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Abstract
Recently, Lovejoy introduced the construct of overpartition pairs which are a natural
generalization of overpartitions. Here we generalize that idea to overpartition k-
tuples and prove several congruences related to them. We denote the number of
overpartition k-tuples of a positive integer n by p,(n) and prove, for example, that
for all n > 0, p,_q(tn + r) = 0 (mod t) where t is prime and r is a quadratic
nonresidue mod £.

1. Introduction

As defined by Corteel and Lovejoy [5], an overpartition of a positive integer n is a
non-increasing sequence of natural numbers whose sum is n in which the first oc-
currence of a part may be overlined. For example, the overpartitions of the integer
3 are

3,3, 2+1,2+1,2+1,2+1, 14+1+1, T+1+1.

The number of overpartitions of a positive integer n is denoted by p(n), with
p(0) = 1 by definition. Thus p(3) = 8 from the above example. As noted in Corteel
and Lovejoy [5], the generating function for overpartitions is

[es] [es] n
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As the topic of overpartitions has already been examined rather thoroughly [3,
4, 5,6, 7,8, 10, 11], we look to new constructions. One such construction is that
of an overpartition pair of a positive integer n, defined by Lovejoy [9] as a pair of
overpartitions wherein the sum of all listed parts is n. For example, the overpartition
pairs of 2 are

(2:0), 2;0), 0;2), 0;2), (1+1;0), (
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Lovejoy denoted the number of overpartition pairs of a positive integer n by pp(n),
with pp(0) = 1 by definition. Thus pp(2) = 12 from the above example. Following
lines similar to that for overpartitions, the generating function for overpartition

pairs is
oo o0 2
_ " 1+4q"
Smove = 11 (75 )
n=0

n=1

Several arithmetic properties of both overpartitions and their pairs have appeared
in the literature. Since our interest here is primarily on congruence properties, there
are a few theorems that are especially noteworthy. The first one is straightforward
and proven intuitively.

Theorem 1. For alln >0, p(n) =0 (mod 2).
Next we have a theorem easily proven using results of Mahlburg [10].

Theorem 2. For alln > 0,

2 (mod 4) ifn is a square,
0 (mod4) otherwise.

Several other congruences in arithmetic progressions were proven by Hirschhorn
and Sellers. For example, the following were proven in [7].

Theorem 3. For alln > 0,

and  P(B8n+7) =0 (mod 64).

Also, Hirschhorn and Sellers [6] proved that p(n) satisfies congruences modulo
non-powers of 2 by proving the following:

Theorem 4. For alln >0 and all « >0, p(9%(27n+ 18)) =0 (mod 12).

Finally, we note a theorem proven by Bringmann and Lovejoy [2]. This result
provides much inspiration for the main result in the next section.

Theorem 5. For alln >0, pp(3n+2) =0 (mod 3).

We now introduce a generalization of overpartition pairs. An overpartition k-tuple
of a positive integer n is a k-tuple of overpartitions wherein all listed parts sum to
n. We denote the number of overpartition k-tuples of n by p,(n), with p,(0) = 1 by
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definition. Consequently, the number of overpartition pairs of n is denoted as py(n).
The generating function for p,(n) is easily seen to be

oo = T (1445)

n>0 n=1

The aim of this note is to prove several congruence properties for families of
overpartition A-tuples. In the process, we will prove several natural generalizations
of results quoted above.

2. Results for Overpartition k-Tuples

Our first theorem of this section provides a natural generalization of Bringmann and
Lovejoy’s Theorem 5 above. Moreover, the proof technique is extremely elementary,
making this a very satisfying result.

Theorem 6. For alln >0, p,_,(tn+7) =0 (mod t), where t is an odd prime and
r 15 a quadratic nonresidue mod t.

Remarks. First, note that the t = 3 case of this theorem is exactly Theorem 5.
Secondly, note that, for each odd prime ¢, this theorem provides 51 congruence

2
properties for p,_;(n).

Proof. Consider the following generating function manipulations:
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But note that tn+r can never be represented as tm+ s> for some integers m and
s if r is a quadratic nonresidue mod ¢. This implies that p,_;(tn +7) =0 (mod t)
for all n > 0. O

The next theorem is a broad generalization of Theorem 1. It is found with proof
in [12], but is included here for the sake of completeness. We require a brief technical
lemma.

Lemma 7. Let m be a nonnegative integer. For all 1 < n < 2™,

<2m> "=0 (mod2™T!).

n

Proof. Let orda(N) be the exponent of the highest power of 2 dividing N. Thus,
for example, ords(8) = 3 while ord;(80) = 4. To prove Lemma 7, we need to prove

that om
ordy (( )2”) >m+ 1. (1)
n
Note that

ord, <(2:)2n) = ord, <2m(2m —1)@m=2)--- (2™ — (n—1)) .Q,L)

n!
2m+n
> OI‘dg ( T )
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=m +n — ordy(n!)
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where |z is the floor function of z.
Now assume n = cg2° + ¢;2! + - - + ¢;2¢ where each ¢; € {0,1}. Then

n n L Ly gott
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+ 0320 + 0421 + - ct2t_3
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since at least one of the ¢; must equal 1. Therefore,

o (7)) 2= (130 )+ [+

>m+n—(n—1)
=m+1.
This is the desired result as noted in (1) above. O
We are now in a position to prove the following theorem:

Theorem 8. Let k=(2™)r, where m is a nonnegative integer and r is odd. Then,

for all positive integers n, we have p,(n) = 0 (mod 2m+1).
Proof.
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(mod 2™ by Lemma 7. O

The following theorem is inspired by Theorem 2. As with Theorem 8, it primarily
hinges upon the use of the binomial theorem.

Theorem 9. Let k=(2")r, m > 0 and r is odd. Then, for alln > 1,

5 () 2m+l (mod 2™*2) if n is a square or twice a square,
n =
F 0 (mod 2m*2) otherwise.
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Proof. We prove this result by induction on m.
Basis Step. Let m = 1. We must show that

By (1) = 4 (mod 8) if n is a square or twice a square,
Por 0 (mod 8) otherwise.

o] o] i\ 2T
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n>0 n>0
square not square

n>0 n>0
square square

n>0 n>0
square not square

— 2
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+2 > et [+ D pn)g”
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From Theorem 2, we know that p(n) = 2 or 6 (mod 8) when n is a square and
p(n) =0 or 4 (mod 8) otherwise. Since 2 x 0,2 x 4,6 x0,6x4,0x0,0x 4, and
4 x 4 are all congruent to 0 (mod 8),

2| > (n)g > Bn)g* | =0 (mod 8),
n>0 n>0
square not square

2 Z p(n)¢" | =0 (mod 8),

n>0
not square

n>0
not square
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This gives
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again thanks to Theorem 2.
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Given that (qm +q" A+ )2 = (q2n1 + q2n2 + .. ) +2 (qn1+n2 4+ ... )’ we then

have
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[ee] oo
=1+4 <qu2 + Zq2"2> (mod 8) since r is odd.
m=1 n=1
This proves the result needed for the basis step.

Induction Step. Assume that

_ (n) 2m+l (mod 2™%2) if n is a square or twice a square,
my(n) =
Pamyr 0 (mod 2m*2) otherwise.

We must show that

_ (n) 2m+2  (mod 2™*3) if n is a square or twice a square,
m n E
Pamttyr 0 (mod 2mT3) otherwise.

Consider the generating function for ym+1(n):

1+4 (Zq”2> +4 Zq2”2 +2 Z q"“”S (mod 8)
n=1
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Using a very similar argument about the coefficients to that of the basis step, we
use the induction hypothesis to conclude that

= = n — = n? — = 52
> Bomt1y ()" =142 Bamy, (n2)q" + > Pamy(257)¢
n=0 n=1 s=1
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o0 o0
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n=1 s=1
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We know that all coefficients of the last term are congruent to 2*% or 2 +! +
2m+2 (mod 2™%3) from the induction hypothesis. But the last term is multiplied
by 2. So then all coefficients are congruent to 22 (mod 2™+3) or 2m+2 4 2m+3 =
2m+2 (mod 2™+3), which implies

Zﬁ(2m+1)r(n)q’L = 142m*2 Zq”z + Zquz (mod 2™T3).
n=0 n=1 s=1

This completes the induction and proves the theorem. O
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