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Abstract
The Möbius number systems use sequences of Möbius transformations to represent
the extended real line or, equivalently, the unit complex circle. An infinite sequence
of Möbius transformations represents a point x on the circle if and only if the trans-
formations, in the limit, take the uniform measure on the circle to the Dirac measure
centered at the point x. We present new characterizations of this convergence.

Moreover, we show how to improve a known result that guarantees the existence
of Möbius number systems for some Möbius iterative systems.

As Möbius number systems use subshifts instead of the whole symbolic space, we
can ask what is the language complexity of these subshifts. We offer (under some
assumptions) a sufficient and necessary condition for a number system to be sofic.

1. Introduction

The theory of Möbius number systems was introduced in [2]. A Möbius number
system assigns numbers to sequences of Möbius transformations obtained by com-
posing a finite starting set of Möbius transformations.

Möbius number systems display complicated dynamical properties and have con-
nections to other kinds of number representation systems. In particular, Möbius
number systems can generalize continued fractions (see [3]).

As Möbius transformations are bijective on the complex sphere, we cannot use
the contraction theorem of Barnsley to define convergence of a series of maps to
a point. Instead, in [2], convergence of sequences of Möbius transformations to
points was defined using convergence of measures. An infinite sequence of Möbius
transformations represents a point x on the circle if and only if the images of the
uniform measure on the circle converge to the Dirac measure centered on the point
x. There are multiple equivalent ways to state this convergence, including the
convergence of the images of point 0. We present several new equivalent definitions
of convergence at the end of Section 3.

The existence of the number system is already known for a considerable class of
sets of Möbius transformations (see [3], Theorem 9). In Section 4, we improve this
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result by slightly weakening the assumptions of the existence theorem.
As Möbius number systems are essentially subshifts, we can ask what the lan-

guage of a given system is. Because these systems can be described in terms of
point sets on the unit circle instead of the usual language-theoretic ways, we need
tools for investigating the complexity of subshifts involved.

In Section 5, we present one such tool for some Möbius number systems, a suf-
ficient and necessary condition for being sofic, similar to the classic Myhill–Nerode
theorem for regular languages.

2. Preliminaries

Denote by T the unit circle and by D the closed unit disc in the complex plane. For
x, y ∈ T denote by (x, y) the counterclockwise interval from x to y. To make notation
more convenient, we define the sum x+l for x ∈ T and l ∈ R by arg(x+l) = arg x+l
modulo 2π.

Let A be a finite alphabet. Denote by A! the monoid of all finite words on A with
the operation of concatenation and by Aω the set of all one-sided infinite words.
Let |v| denote the length of the word v. We use the notations w = w0w1w2 · · ·
and w[i,j] = wiwi+1 · · ·wj . Let v ∈ A! be a word of length n. Then we write
[v] = {w ∈ Aω : w[0,n−1] = v} and call the resulting subset of Aω the cylinder of v.

Let X be a metric space. We denote by ρ the metric function of X, by Int(V )
interior of the set V and by Br(x) the open ball of radius r centered at x. The
diameter of a nonempty set V , denoted by diam(V ), is the supremum of {ρ(x, y) :
x, y ∈ V }. If I is a finite union of intervals on T, denote by |I| the total length of I.

We equip C with the metric ρ(x, y) = |x−y| and T with the circle distance metric
(i.e., metric measuring distances along the circle). The shift space Aω of one-sided
infinite words comes equipped with the metric ρ(u, v) = max

(
{2−k : uk #= vk} ∪ {0}

)
.

It is easy to see that the topology of Aω is the product topology. A subshift Σ ⊂ Aω

is a set that is both topologically closed and invariant (i.e., σ(Σ) ⊂ Σ) under the
shift map σ(w)i = wi+1. The language of a subshift L(Σ) is the set of all words
v ∈ A! such that there exists w ∈ Σ and indices i and j satisfying v = w[i,j]. See
[5] for details.

Unlike in [2], we will only consider symbolic representations of T. The extended
real line R ∪ {∞} is homeomorphic to the unit complex circle using the map

u : T → R ∪ {∞}, u(z) =
−iz + 1
z − i

.

Therefore, as long as we are not interested in arithmetics, representing T is equiv-
alent to representing the extended real line.

A Möbius transformation (MT for short) of the complex sphere C = C ∪ {∞} is
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any map of the form

F (x) =
ax + b

cx + d

where (a, b), (c, d) are linearly independent vectors from C2. We can associate with
F the matrix AF =

(
a b
c d

)
normalized by detF = 1.

It is well-known (see [1]) that MTs take circles and lines to circles and lines
(possibly turning a circle into a line or vice versa). Also, Möbius transformations
form a group under addition and composing MTs corresponds to multiplying their
respective matrices: AFG = AF · AG. In the following we identify F with AF .

By default, we will consider Möbius transformations that map D onto D. It is
straightforward to prove that these are precisely the transformations of the form

F =
(

α β
β α

)

with the normalizing condition |α|2− |β|2 = 1. These transformations not only map
T onto T, but they also preserve orientation of intervals on the circle (clockwise
versus counterclockwise).

Denote by µ the uniform measure on T such that µ(T) = 1. If ν is a measure on
T and F : T → T an MT, we define the measure Fν by Fν(E) = ν(F−1(E)) for all
measurable sets E on T. The Dirac measure centered at point x is the measure

δx(E) =

{
1, if x ∈ E

0, otherwise

for any E measurable subset of T.

Definition 1. Let {Fi}∞i=0 be a sequence of Möbius transformations. We say that
the sequence {Fi}∞i=1 represents the point x ∈ T if and only if limi→∞ Fiµ = δx,
where the convergence of measures is taken in the weak∗ topology, i.e., νi → ν if
and only if for all f : T → R continuous it is

∫
fdνi →

∫
fdν.

In [2], Lemma 4 gives a sufficient condition for a sequence of MTs to represent
a point. Note that the original statement of this Lemma in [2] contains a mistake
which we correct here.

Lemma 2. Let {Mn}∞n=1 be a sequence of Möbius transformations. Assume that
there exists t ∈ T and c > 0 such that for each open interval I with t ∈ I we have

lim inf
n→∞

Mnµ(I) > c.

Then limn→∞(Mnµ)(I) = 1 and limn→∞Mnµ = δt.



INTEGERS: 9 (2009) 264

Note that the word “open” was missing in the original statement of Lemma 2. It is
sufficient to consider only open intervals, while the equality limn→∞(Mnµ)(I) = 1
may fail when t is an endpoint of I: Consider the sequence of transformations
{Mn}∞n=1 where Mn(z) = (n+ 1

n )z+(n− 1
n )

(n− 1
n )z+(n+ 1

n ) . Then Mnµ → δ1 but the interval I =

[−1, 1] is invariant under all Mn and so limn→∞(Mnµ)(I) = µ(I) = 1
2 .

We will need a slightly modified Proposition 6 from [2]:

Lemma 3. Let {Fi}∞i=0 be a sequence of Möbius transformations. Then {Fi}∞i=0

represents x ∈ T if and only if limi→∞ Fi(0) = x.

3. General Properties of Möbius Transformations

We will now show several useful properties of circle-preserving MTs, as well as
equivalent descriptions of what it means for a sequence of MTs to represent a point
on T.

Definition 4. A Möbius transformation of the form Rα(z) = eiαz is called a
rotation. A contraction to 1 is a transformation of the form

Cr =
(

1
2

(
r + 1

r

)
1
2

(
r − 1

r

)
1
2

(
r − 1

r

)
1
2

(
r + 1

r

)
)

,

where r ≥ 1.

Obviously, C1 is the identity map and the identity transformation is both a
contraction to 1 and a rotation.

Observe that any contraction to 1 fixes the points ±1. For r > 1, Cr acts on T by
making all points (with the exception of −1) “flow” towards 1 and so the sequence
{Cn}∞n=1 represents the point 1.

Lemma 5. Let F be a Möbius transformation. Then there exist two rotations
Rφ1 , Rφ2 and Cr, a contraction to 1, such that F = Rφ1 ◦ Cr ◦ Rφ2 . Moreover,
if F is not a rotation then Rφ1 , Rφ2 , Cr are uniquely determined by F .

Proof. We want to satisfy the equation

(
α β
β α

)
= F = Rφ1 ◦ Cr ◦Rφ2 =

(
1
2

(
r + 1

r

)
ei

φ1+φ2
2 1

2

(
r − 1

r

)
ei

φ1−φ2
2

1
2

(
r − 1

r

)
e−i

φ1−φ2
2 1

2

(
r + 1

r

)
e−i

φ1+φ2
2

)
.

Choose r so that 1
2

(
r + 1

r

)
= |α|. It is easy to see that we will then have 1

2

(
r − 1

r

)
=

|β|.
Now choose the parameters of the rotations φ1 and φ2 so that we satisfy the

conditions φ1 + φ2 = 2arg α and φ1 − φ2 = 2arg β and we are done. Obviously, as
long as β #= 0, this linear system has a unique solution. Because β = 0 if and only
if F is a rotation, the uniqueness follows.
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Denote by F •(x) the modulus of the derivative of F at x. Direct calculation
gives us that

F •(x) =
1

∣∣βx + α
∣∣2

Definition 6. Let F be a Möbius transformation. Then, inspired by [2] and [1],
we define the four point sets

U = {x ∈ T : F •(x) < 1},
V = {x ∈ T : (F−1)•(x) > 1},
C = {x ∈ C : F •(x) ≥ 1},
D = {x ∈ C : (F−1)•(x) ≥ 1}.

Call U the contraction interval of F , V the expansion interval of F−1 and C resp.
D the expansion sets of F resp. F−1.

Obviously, U = T \ C and V = T ∩ Int(D).
By Lemma 5 we have that for every F there exist φ1,φ2 and r such that

F = Rφ1 ◦ Cr ◦ Rφ2 . As R•
φ = 1, we have F •(x) = Cr

•(Rφ2(x)) and F−1•(x) =
C−1

r
•(R−φ1(x)). Because the sets U and C are defined using F •(x) = Cr

•(Rφ2(x)),
the value of r determines the shapes and sizes of U and C while φ2 rotates U and C
clockwise around the point 0. Similarly, the shapes of V and D depend on r while
φ1 determines positions of V and D, rotating them (counterclockwise) around 0.

Lemma 7. Let F be a Möbius transformation that is not a rotation. Then the
following hold:

1. F (C \ C) = IntD.

2. F (U) = V .

3. C and D are circles with the same radius |β|−1 and centers c, d such that
|c| = |d| =

√
|β|−2 + 1.

4. |V | < π.

5. |U | + |V | = 2π.

6. If x #= y are points in V then I, the shorter of the two intervals joining x, y,
lies in V .

Proof. Part (1) follows from the formula for the derivative of composite function.
We can write F−1•(F (z)) = 1

F•(z) and so F •(z) < 1 if and only if F−1•(F (z)) > 1.
Part (2) is a consequence of (1) and the definition of U and V .
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Figure 1: The geometry of C and D.

We prove (3) by direct calculation. We have F •(x) = 1

|βx+α|2 and therefore

x ∈ C if and only if ∣∣∣∣x +
α

β

∣∣∣∣ < |β|−1.

This is the equation of a circle with the center c = −α
β

and radius |β|−1. Also, it is

|c| =
|α|
|β| =

√
1 + |β|2
|β| =

√
|β|−2 + 1.

The case of F−1 is similar.
Elementary analysis of the situation yields (4) and (5), with (6) being a direct

consequence of (4) (see Figure 3).

Remark 8. Observe that the triangles 0de+ and 0de− in Figure 3 are right by
Pythagoras’ theorem. Also, we can compute that the length of V is equal to

2 arccos
(

|β|√
1+|β|2

)
and the distance of d from V is

√
1 + |β|−2 − 1. Therefore,

the size of D, length of V and the distance of d and T are all decreasing functions
of |β|.

Theorem 9. Let {Fn}∞n=1 be a sequence of MTs. Denote by Vn the expansion
interval of F−1

n , Dn the expansion set of F−1
n and dn the center of Dn. Then the

following statements are equivalent:
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(1) The sequence {Fn}∞n=1 represents x ∈ T.

(2) lim
n→∞

V n = {x}

(3) lim
n→∞

dn = x

(4) lim
n→∞

Dn = {x}

(5) For all K ⊂ Int(D) compact we have lim
n→∞

Fn(K) = {x}.

(6) For all z ∈ Int(D) we have lim
n→∞

Fn(z) = x .

(7) There exists z ∈ Int(D) such that lim
n→∞

Fn(z) = x.

In (2), (4), and (5), we take convergence in the Hausdorff metric on the space of
nonempty compact subsets of T, C and D, respectively. In particular, En → {x} if
and only if for every ε > 0 there exists n0 such that ∀n > n0 we have En ⊂ Bε(x).

Proof. Assume (1). To prove (2), we show that the length |Vn|, as well as the
distance ρ(x, Vn) (measured along T), go to zero.

Consider the interval Iε = (x − ε, x + ε) of T. It is easy to see that we have
limn→∞ |F−1

n (Iε)| = 2π. Therefore, there exists n0 such that |F−1
n (Iε)| > 1 for all

n > n0. If now ε < 1
2 and n > n0, then |F−1

n (Iε)| > |I| and so there exists z ∈ Iε

such that F−1
n

•(z) > 1. Therefore z ∈ I ∩ Vn #= ∅, so ρ(x,Dn) ≤ ε.
Now assume that there exists r > 0 such that for any n0 there exists n > n0 with

|Vn| > 2r. For any interval I we have the inequality

|F−1
n (I)| = |F−1

n (I ∩ Vn)| + |F−1
n (I \ Vn)| ≤ |Un| + |I| = 2π − |Vn| + |I|,

as the part of I inside Vn will expand at most to the length |Un| and the part of I
outside Vn will only get shorter.

Now consider I 1
2 r. If |Vn| > 2r then |F−1

n (I 1
2 r)| < 2π−2r+r = 2π−r. Therefore,

it cannot be true that F−1
n (I 1

2 r) → 2π, a contradiction.
An elementary examination of the geometry of Vn and Dn shows that (2), (3)

and (4) are all equivalent. The distance of dn from Vn is an increasing function of
|Vn| and ρ(dn, Vn) → 0 as |Vn| → 0, proving (3). In a similar way, the diameter of
Dn goes to zero when ρ(dn, T) → 0.

Denote by Cn the expansion set of F−1
n and assume (4). Recall that the diameter

of Cn is always equal to the diameter of Dn. This means that diam(Cn) → 0 and so
for any compact K ⊂ Int(D) there exists n0 such that K ∩ Cn = ∅ holds whenever
n > n0. Then Fn(K) ⊂ Dn and so Fn(K) → {x}, proving (5).

As {z} is a compact set, (6) easily follows from (5). Also, statement (7) is an
obvious consequence of (6).

It remains to prove (7) ⇒ (1). Consider the circle-preserving MT M that sends
0 to z. Then the sequence {Fn ◦M} represents the point x by Lemma 3. Therefore,
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if I is an open interval on T containing x, then lim |(Fn◦M)−1(I)|→ 2π. It remains
to see that

|(Fn ◦M)−1(I)| = |M−1 ◦ F−1
n (I)| ≥ m|F−1

n (I)|

where m > 0 is the minimum of M•(y) for y ∈ T. Therefore, {Fn}∞n=0 represents x
by Lemma 2 and we are done.

Remark 10. To see that we cannot expect to have convergence for all z ∈ T, let
{mn}∞n=1 be a sequence of real numbers such that the set

E = {z : z = R−mn(−1) for infinitely many n}

is dense in T. Consider the sequence of transformations Fn = CnRmn . Obviously,
{Fn}∞n=1 represents the point 1, but the set {x ∈ T : ¬ limn→∞ Fn(x) = 1} contains
the whole E and therefore is dense in T.

Corollary 11. Let {Fk}∞k=1 be a sequence of Möbius transformations such that for
some x0 ∈ T we have limk→∞ (F−1

k )•(x0) = ∞. Then {Fk}∞k=1 represents x0.

Proof. As

(F−1
k )•(x0) =

1
|βkx0 + αk|2

,

we have −αk

βk
→ x0. But this means precisely that dk → x0 and so {Fk} must

represent x0 by part (2) of Theorem 9.

4. Möbius Number Systems

In an attempt to put Möbius number systems in a more abstract context we give one
possible definition of symbolic representation. Afterwards, we prove Theorem 21,
which strengthens part of Theorem 9 of [2].

Definition 12. Let X be a compact topological space. A mapping P : L(Σ)→ 2X

together with a subshift Σ ⊂ Aω form a symbolic representation of X if the following
are true:

1. P (v) is a closed subset of X for each v ∈ L(Σ).

2.
⋂∞

i=1 P (w[0,i]) is a singleton for every w ∈ Σ. Denote the element of this set
by p(w).

3. The map p : Σ → X is surjective.

The above definition is reminiscent of the definition of a generating cover from
[4]. The following lemma is an exercise in the use of compactness.
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Lemma 13. Let P be a symbolic representation of X. Then p is continuous in Σ.

Proof. Given an open set U ⊂ X we want to show that p−1(U) is open in Σ. Let
w ∈ p−1(U) and assume that for all k there exists w′ such that w[0,k] = w′[0,k] and
p(w′) #∈ U . Then we must have

⋂k
i=1 P (w[0,i]) ∩ Uc #= ∅ and from compactness of

X we obtain that
⋂∞

i=1 P (w[0,i]) ∩ Uc #= ∅. But then
⋂∞

i=1 P (w[0,i]) cannot be a
singleton as p(w) #∈ Uc, a contradiction.

In the rest of this section, let us have a set {Fa : a ∈ A} of MTs where A is a
finite alphabet. Such a set is called a Möbius iterative system. Assign to each word
v ∈ A! the transformation Fv = Fv0Fv1 · · ·Fvn−1 where n = |v|.

Denote by Vv the expansion interval of F−1
v . For a ∈ A, label e+

a the counter-
clockwise and e−a the clockwise endpoint of the interval Va (that is, in our notation
we have Va = (e−a , e+

a )).

Definition 14. The map Φ assigns to each w ∈ Aω the point x ∈ T such that
{Fw[0,n)}∞n=1 represents x. If {Fw[0,n)}∞n=1 does not represent any point in T, let
Φ(w) be undefined. Denote the domain of Φ by XF .

Definition 15. The subshift Σ ⊂ Aω is a Möbius number system if and only if
Σ ⊂ XF , Φ(Σ) = T and Φ|Σ is continuous.

It is easy to observe that if Φ(w) = x then Φ(σ(w)) = F−1
w0

(x). We will use this
simple property later.

Originally, the following theorem comes from [3]. Here, we slightly modified it
so that it refers to T instead of the extended real line. It gives some sufficient and
some necessary conditions for a Möbius iterative system to represent T.

Theorem 16. (Theorem 9, [3]). Let F : A+×T → T be a Möbius iterative system.

1. If
⋃

u∈A+ Vu #= T, then Φ(XF ) #= T.

2. If {Vu : u ∈ A+} is a cover of T, then Φ(XF ) = T and there exists a subshift
Σ ⊂ XF on which Φ is continuous and Φ(Σ) = T.

Observe that (by compactness of T) if {Vu : u ∈ A+} covers T, then there exists
a finite B with {Vb : b ∈ B} covering T. We show that in part two of Theorem 16
it suffices to demand that there exists a finite B ⊂ A! such that the set of closures
{V b : b ∈ B} covers T.

First, we prove several technical lemmas needed to nail down Theorem 21.
The following lemma is stated in a different form in [2] as Lemma 2.

Lemma 17. Let {Fa : a ∈ A} be a Möbius iterative system and B ⊂ A! be finite.
Let L be the length of the longest of intervals in {V b : b ∈ B}. Then there exists
an increasing continuous function ψ : [0, L] → R such that ψ(0) = 0, ψ(l) > l for
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Figure 2: A twist

l > 0 and if I is an interval and b ∈ B a word such that I ⊂ V b then |F−1
b (I)| ≥

ψ(|I|).

Proof. Thanks to Lemma 5 we can without loss of generality assume that all Fb are
contractions to 1. Let ψ(l) = inf{|F−1

b (I)| : I ⊂ V b and |I| = l}. By analyzing
contractions, it is easy to see that ψ is increasing, continuous and ψ(l) > l for
l > 0.

Lemma 18. Let {Fa : a ∈ A} be a Möbius iterative system. Let x, y be points and
w ∈ Aω a word such that for all k we have F−1

w[0,k)
(x), F−1

w[0,k)
(y) ∈ V wk . Then x = y

or there exists a k0 such that Fw[k,k+1] is a rotation for all k > k0.

Proof. Denote xk = F−1
w[0,k)

(x), yk = F−1
w[0,k)

(y). Assume that x #= y. Then for each
k there exists the closed interval Ik with endpoints xk, yk such that Ik ⊂ V wk .
Moreover, |Ik| > 0 for all k, as Möbius transformations are bijective on T.

Observe first that the sequence {|Ik|}∞k=0 is a nondecreasing one. For any par-
ticular k we have two possibilities: Either F−1

wk
(Ik) = Ik+1 and therefore |Ik+1| ≥

ψ(|Ik|) > |Ik| (by Lemma 17), or Ik+1 = T \ F−1
wk (Ik); see Figure 2. In the second

case, T \ Uwk ⊂ Ik+1 and so |Ik+1| ≥ |Vwk | ≥ |Ik|. Call the second case a twist.
Assume first that the number of twists is infinite. Whenever a twist happens for

some k, we have |Vwk+1 | ≥ |Ik+1| ≥ |Vwk |. There must exist a k0 such that |Ik|
is constant for all k > k0. Otherwise, the letter set {wk : k = 0, 1, 2, . . . } would
need to contain infinitely many letters, as |Ik+1| > |Vwk | means we cannot use the
letter wk again. Therefore, |Ik+1| = |Vwk | for all but finitely many twists and the
finiteness of A gives us |Ik| = |Il| for all k, l sufficiently large.

Assume that k > k0. Simple case analysis shows that |Ik| = |Ik+1| only when
xk, yk are the endpoints of V wk and the transition is a twist. Therefore, xk+1, yk+1

are also endpoints of V wk+1 and |Ik+2| = |Ik|. By applying R, the rotation send-
ing Ik+2 to Ik, we obtain that R ◦ F−1

w[k,k+1]
has two fixed points xk, yk and that
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(R ◦ F−1
w[k,k+1]

)•(xk) = (R ◦ F−1
w[k,k+1]

)•(yk) = 1. This can happen only when
R ◦ F−1

w[k,k+1]
= id. Therefore, F−1

w[k,k+1]
is a rotation for all k > k0 and we are

done.
It remains to investigate the case when the number of twists is finite, i.e.,

F−1
wk

(Ik) = Ik+1 for all k ≥ k0. By Lemma 17 we obtain |Ik+1| ≥ ψ(|Ik|) for
all k ≥ k0 and therefore |Ik| ≥ ψk−k0(|Ik0 |) for all k ≥ k0. Let l = |Ik0 | so that if
x #= y, then l > 0.

Consider the sequence {ψk(l)}∞k=0. Assume that ψk(l) ≤ L for all k. Then this
sequence is increasing and bounded and therefore it has a limit. But the only fixed
point of ψ is 0, a contradiction.

Therefore, there always exists a k such that ψk(l) > L. Then Ik+k0 cannot
possibly fit into any of the intervals V b, a contradiction with xk, yk ∈ V wk . This
means that we must have x = y.

The following easy observation is going to be useful when constructing our num-
ber system.

Lemma 19. Let I1, . . . , Ik be open intervals on T. Then x ∈
⋂k

i=1 Ii if and only if
both of the following conditions hold:

(1) x ∈
⋂k

i=1 Ii.

(2) If x is an endpoint of Ii and Ij, then it is either a counterclockwise endpoint
of both intervals or a clockwise endpoint of both intervals.

Proof. Obviously, if x ∈
⋂k

i=1 Ii then x ∈
⋂k

i=1 Ii. Were x a clockwise endpoint of
Ii and counterclockwise endpoint of Ij then there would exist a neighborhood E of
x such that E ∩ Ii ∩ Ij = ∅ and so x does not belong to

⋂k
i=1 Ii.

In the other direction, assume that x has all the required properties. Then a
simple case analysis shows that for any neighborhood E of x we have E∩

⋂k
i=1 Ii #= ∅

and so x ∈
⋂k

i=1 Ii.

Assume that {Fb : b ∈ B} is a Möbius iterative system. Given (x,w) ∈ T×Bω,
we use the shorthand notation xi = F−1

w[0,i)
(x).

Define X ⊂ T×Bω to be the set of all pairs (x,w) such that:

(1) For all i = 1, 2, . . . we have xi ∈ V wi .

(2) For no i it is true that xi = e+
wi

and xi+1 = e−wi+1
, neither it is true that

xi = e−wi
and xi+1 = e+

wi+1
.

Note that the second condition says that endpoints cannot “alternate”: If xi, xi+1

are endpoints of their respective intervals then they are both of the same type
(clockwise or counterclockwise). The situation is illustrated in Figure 3.
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xi = Fw[0,i−1)(x)

V wi−1

F−1
wi−1

(V wi−1)

V wi

xi+1 = F−1
w[0,i)

(x)

Figure 3: The situation in part (2)

We show that the set X is actually a closed subspace of T×Bω. Using Lemma 19,
it is easy to see that (x,w) ∈ X if and only if x ∈ Fw[0,i)(Vwi) ∩ Fw[0,i+1)(Vwi+1) for
all i

Denote P (v) =
⋂n−2

i=0 Fv[0,i)(Vvi) ∩ Fv[0,i+1)(Vvi+1) for v ∈ B! such that |v| = n >

1. For formal reasons, let P (b) = V b for b ∈ B and P (λ) = T where λ is the empty
word.

Rewriting the above observation, (x,w) ∈ X if and only if x ∈
⋂∞

i=0 P (w[0,i)),
and therefore

X =
∞⋂

k=0

⋃

|v|=k

P (v)× [v].

As the set
⋃
|v|=k P (v) × [v] is closed for every k, we have that X is a closed (and

hence compact) subset of T×Bω.

Observation 20. If (x,w) ∈ X, then F−1
w[k,k+1]

is not a rotation for any k.

Proof. From (1) and (2) we obtain that the open set W = Vwk ∩ Fwk(Vwk+1) is
nonempty. Now it is easy to see that F−1

w[k,k+1]
is an expansion on W and therefore

F−1
w[k,k+1]

cannot be a rotation.

We are now ready to improve Theorem 16.

Theorem 21. Let {Fa : a ∈ A} be a Möbius iterative system. Assume that there
exists a finite subset B of A+ such that {V b : b ∈ B} covers T. Then there exists
a subshift Σ ⊂ Aω that, together with the iterative system {Fa : a ∈ A}, forms a
Möbius number system.

Proof. Take B as our new alphabet. We will show that there exists Σ ⊂ Bω with
the required properties. Once we have Σ, we can define the subshift Σ′ ⊂ Aω as
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Σ′ =
⋃d

i=0 σd(Σ) where d = max{|b| : b ∈ B}. It is easy to see that if Σ is a Möbius
number system then Σ′ is also a Möbius number system.

Consider the set X ⊂ T×Bω introduced above. We have already shown that X
is closed and therefore compact. Taking projections π1,π2 of X to first and second
elements, we obtain the set of points π1(X) ⊂ T and the set of words π2(X) ⊂ Bω.
To conclude our proof, we verify that:

(i) π1(X) = T.

(ii) π2(X) = Σ is a subshift of Bω.

(iii) For (x,w) ∈ X we have Φ(w) = x.

(iv) The map P (v) together with Σ forms a symbolic representation of T.

(v) Φ|Σ is continuous.

(i) This follows from the fact that the system {V b : b ∈ B} covers T. Given
x ∈ T we can construct w ∈ Bω with (x,w) ∈ X by induction.

(ii) As X is compact and π2 is continuous, Σ is compact. To show σ-invariance,
consider (x,w) ∈ X. Then it is easy to see that (F−1

w0
(x),σ(w)) ∈ X.

(iii) Let (x,w) ∈ X. Recall the notation xi = F−1
w[0,i)

(x). We will divide the proof
into several cases.

Assume first that xi is an endpoint of V wi for all i. Then either xi is always
the clockwise endpoint or always the counterclockwise endpoint of V wi . Assume
without loss of generality that xi = e+

i and denote l = min{|Vb| : b ∈ B}.
We will use Lemma 2. Let I ⊂ V w0 be a nondegenerate closed interval with x

as the counterclockwise endpoint. We want to show that lim infi→∞ |F−1
w[0,i)

(I)| ≥ l,
that is, there exists j such that i > j ⇒ |F−1

w[0,i)
(I)| ≥ l. This will be enough to

prove Φ(w) = x since for every J open interval, x ∈ J , there exists a suitable I ⊂ J .
Observe first that if |F−1

w[0,i)
(I)| ≥ l for some i then |F−1

w[0,i)
(I) ∩ V wi | ≥ l and,

because F−1
wi

expands all intervals in V wi , we have |F−1
w[0,i+1)

(I)| > l. All we have
to show is that there exists i such that the length |F−1

w[0,i)
(I)| is at least l. But this

follows from Lemma 18; all we have to do is choose x #= y ∈ I and observe that
F−1

w[k,k+1]
is not a rotation for any k by Observation 20. Therefore, in this case we

have Φ(w) = x.
If there exists k such that xi is an endpoint of Vwi for all i ≥ k then Φ(σk(w)) =

F−1
w[0,k)

(x) by the above argument, and so Φ(w) = x, which was to be proven.
It remains to consider the case when xi is not endpoint for infinitely many values

of i. We want to show that then limi→∞ (F−1
w[0,i)

)•(x) = ∞. This will be enough to
finish the proof, thanks to Lemma 11.

First of all, note that there exists a number ξ > 0 with the following property:
For all b, the intervals

(
F−1

b (e−b ), F−1
b (e−b + ξ) + ξ

)
and

(
F−1

b (e+
b − ξ)− ξ, F−1

b (e+
b )

)

do not contain any endpoint e−c , e+
c of any interval Vc (where c ∈ B, see Figure 4).

The existence of ξ follows from the fact that the set of all endpoints of all intervals
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e+
b − ξ

Vb

e+
b

F−1
b (e+

b )

F−1
b (e+

b − ξ)

F−1
b (e+

b − ξ) − ξ

No endpoints here.

Figure 4: The condition for ξ

{Vc : c ∈ B} is finite. We find such a ξb for every b ∈ B and then choose the
minimum ξb as the global ξ.

Observe that

(F−1
w[0,i)

)•(x) =
i−1∏

k=0

(F−1
wk

)•(F−1
w[0,k)

(x)) =
i−1∏

k=0

(F−1
wk

)•(xk). (♥)

As xk ∈ V wk , we have that (F−1
wk

)•(xk) ≥ 1. Moreover, there exists a δ > 0 such
that (F−1

b )•(y) > 1 + δ whenever y ∈ [e−b + ξ, e+
b − ξ].

Therefore, the only way the limit of the product (♥) can be finite is when there
exists an i0 such that

ρ(xi, {e−wi
, e+

wi
}) < ξ

for all i ≥ i0. But this leads to a contradiction: Assume (without loss of generality)
ρ(xi0 , e

+
wi0

) < ξ. Then we have ρ(xi0+1, e−wi0+1
) ≥ ξ (because e−wi0+1

#∈ [xi0+1, xi0+1+
ξ) by the choice of ξ) and so ρ(xi0+1, e+

wi0+1
) < ξ. By induction, it is then true that

ρ(xi, e+
wi

) < ξ for all i ≥ i0 and we obtain that F−1
w[i0,i)

(e+
wi0

) ∈ V wi (because by
the choice of ξ, we have e+

wi0+1
#∈ (F−1

w[i0,i)
(e+

wi0
), xi0+1], see Figure 5), which is a

contradiction with Lemma 18 and Observation 20.
(iv) All we need to show is that P (w) =

⋂∞
i=0 P (w[0,i)) is a singleton for every

w ∈ Σ. We know that when (x,w) ∈ X then x ∈ P (w). Let y ∈ P (w). Then
for all k we have F−1

w[0,k)
({x, y}) ∈ V wk and applying Lemma 18 together with

Observation 20 we obtain x = y, which is what we needed.
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V wi0

e+
wi+0

F−1
wi0

(e+
wi0

)

xi0

F−1
wi0

(xi0) = xi0+1

ξ

e+
wi0+1

Figure 5: The situation brought about by the properties of ξ

(v) Follows from the previous point and Lemma 13.

From the proof of Theorem 21, we obtain that there are alternative subshifts
that also produce a Möbius number system.

Assume that we replace all the sets Vb, b ∈ B with some smaller open intervals
Wb, b ∈ B satisfying Wb ⊂ Vb and

⋃
b∈B W b = T. Then we can define a Möbius

number system derived from the set X ′ ⊂ T×Aω.
Let (x,w) ∈ X ′ if and only if:

(3) For all i = 1, 2, . . . we have xi ∈ Wwi .

(4) There are no i, j indices such that xi is the counterclockwise endpoint of Wwi

and xj is the clockwise endpoint of Wwj .

Note that the new conditions are at least as restrictive as the original conditions
(1) and (2), therefore X ′ ⊂ X.

The set X ′ is closed, which follows from the observation that (x,w) ∈ X ′ if and
only if

∀k, x ∈
k⋂

i=0

Fw[0,i)(Wwi)

and therefore

X ′ =
∞⋂

n=0

⋃

|v|=n




n−1⋂

i=0

Fv[0,i)(Wvi)× [v]



 .
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To see that π1(X ′) = T, consider x ∈ T. Then there exists w0 with x ∈ Ww0

such that x is not the clockwise endpoint of Ww0 . Similarly, there always is a set
Ww1 such that F−1

w0
(x) ∈ Ww1 and F−1

w0
(x) is not the clockwise endpoint of Ww1 .

We continue in this manner, producing w2, w3, . . . until we have the whole word w.
By the same arguments as in proof of Theorem 21, we then obtain that Σ′ =

π2(X ′) is a subshift. And X ′ ⊂ X gives us that Φ|Σ′ is continuous and Φ(w) = x
for (x,w) ∈ X ′. We conclude that Σ′ together with {Fb : b ∈ B} forms a Möbius
number system.

Corollary 22. Let {Wb : b ∈ B} be a set of open intervals such that Wb ⊂ Vb for
every b and

⋃
b∈B W b = T. Let ΣW ⊂ Bω be a subshift such that w ∈ ΣW if and

only if

∀k,
k⋂

i=0

Fw[0,i)(Wwi) #= ∅.

Then ΣW together with {Fb : b ∈ B} is a Möbius number system.

Proof. It suffices to show that ΣW = Σ′.
Let w ∈ Bω and denote Ek =

⋂k
i=0 Fw[0,i)(Wwi). By compactness of T, w ∈ ΣW

if and only if there exists x ∈
⋂∞

k=0 Ek. But from Lemma 19, we obtain that
x ∈

⋂∞
k=0 Ek if and only if (x,w) ∈ X ′. So

w ∈ ΣW ⇔ ∃x, (x,w) ∈ X ′,

which means that ΣW = π2(X ′) = Σ′.

5. Sofic Representations

A subshift Σ is called sofic if and only if the language of Σ is regular (recognizable by
a finite automaton). Papers [2] and [3] contain several examples of such subshifts.

In the following, we offer a tool for testing whether a Möbius number system is
sofic. The tool is far from universal, but should cover most interesting systems.

Define the follower set of a word v as Fv = {w ∈ Σ : vw ∈ Σ} and denote the
image of Fv by Zv = Φ(Fv).

Observation 23. Let Σ be a Möbius number system such that Σ is sofic. Then
{Zv : v ∈ A!} is a finite set.

Proof. It is a well-known fact that a subshift is sofic if and only if {Fv : v ∈ A!} is
finite (see [5]). Therefore, if Σ is sofic then {Zv : v ∈ A!} = {Φ(Fv) : v ∈ A!} is
finite.
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We state the converse statement only for one special class of Möbius number
systems. We shall see in a moment that the shift from Theorem 21 is precisely such
a shift.

Theorem 24. Let t be a positive integer. Let X ⊂ T×Aω be a set such that for all
x ∈ T, v ∈ A! with |v| ≥ t we have the equivalence

∃w ∈ Aω, (x, vw) ∈ X ⇔
[
∀k = 0, 1, . . . , |v|− t, τ

(
v[k,k+t), F

−1
v[0,k)

(x)
)]

where τ is some predicate (the same condition for all k). Assume moreover that
Φ(w) = x for all (x,w) ∈ X. Then L(π2(X)) is regular if and only if {Zv : v ∈ A!}
is finite.

Proof. The “only if” direction of the claim was proved in Observation 23.
To prove the other direction, assume that X satisfies all the requirements. We

construct a finite automaton recognizing the language of Σ.
The states of our automaton will be Tv = {(Zv, v[|v|−t,|v|)) : v ∈ A!}. The

transitions are of the form “Tv
a→ Tva”. Designate (Zλ,λ) as the initial state and

let all states be accepting except for states of the form (∅, u). As v ∈ L(Σ)⇔ Zv #= ∅,
our automaton indeed recognizes L(Σ).

To complete the proof, we need to show that the automaton is defined correctly,
i.e., if Tv = Tu then Tva = Tua. We do this by showing that x ∈ Zva if and only if

x ∈ F−1
a (Zv) & τ(v[|v|+1−t,|v|)a, x).

This will be enough, as then Tva is a function of Tv. We can assume that |v| > t,
as we can add all the finitely many short words as special states.

By rewriting the conditions, we obtain:

Zv =
{
x : ∃w, (Fv(x), vw) ∈ X

}
,

Zv =
{
x : ∀k = 0, 1, . . . , |v|− t, τ

(
v[k,k+t), F

−1
v[0,k)

(Fv(x))
)}

,

Zva =
{
x : ∀k = 0, 1, . . . , |v|− t + 1, τ

(
(va)[k,k+t), F

−1
va[0,k)

(FvFa(x))
)}

.

A simple inspection of the conditions for x ∈ Zva shows that we can write them in
the form:

Zva =
{
x : Fa(x) ∈ Zv & τ

(
va[|v|+1−t,|v|+1), F

−1
va (FvFa(x))

)}
,

Zva =
{
x : Fa(x) ∈ Zv & τ

(
v[|v|+1−t,|v|)a, x

)}
.

Therefore, Zva indeed depends only on Zv and the word v[|v|+1−t,|v|)a.

As a sample application of this theorem, we prove a criterion for soficity of the
Möbius number system introduced in Theorem 21.
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Corollary 25. Assume that Σ is the Möbius number system set up in Theorem 21.
Then the shift Σ is sofic if and only if {F−1

v (P (v)) : v ∈ A!} is a finite set.

Proof. We can assume that B = A, as the transition from subshift of Bω to a
subshift of Aω does not affect soficity due to B being finite.

We know that (x,w) ∈ X if and only if x ∈
⋂∞

i=0 P (w[0,i)). Moreover, given v,
we can find for each x ∈ P (v) a w such that (x, vw) ∈ X because {V a : a ∈ A}
covers T. Therefore Zv = F−1

v (P (v)). Setting t = 1 and τ(u, y) equal to “y ∈ P (u)”
satisfies the requirements of Theorem 24 and so Σ is sofic if and only if {Zv : v ∈
A!} = {F−1

v (P (v)) : v ∈ A!} is finite.

Recall that after Theorem 21, we have introduced an additional Möbius number
system. This shift Σ′ would require extra effort, due to the nonlocal character of
(3) and (4).

On the other hand, it is easy to see that if we take some system of open intervals
{V ′

b : b ∈ B} such that V ′
b ⊂ Vb and {V ′

b : b ∈ B} covers T and write conditions
(1’) and (2’) with Vb replaced by V ′

b then the proof of Theorem 21 as well as of
Corollary 25 goes verbatim.

Therefore, one strategy to produce sofic Möbius number systems could be to find
some cover of T, say {V b : b ∈ B}, and then try to adjust the sets {V ′

b : b ∈ B}
to obtain a system such that {Z′v : v ∈ A!} is finite and so the resulting shift is
sofic. At present, we are not able to show any concrete examples of sofic systems
obtained in this way.

6. Conclusions

In the whole paper we have built upon the results of [2] and [3]. In particular,
Theorem 21 narrows the gap between the Möbius iterative systems that admit a
Möbius number system and the iterative systems that do not. However, there are
quite a few open problems, practical as well as theoretical, in this area.

Most obviously, we would like to have a sufficient and necessary condition for the
existence of a Möbius number system for a given iterative system.

Having such a characterization, we would like to know if it is effective, i.e., given
a Möbius iterative system with coefficients in some suitable computable field, can
we decide whether there is a corresponding Möbius number system?

For manipulation with number systems, it would be nice to have a sofic Möbius
number system. There are several known examples of such systems, but we do not
know whether existence of a Möbius number system for a given iterative system
implies the existence of a sofic system or not. Neither can we at the moment tell if
a given set of MTs admits a sofic Möbius number system.

We have offered a tool to bring light to the sofic problem in Theorem 24. Unfor-
tunately, our result does not work for all systems and requires us to generate possibly
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infinitely many sets Zv (although the generation process eventually stops if the
system in question is sofic).

A large part the complexity of these problems seems to come not from the number
systems themselves but from the fact that we don’t properly understand how do
large numbers of MTs compose (or, equivalently, how long sequences of matrices
multiply). This suggests that maybe the way forward lies in studying the limits of
products of matrices.
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