < αk,h < . . . → αh

! ∨ ∨ ∨ ∨ ∨
...

...
...

...
...

...
! ↓ ↓ ↓ ↓ ↓
1 = 1 = 1 = 1 = . . . = 1 = . . . → 1

For the rest of the section we will assume that k > 1. Before we go on, we
introduce a result by Cauchy (see [3]) which will be useful in what follows. This
result gives a bound on the modulus of the roots of a polynomial with complex
coefficients. Let n be a natural number and let a0, . . . , an−1 be complex numbers
not all equal to zero. For a complex polynomial f(z) = zn+an−1zn−1+· · ·+a1z+a0

let f̃ be the real polynomial f̃(x) = xn − |an−1|xn−1 − · · · − |a1|x − |a0|. It is
easy to see that f̃ has a unique positive root γ(f̃) (it exists since f(0) < 0 and
limx→∞ f̃(x) =∞ and is unique by Descartes’ rule again). Let Z(f) denote the set
of complex roots of f .

Theorem 5. For every w ∈ Z(f), the relation |w| ≤ γ(f̃) holds.

Corollary 6. For every w ∈ Z(gk,h), the relation |w| ≤ αk,h holds.

Proof. Since g̃k,h(x) = gk,h(x), it is enough to apply the previous theorem. !

Now, we can refine the Corollary 6 to see that the root αk,h has the largest
modulus among all roots of gk,h in the following way.

Proposition 7. For every w ∈ Z(gk,h), the equalities |w| = αk,h and w = αk,h are
equivalent.
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Proof. Let w ∈ Z(gk,h) be such that |w| = αk,h. Then gk,h(w) = gk,h(|w|) = 0 so
we have that wk+h−1 = wk−1 + · · · + w + 1 and |w|k+h−1 = |w|k−1 + · · · + |w| + 1
and it follows that |wk−1 + · · ·+w +1| = |w|k−1 + · · ·+ |w|+1 which, in particular,
implies that w is real. Now, since the only real roots of gk,h are αk,h and −1 (only
if k is odd and h is even) and since |w| = αk,h > 1, it follows that w = αk,h as
claimed. !

We will finish this section with the following proposition which will be of great
technical importance in the next section.
Proposition 5. All the roots of gk,h are distinct.
Proof. We will show that gk,h(x) and g′k,h(x) have no common root. First observe
that if w is such a common root, then w )= 0, 1 and it is also a common root of
fk,h(x) and f ′k,h(x)

xk−1 = (k+h)xh−(k+h−1)xh−1−k. From gk,h(w) = 0 it follows that
wk+h−2 = wk−1

w2−w . Thus, 0 = (w2−w)g′k,h(w) = hwk + wk−1 + · · ·+ w− (k + h− 1)
and consequently w is a root of r(x) = hxk + xk−1 + · · · + x− (k + h− 1).

Now, if |w| < 1 we have that k + h − 1 = |hwk + wk−1 + · · · + w| ≤ h|w|k +
|w|k−1 + · · · + |w| < k + h− 1. This is a contradiction and it implies that |w| ≥ 1.

Let us suppose that |w| = 1. Then, since fk,h(w) = wk+h−wk+h−1−wk +1 = 0
it follows that |wk − 1| = |w − 1| which implies that either wk = w or wk = w−1.
If wk = w then wh = 1 and from (k + h)wh − (k + h− 1)wh−1 − k = 0 we get that
w is rational. Also, if wk = w−1 then wh−1 = −1 and again w must be rational.
Since the only real root of gk,h(x) is αk,h and it lies in the interval (1, 2) we have a
contradiction and |w| > 1.

Finally from Lemma 1 c) it follows that the only root of gk,h(x) which has
modulus strictly bigger than 1 is αk,h and since it can be easily verified that it is
not a root of g′k,h(x), the claim follows. !

3. The Dying Rabbit Sequence

As we mentioned in the introduction, we are interested in generalizing the Fibonacci
sequence by considering that rabbits become mature h months after their birth and
that they die k months after their matureness. Throughout this section we will
assume k, h ≥ 2, For the case h = 1 we refer to Miles’ paper [7] and the case k = 1
is trivial. We will denote by C(k,h)

n the number of couples of rabbits at the nth

month. Obviously we have:

C(k,h)
0 = · · · = C(k,h)

h−1 = 1.

Now let us denote by C(h)
n the recurrence sequence defined by:

C(h)
0 = · · · = C(h)

h−1 = 1, C(h)
n = C(h)

n−1 + C(h)
n−h for every n ≥ h.
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Proposition 9. We have

C(k,h)
n =

{
C(h)

n , if 0 ≤ n ≤ k + h− 2;
C(k,h)

n−h + C(k,h)
n−h−1 + · · · + C(k,h)

n−k−h+1, if n > k + h− 2.

Proof. If 0 ≤ n ≤ h− 1 it is clear since the only couple of rabbits is the initial one.
If h ≤ n ≤ k +h−2 no rabbits have died yet so the number of couples at the nth

month is the sum of the couples at the preceding month, C(k,h)
n−1 , and those produced

by the couples which are mature at that point; i.e., C(k,h)
n−h .

Finally, if n > k+h−2 the number of rabbits at the nth month can be computed
as the sum of all the preceding couples except those which are not mature yet (C(k,h)

n−j

with 1 ≤ j ≤ h− 1) and those which have died (C(k,h)
n−j with j > k + h− 1). !

Examples. (See the appendix.)

• If k = 3 and h = 2, the beginning terms of C(3,2)
n are:

1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, . . .

• If k = 7 and h = 4, then the beginning terms of C(7,4)
n are:

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 23, 32, . . .

Remark. If we consider C(k,h)
n for 0 ≤ n ≤ k +h−1 as initial conditions, then it is

clear that the characteristic polynomial of the recurrence sequence C(k,h)
n is precisely

the polynomial gk,h(x) studied in the previous section. For instance, if k = 3 and
h = 2 the recurrence relation defining our sequence is C(3,2)

n = C(3,2)
n−2 +C(3,2)

n−3 +C(3,2)
n−4

whose characteristic polynomial is easily seen to be x4 − x2 − x− 1 = g3,2(x).

If we denote by r1, r2, . . . , rk+h−1 the (distinct) complex roots of gk,h(x) it follows
from Section 2 and from well-known facts from the theory of recurrence sequences
that there exist constants a1, a2, . . . , ak+h−1 such that:

C(k,h)
n = a1r

n
1 + a2r

n
2 + · · · + ak+h−1r

n
k+h−1,

where we can suppose that r1 = αk,h. In particular we can calculate those constants
solving the system of linear equations given by:

k+h−1∑

i=1

air
l
i = C(h)

l , 0 ≤ l ≤ k + h− 2, (3)
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which can be expressed in matrix notation as follows:




1 1 · · · 1
r1 r2 · · · rk+h−1

. . .
...

. . .
...

rk+h−2
1 rk+h−2

2 · · · rk+h−2
k+h−1









a1

a2

...
ak+h−1




=





C(h)
0

C(h)
1
...

C(h)
k+h−2





and which has a unique solution because all the roots ri are distinct.
To solve this system of equations we will use Cramer’s rule. Recall that if we put

V =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
r1 r2 · · · rk+h−1

. . .
...

. . .
...

rk+h−2
1 rk+h−2

2 · · · rk+h−2
k+h−1

∣∣∣∣∣∣∣∣∣

=
∏

k+h−1≥i>j≥1

(ri − rj),

Dn =

∣∣∣∣∣∣∣∣∣

1 . . . 1 C0 1 . . . 1
r1 . . . rn−1 C1 rn+1 . . . rk+h−1

...
. . .

...
...

...
. . .

...
rk+h−2
1 . . . rk+h−2

n−1 Ck+h−2 rk+h−1
n+1 . . . rk+h−2

k+h−1

∣∣∣∣∣∣∣∣∣

then an =
Dn

V
. So it is enough to find Dn for n = 1, . . . , k + h − 1. We will work

out the case n = 1 completely, the other cases being analogous. Also note that
we have replaced the values C(h)

j (j = 0, . . . , k + h − 2) by arbitrary constants Cj

(j = 0, . . . , k + h − 2), in order to admit sequences satisfying the same recurrence
equation but with different initial conditions.

To compute D1 we first need the following generalization of Vandermonde deter-
minant which can be found in [5, Lemma 2.1].

Lemma 10. If em is the mth elementary symmetric polynomial in the variables
{x1, . . . , xn}, then:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
x1 . . . xn−1 xn

...
. . .

...
...

x̂l
1 . . . x̂l

n−1 x̂l
n

...
. . .

...
...

xn
1 . . . xn

n−1 xn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=




∏

n≥i>j≥1

(xi − xj)



 en−l(x1, . . . , xn).

If we apply this lemma and we expand the determinant D1 by its first column
we obtain:

D1 =
k+h−2∑

l=0

(−1)lCl




∏

k+h−1≥i>j≥2

(ri − rj)



 ek+h−2−l(r2, . . . , rk+h−1)
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and, consequently:

a1 =
D1

V
=

1∏

k+h−1≥i≥2

(ri − r1)

k+h−2∑

l=0

(−1)lClek+h−2−l(r2, . . . , rk+h−1). (4)

We are now interested in computing the values ej(r2, . . . , rk+h−1) for 0 ≤ j ≤
k + h− 2. By Cardano’s formulae and taking into account that r1, . . . , rk+h−1 are
the roots of gk,h(x) we have that:

e0(r1, . . . , rk+h−1) = 1;

e1(r1, . . . , rk+h−1) = · · · = eh−1(r1, . . . , rk+h−1) = 0;

es(r1, . . . , rk+h−1) = (−1)s+1 for every h ≤ s ≤ k + h− 1.

On the other hand, the following lemma is easy to prove.

Lemma 11. et(x2, . . . , xn) =
n−t∑

i=1

(−1)i+1 et+i(x1, . . . , xn)
xi

1

for every 0 ≤ t < n.

We put this together to obtain:

e0(r2, . . . , rk+h−1) = 1;

es(r2, . . . , rk+h−1) = (−1)s
k∑

i=1

1
ri+h−1−s
1

for every 1 ≤ s ≤ h− 1;

es(r2, . . . , rk+h−1) = (−1)s
k+h−1−s∑

i=1

1
ri
1

for every h ≤ s ≤ k + h− 2.

Summing the geometric series we get:

e0(r2, . . . , rk+h−1) = 1;

es(r2, . . . , rk+h−1) = (−1)s rk
1 − 1

rk+h−1−s
1 (r1 − 1)

for every 1 ≤ s ≤ h− 1;

es(r2, . . . , rk+h−1) = (−1)s rk+h−1−s
1 − 1

rk+h−1−s
1 (r1 − 1)

for every h ≤ s ≤ k + h− 2.

Finally if we substitute in (4) we get:

a1 =
(−1)k+h

∏

k+h−1≥i>2

(ri − r1)

[
k−2∑

l=0

Cl
rl+1
1 − 1

rl+1
1 (r1 − 1)

+
k+h−3∑

l=k−1

Cl
rk
1 − 1

rl+1
1 (r1 − 1)

+ Ck+h−2

]
.
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Reasoning in a similar way and taking into account the symmetry of the es we
can calculate an for every 1 ≤ n ≤ k + h− 1. In fact:

an =
(−1)k+h+n−1

∏

i>n

(ri − rn)
∏

n>j

(rn − rj)

[
k−2∑

l=0

Cl
rl+1
n − 1

rl+1
n (rn − 1)

+
k+h−3∑

l=k−1

Cl
rk
n − 1

rl+1
n (rn − 1)

+ Ck+h−2

]
.

Remark. It is interesting to observe that a1 )= 0. As a consequence and recalling

that |ri| < |r1| for all i ≥ 2 we have that limn→∞
C(k,h)

n+1

C(k,h)
n

= r1 = αk,h. This gener-

alizes the fact that fn+1
fn

= Φ where fn is the nth Fibonacci number and Φ is the
golden section (note that α2,1 = Φ).

Example. (Padovan sequence). Recall that the so-called Padovan sequence is
defined by P0 = P1 = P2 = 1 and

Pn = Pn−2 + Pn−3, for every n ≥ 3.

Thus, it is clear that in our notation Pn = C(2,2)
n with the initial conditions C0 =

C1 = C2 = 1. So we can apply our previous results to obtain:

Pn =
r2
1 + r1 + 1
2r1 + 3

rn
1 +

r2
2 + r2 + 1
2r2 + 3

rn
2 +

r2
3 + r3 + 1
2r3 + 3

rn
3 ,

which was already known to hold.

If we keep the same recurrence relation but replace the initial conditions by
P0 = 3, P1 = 0, P2 = 2 we obtain the so-called Perrin sequence, whose general term
can be again computed with our formulas to obtain:

Pn = rn
1 + rn

2 + rn
3 .

Finally, if we keep our original initial conditions, that is, C(2,2)
0 = C(2,2)

1 = 1, and
C(2,2)

2 = 2, then the general term of our Padovan-Perrin like sequence turns out to
be:

C(2,2)
n =

(r1 + 1)2

2r1 + 3
rn
1 +

(r2 + 1)2

2r2 + 3
rn
2 +

(r3 + 1)2

2r3 + 3
rn
3 .

4. Appendix

In this appendix we give a short and easy procedure, written with Maple!, which
computes any number of terms of C(k,h)

n . It goes as follows:
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dr:=proc(k,h,t)
local i;
for i from 0 by 1 to h-1 do c(i):=1 end do;
for i from h by 1 to k+h-2 do c(i):=c(i-1)+c(i-h); end do;
for i from k+h-1 to t do c(i):=sum(c(n), n=i-k-h+1..i-h); end do;
print(seq(c(n),n=0..t));
end proc:
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