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Abstract
The factor complexity of the infinite word uβ canonically associated with a non-simple
Parry number β is studied. Our approach is based on the notion of special factors intro-
duced by Berstel and Cassaigne. At first, we give a handy method for determining infinite
left special branches; this method is applicable to a broad class of infinite words which
are fixed points of a primitive substitution. In the second part of the article, we focus on
infinite words uβ only. To complete the description of their special factors, we define and
study (a, b)-maximal left special factors. This enables us to characterize non-simple Parry
numbers β for which the word uβ has affine complexity.

1. Introduction

The aim of this work is to compute the factor complexity function C(n) of the
infinite word uβ associated with β-expansions [26], where β is a non-simple Parry
number. The definition of Parry numbers is connected with the Rényi expansion
of unity dβ(1). Parry numbers are those β for which dβ(1) is eventually periodic.
Positional numerical systems with a Parry number as a base have a nice behavior.
For example, if we consider β-integers, i.e., real numbers with vanishing β-fractional
part in their β-expansion, then the distances between two consecutive β-integers
take only finitely many values. In fact, this property can be used as an equivalent
definition of Parry numbers. In this sense, positional numeration systems based
on Parry numbers are a natural generalization of the classical decimal or binary
systems. Let us mention that even the innocent looking rational base β = 3

2 brings
into numeration systems phenomena never observed before [1].

The most prominent Parry number is the golden mean τ = 1+
√

5
2 with dτ (1) = 11.

The infinite word associated with τ is the famous Fibonacci chain, i.e., the word
generated by the substitution 0 !→ 01 and 1 !→ 0. The Fibonacci chain codes the
distances between τ -integers. Fabre in [14] showed that for any Parry number there
exists a canonical substitution over a finite alphabet such that its unique fixed point
uβ represents the distribution of β-integers on the real line.

We acknowledge financial support by grants MSM6840770039&LC06002 of Ministry of Education,
Youth,andSports of the Czech Republic and by grant201/09/0584 of the CzechScienceFoundation.
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β-integers attracted attention of physicists after the discovery of quasicrystals
in 1982 [27]. The τ -integers were shown to be a suitable tool for describing atomic
positions in solid materials with long range order and non-crystalographical five-
fold symmetry [22], [4]. The knowledge of the factor complexity of the Fibonacci
chain is the first step towards the description of variability of local configurations
in quasicrystals [21].

Parry numbers are split into two groups: a Parry number β is called simple if
the Rényi expansion of unity dβ(1) has only a finite number of nonzero elements,
otherwise β is non-simple. The questions concerning the factor complexity of words
uβ associated with simple Parry numbers were discussed in [17] and [5]. Of course,
since among the uβ one can find some Sturmian sequences and Arnoux-Rauzy
words, the complexity of uβ for some specific values of β was known earlier.

The first non-simple Parry number β for which the factor complexity of uβ was
precisely determined is such that dβ(1) = 2(01)ω, i.e., β is a root of the polynomial
x3−2x2−x+1. This non-simple Parry number appears naturally when describing
the model of quasicrystals with seven-fold symmetry [16]. The first attempt to
study the factor complexity of uβ for a broader class of non-simple Parry numbers
can be found in [18].

Since any infinite word uβ is the fixed point of a primitive substitution, the
factor complexity of uβ can be estimated from above by a linear function, see
[25]. Moreover, we know that the first difference of complexity is bounded by a
constant [10, 23]. Nevertheless, in general, it is hard to find an explicit formula for
the complexity function of an infinite word u and it seems it holds also for the case
of uβ . However, we are able to find all left special factors that, in a certain sense,
completely determine the factor complexity. The notion of (right) special factor
was introduced by Berstel [6] in 1980 and considerably enhanced by Cassaigne in
his paper [11] in 1997. We introduce another slight enhancement, a tool that will
help us to identify all infinite left special branches of fixed point of substitutions
satisfying some natural assumption. Further, the knowledge of the structure of
left special factors will allow us to identify all non-simple Parry numbers β for
which the complexity of uβ is affine: The complexity of uβ is affine if and only if
dβ(1) = t1(0 · · · 0(t1 − 1))ω (Theorem 60).

2. Parry Numbers and Associated Infinite Words

For each x ∈ [0, 1) and for each β > 1, using a greedy algorithm, one can obtain
the unique β-expansion (xi)i≥1, xi ∈ N, 0 ≤ xi < β, of the number x such that

x =
∑

i≥1

xiβ
−i and

∑

i≥k

xiβ
−i < β−k+1.

By shifting, each non-negative number has a β-expansion. For x ∈ [0, 1), the β-
expansion can also be computed by using the piecewise linear map Tβ : [0, 1] → [0, 1)
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defined as
Tβ(x) = {βx},

where {βx} is the fractional part of the real number βx. The sequence dβ(x) =
x1x2x3 · · · is obtained by iterating Tβ with

xi = &βT i−1
β (x)'.

If we put x = 1 in the previous formula and denote &βT i−1
β (1)' by ti, then we ob-

tain the sequence dβ(1) = t1t2 · · · which is called the Rényi expansion of unity.
Parry [24] showed that dβ(1) plays a very important role in the theory of β-
numeration. Among other things, it allows us to define Parry numbers.

Definition 1. A real number β > 1 is said to be a Parry number if dβ(1) is even-
tually periodic. In particular,

(a) if dβ(1) = t1 · · · tm is finite, i.e., it ends in infinitely many zeros, then β is a
simple Parry number,

(b) if it is not finite, i.e., dβ(1) = t1 · · · tm(tm+1 · · · tm+p)ω, then β is called a
non-simple Parry number.

Note, that the parameters m,p > 0 are taken the least possible. It implies that
tm (= tm+p which will be a very important fact. Another crucial property of dβ(1)
is the following Parry condition [24] valid for all β > 1:

tjtj+1tj+2 · · · ≺ t1t2t3 · · · for every j > 1 , (1)

where ≺ is the (strict) lexicographical ordering. In particular, notice the important
fact that t1 > 0.

As the infinite word uβ is tightly connected with a geometrical interpretation of
β-integers, we first introduce β-integers along with some of their properties.

Definition 2. The real number x is a β-integer if the β-expansion of |x| is of the
form

∑k
i=0 aiβi, where ai ∈ N. The set of all β-integers is denoted by Zβ.

The definition of β-integers coincides with the definition of classical integers in
the case of β in Z. But there are several new phenomena linked with the notion of β-
integers when β is not an integer. For our purposes, the most interesting difference
between classical integers and β-integers is the difference in their distribution on the
real line. While the classical integers are distributed equidistantly, i.e., gaps between
two consequent integers are always of the same length 1, the lengths of gaps between
β-integers can take their values even in an infinite set. More precisely, Thurston [28]
proved the following theorem.
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Theorem 3. Let β > 1 be a real number and dβ(1) = (ti)i≥1. Then the length of
gaps between neighbors in Zβ takes values in the set {*0,*1, . . .}, where

*i =
∑

k≥1

tk+i

βk
, for i ∈ N.

Corollary 4. The set of lengths of gaps between two consecutive β-integers is finite
if and only if β is a Parry number. Moreover, if β is a simple Parry number,
i.e., dβ(1) = t1 · · · tm, the set reads {*0,*1, . . .*m−1}, if β is a non-simple Parry
number, i.e., dβ(1) = t1 · · · tm(tm+1 · · · tm+p)ω, we obtain {*0,*1, . . .*m+p−1}.

Now, let us suppose that we have drawn the non-negative β-integers on the real
line and assume that β is a Parry number. If we read the length of gaps from zero
to the right, we obtain an infinite sequence, say {*ik}k≥0. Further, if we read only
indices, we obtain an infinite word over the alphabet {0, . . . ,m− 1} in the case of
simple Parry numbers, and over the alphabet {0, . . . ,m + p− 1} in the non-simple
case. The obtained infinite word is just the word uβ we are interested in. However,
there exists another way to define it. Fabre [14] proved that uβ can be defined
as the unique fixed point of a substitution ϕβ canonically associated with a Parry
number β and defined as follows.

Definition 5. For a simple Parry number β the canonical substitution ϕβ over the
alphabet A = {0, 1, . . . ,m− 1} is defined by

ϕβ(0) = 0t11,
ϕβ(1) = 0t22,

...
ϕβ(m−2) = 0tm−1(m−1),
ϕβ(m−1) = 0tm .

Definition 6. For a non-simple Parry number β the canonical substitution ϕβ over
the alphabet A = {0, 1, . . . ,m + p− 1} is defined by

ϕβ(0) = 0t11,
ϕβ(1) = 0t22,

...
ϕβ(m−1) = 0tmm,

ϕβ(m) = 0tm+1(m+1),
...

ϕβ(m+p−2) = 0tm+p−1(m+p−1),
ϕβ(m+p−1) = 0tm+pm.



INTEGERS: 9 (2009) 285

We see that the definition of ϕβ is given by dβ(1) and that the only difference
between simple and non-simple cases lies in the images of the last letters m − 1
and m + p − 1 respectively. While in the simple case the last letters of images
ϕβ(k), k = 0, 1, . . . ,m− 1, are all distinct and so the images form a suffix-free code,
in the non-simple case either ϕβ(m−1) = 0tmm is a suffix of ϕβ(m+p−1) = 0tm+pm
or vice versa. As we will see later on, this property is crucial from the point of view
of computing the complexity of the infinite word uβ .

Definition 7. Let β > 1 be a Parry number. The unique fixed point of the canonical
substitution ϕβ is denoted by

uβ = lim
n→∞

ϕn
β(0) = ϕ∞β (0).

The uniqueness of uβ follows from the definitions of ϕβ , the letter 0 is the only
admissible starting letter of a fixed point because t1 > 0.

3. Special Factors and Factor Complexity

In this section, we will recall the notion of special factors of an arbitrary infinite
word and we will explain how the structure of special factors of an infinite word
determines its factor complexity. To be able to do it, we need some usual basic
notation, see [11] for more.

Definition 8. Let A = {0, 1, . . . , q − 1}, q ≥ 1, be a finite alphabet. An infinite
word over the alphabet A is a sequence u = (ui)i≥1 where ui ∈ A for all i ≥ 1. If
v = ujuj+1 · · ·uj+n−1, j, n ≥ 1, then v is said to be a factor of u of length n and
the index j is an occurrence of v, the empty word ε is the factor of length 0.

By Ln(u) we denote the set of all factors of u of length n ∈ N, the language of
u is then the set L(u) =

⋃
n∈N Ln(u).

Definition 9. Let u be an infinite word over an alphabet A. The function C(n) =
#Ln(u) is the factor complexity function of u. We further define the first difference
of the complexity by !C(n) = C(n + 1)− C(n).

In what follows, we shall restrict ourself to those infinite words which are fixed
point of some substitution (morphism) ϕ defined over a finite alphabet A. We shall
further assume that ϕ is injective and primitive.

Definition 10. A substitution ϕ is primitive if there exists k ∈ N such that for all
a, b ∈ A the word ϕk(a) contains b.

Equivalently, ϕ is primitive if the incidence matrix Mϕ is primitive.
There are several well-known properties of the complexity function C.
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Proposition 11. The following hold:

(i) For each infinite word u, 0 ≤ C(n) ≤ (#A)n,

(ii) if u is eventually periodic, then C(n) is eventually constant,

(iii) u is aperiodic if and only if C(n) is unbounded and C(n) is unbounded if and
only if !C(n) ≥ 1, for all n ∈ N,

(iv) if u is a fixed point of a primitive substitution, then C(n) is a sublinear func-
tion, i.e., C(n) ≤ an + b, for some a, b ∈ N,

(v) if u is a fixed point of a primitive substitution, then !C(n) is bounded.

Items (i) − (iii) are obvious, (iv) is due to [25], (v) was proved in [23] and in a
more general context in [10].

It is also well known that any fixed point of a primitive substitution is uniformly
recurrent, i.e., each factor occurs infinitely many times and the gaps between its
two consecutive occurrences are bounded in length. This implies that each factor
is extendable both to the right and to the left.

Definition 12. Let v be a factor of u, the set of left extensions of v is defined as

Lext(v) = {a ∈ A | av ∈ L(u)}.

If #Lext(v) ≥ 2, then v is said to be a left special (LS) factor of u.
In the analogous way we define the set of right extensions Rext(u) and a right

special (RS) factor. If v is both left and right special, then it is called bispecial.

The connection between (left) special factors and the complexity follows from
the following reasoning. Let us suppose that Ln(u) = {v1, . . . , vk}, k ≥ 1, and let
Lext(vi) = {a(i)

1 , . . . , a(i)
%i
}, %i ≥ 1, i = 1, . . . , k. Now, it is not difficult to realize that

Ln+1(u) = {a(1)
1 v1, . . . , a

(1)
%1

v1, a
(2)
1 v2, . . . , a

(k−1)
%k−1

vk−1, a
(k)
1 vk, . . . , a(k)

%k
vk},

i.e., by concatenating all factors of length n and all their left extensions we obtain
all factors of length n + 1. It implies that

#Ln+1(u)−#Ln(u) =!C(n) =
∑

v∈Ln(u)
v is LS

(#Lext(v)− 1). (2)

Hence, if we know all LS factors along with the number of their left extensions, we
are able to evaluate the complexity C(n) using this formula.
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3.1. Classification of LS factors

Let a, b ∈ Lext(v) be left extensions of a factor v of u, which means both av and bv
are factors of u. If there exists a letter c ∈ Rext(av) ∩Rext(bv), we say that v can
be extended to the right such that it remains LS with left extensions a, b; indeed
a, b ∈ Lext(vc).

Definition 13. Let a, b ∈ Lext(v) be distinct left extensions of an LS factor v of u.
We say that v is an (a, b)-maximal LS factor if Rext(av)∩Rext(bv) = ∅; in words,
v cannot be extended to the right such that it remains LS with left extensions a, b.

a

eb

v a

c

d

eb

v

a) b)

d

Figure 1: Two types of (a, b)-maximal LS factor v.

In general, there are two types of (a, b)-maximal LS factors both depicted in
Figure 1. In Case a), a and b are the only left extensions of v and so v cannot be
extended to the right and remain LS. In Case b), v can be prolonged by letter e
such that ve is still an LS factor but it looses its left extension a.

It can also happen that a factor v with left extensions a and b is extendable to
the right infinitely many times. In this way we obtain an infinite LS branch.

Definition 14. An infinite word w is an infinite LS branch of u if each prefix of
w is a LS factor of u. We put

Lext(w) =
⋂

v prefix of w

Lext(v).

Clearly, we have that #Lext(w) ≥ 2 since each prefix of infinite LS branch w is
an LS factor having at least two left extensions.

Proposition 15. The following hold:

(i) If u is eventually periodic, then there is no infinite LS branch of u,

(ii) if u is aperiodic, then there exists at least one infinite LS branch of u,

(iii) if u is a fixed point of a primitive substitution, then the number of infinite LS
branches is bounded.

Item (i) is obvious, and (iii) is a direct consequence of (2) and Proposition 11 (v).
Item (ii) is a direct consequence of the famous König’s infinity lemma [20] applied
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on sets V1, V2, . . ., where the set Vk comprises all LS factors of length k and where
v1 ∈ Vi is connected by an edge with v2 ∈ Vi+1 if v1 is a prefix of v2.

Taking all this together, our aim is to find all (a, b)-maximal LS factors and also
all infinite LS branches of u.

Remark 16. The term “special factor” (for us it was RS factor) was introduced
in 1980 [6] and it has been used for computing the factor complexity since then
(eg. [7], [13]). The notations introduced above are based on Cassaigne’s article [11].
An (a, b)-maximal factor is a new term; actually it is a special case of a weak
bispecial factor proposed there. It is also shown in the article that bispecial factors
determine the second difference of the complexity similarly to the way that LS
factors determine the first difference of the complexity.

Remark 17. Everything that has been (and will be) defined or shown for LS factors
can be defined or shown similarly for RS factors.

3.2. How To Find Infinite LS Branches

Before introducing a new notion, let us consider the example substitution

ϕ : 1 !→ 1211, 2 !→ 311, 3 !→ 2412, 4 !→ 435, 5 !→ 534 (3)

with u = ϕ∞(1). Further, let w be an LS factor (or infinite LS branch) of u with
left extensions 1 and 2. Is ϕ(w) again an LS factor? From Figure 2 (first line) we
see that it is not since the letter 1 is its only left extension. In order to obtain an
LS factor, we have to append as a prefix the factor 11 which is the longest common
suffix of ϕ(1) = 1211 and ϕ(2) = 311, and then 11ϕ(w) is an LS factor with left
extensions 2 and 3. In the case when Lext(w) = {2, 3} (second line in Figure 2),
ϕ(w) is an LS factor since the longest common suffix of ϕ(2) = 311 and ϕ(3) = 2412
is the empty word ε.

1

2
w

1211

311
ϕ(w)

ϕ-image
11ϕ(w)

f-image

fL(1, 2) = 11

gL(1, 2) = {2, 3}

2

3

2

3
w

311

2412

ϕ-image f-image

fL(2, 3) = ε

gL(2, 3) = {1, 2}

1

2
ϕ(w) ϕ(w)

Figure 2: Images of LS factors.
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Definition 18. Let ϕ be a substitution defined over an alphabet A. For each pair
of distinct letters a, b ∈ A we define fL(a, b) as the longest common suffix of words
ϕ(a) and ϕ(b).

Definition 19. If v be a prefix of a word w, then v−1w is the word w without the
prefix v. If v is a suffix of w, we define wv−1 analogously.

Definition 20. Let ϕ be an injective substitution defined over an alphabet A having
a fixed point u. For each unordered pair of distinct letters a, b ∈ A such that
Rext(a) ∩Rext(b) (= ∅ we define the set gL(a, b) as follows.

(i) If fL(a, b) is a proper suffix of both ϕ(a) and ϕ(b), then gL(a, b) contains just
the last letters of factors ϕ(a)(fL(a, b))−1 and ϕ(b)(fL(a, b))−1.

(ii) If fL(a, b) = ϕ(a) (i.e., W.L.O.G., |ϕ(a)| < |ϕ(b)|), then gL(a, b) contains the
last letter of the factor ϕ(b)(fL(a, b))−1 and all the last letters of factors ϕ(c),
where c ∈ Lext(a) such that Rext(ca) ∩Rext(b) (= ∅.

Assumption 21. Let u be a fixed point of an injective substitution ϕ. We suppose
that for all a, b ∈ A the number of elements of gL(a, b) is two, whenever gL(a, b) is
defined.

Moreover, if fL(a, b) = ϕ(a), then the longest common suffix of ϕ(ca) and ϕ(b)
is ϕ(a) for all c ∈ A such that Rext(ca) ∩Rext(b) (= ∅.

Assumption 21 is valid for all suffix-free substitutions since gL(a, b) from point (i)
of Definition 20 always contains just two elements, and the case when fL(a, b) = ϕ(a)
never happens. If fL(a, b) = ϕ(a), then Assumption 21 says that if v is an LS factor
with Lext(v) = {a, b}, then the last letter e of ϕ(c) is the same for all c ∈ Lext(av)
and, moreover, eϕ(a) is not a suffix of ϕ(b) – in other words, for each LS factor v
the factor fL(a, b)ϕ(v) is again LS. We will see that this complicated assumption
is satisfied for the (not suffix-free) substitution ϕβ , where β is a non-simple Parry
number.

Definition 22. Let ϕ be a substitution satisfying Assumption 21. Then for each
LS factor (or infinite LS branch) w having distinct left extensions a and b we define
f-image of w as the factor fL(a, b)ϕ(w).

With respect to the preceding discussion, Assumption 21 says that f -image is
always an LS factor and it has just two left extensions, namely two elements of
gL(a, b), corresponding to the two original left extensions a and b.

Assumption 21 along with the notation introduced above allows us to define the
following graph.

Definition 23. Let ϕ be a substitution defined over an alphabet A satisfying As-
sumption 21. We define a directed labelled graph GLϕ as follows:
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2
3

3
5

2
4

1
5

1
4

2
5

3
4

ε

ε ε ε ε

ε

ε

ε

ε

11

Figure 3: The graph GLϕ for the Substitution (3).

(i) vertices of GLϕ are unordered pairs of distinct letters a, b such that Rext(a)∩
Rext(b) (= ∅,

(ii) if gL(a, b) = {c, d}, then there is an edge from vertex (a, b) to vertex (c, d)
labelled by fL(a, b).

In fact, the crucial result of Assumption 21 is that out-degree of each vertex is
exactly one. The graph GLϕ for our example substitution is drawn in Figure 3, this
substitution satisfies Assumption 21 for it is suffix-free.

Now, let us consider the case when w is an infinite LS branch with a, b ∈
Lext(w), a (= b. Obviously, f -image of w is uniquely given for this (a, b). For
primitive substitutions even an “f -preimage” of each infinite LS branch exists, it is
a direct consequence of the fact proved by Mossé [23, Theorem 2] that a primitive
substitution with an aperiodic fixed point is recognizable.

Definition 24. Let ϕ be a primitive substitution on a finite alphabet A and let
u = u0u1 · · · be its aperiodic fixed point. Define f(n) = |ϕ(u0 · · ·un)|. Then ϕ is
recognizable if there exists a context length L > 0 such that for any factor w of u
of length at least 2L there exist i, j with 0 ≤ i ≤ L, |w| − L ≤ j ≤ |w| and unique
factor v such that ϕ(v) = ui · · ·uj and whenever um · · ·um+|w|−1 = w, then there
exist i′, j′ such that f(i′) = m + i, f(j′) = m + j and ui′ · · ·uj′ = v.

In words, ϕ is recognizable if each sufficiently long factor w of its fixed point
(possibly without a prefix and suffix of bounded length) has a unique decomposition
into words (ϕ(a))a∈A, i.e., there exists a “central part” of w which has a unique
ϕ-preimage.

In a certain context, the notion of recognizable substitutions coincides with the
notion of circular DOL-languages; for details see e.g. [9].

Lemma 25. Let an infinite word u be a fixed point of a primitive substitution ϕ sat-
isfying Assumption 21. Then for each infinite LS branch w of u with a, b ∈ Lext(w),
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a (= b, there exists at least one infinite LS branch w with c, d ∈ Lext(w), c (= d, such
that f-image fL(c, d)ϕ(w) of w equals w and gL(c, d) = {a, b}.

Proof. Let L be the context length of ϕ. Since each prefix of w is a factor of u,
the recognizability of ϕ implies that there exists 0 ≤ i ≤ L such that ϕ(w) =
wiwi+1 · · · , where w is a unique infinite word whose each prefix is a factor of
u. If i is taken the least possible, then w is an infinite LS branch as well as w.
Moreover, due to Assumption 21, there exist distinct c, d ∈ Lext(w) such that
w = fL(c, d)ϕ(w) and {a, b} = gL(c, d).

Theorem 26. Let u be a fixed point of a primitive injective substitution ϕ satisfying
Assumption 21 and let w be an infinite LS branch with a, b ∈ Lext(w), a (= b. Then
either w is a periodic point of ϕ, i.e.,

w = ϕ%(w) for some % ≥ 1, (4)

and (a, b) is a vertex of a cycle in GLϕ labelled by ε only or w = sϕ%(s)ϕ2%(s) · · ·
is the unique solution of the equation

w = sϕ%(w), (5)

where (a, b) is a vertex of a cycle in GLϕ containing at least one edge with a non-
empty label, % is the length of this cycle and

s = fL(g%−1
L (a, b)) · · ·ϕ%−2(fL(gL(a, b))ϕ%−1(fL(a, b)). (6)

Proof. Due to Assumption 21 and Lemma 25, both the f -image and the f -preimage
of w exist and they are unique. The uniqueness of f -preimage follows from the fact
that the number of infinite LS branches is finite (Proposition 15 (iii)). Thus, f -
image is a one-to-one mapping on the finite set of all ordered pairs

{((c, d),w)},

where w is an infinite LS branch of u and (c, d) is an unordered pair of letters such
that c, d ∈ Lext(w)), c (= d. The f -image can be viewed as a permutation on this
finite set and so it decomposes the set to independent cycles as depicted in Figure 4.

Let us consider separately two cases:

(a) The vertex (a, b) is a vertex of a cycle in GLϕ of length k labelled by ε
only. In this case, the f -image coincides with ϕ and thus all the infinite words
w,ϕk(w),ϕ2k(w), . . . are infinite LS branches with left extensions a and b. Since
the number of infinite LS branches is finite and each of them has a unique f -image
and f -preimage, this sequence of infinite LS branches is periodic and there must
exist m ≥ 1 such that w = ϕmk(w) and hence w is a periodic point of order %,
where % divides mk (see also Remark 27).
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(b) The vertex (a, b) is a vertex of a cycle of length k with at least one edge labelled
by a non-empty word. We prove that % = k. Putting w(1) = w, after applying
f -image on w(1) k times, we obtain an infinite LS branch w(2) = sϕk(w(1)) again
having left extensions a and b (s (= ε is given by (6) for % = k). Continuing
this way, we obtain a sequence of infinite LS branches defined by the equations
w(m+1) = sϕk(w(m)),m = 1, 2, . . .. This sequence is periodic for the same reason
as the sequence in case (a) and hence these equations have a unique solution, namely
the constant sequence w(m) = sϕk(s)ϕ2k(s) · · · , m = 1, 2, . . ..

wa
b

fL(a, b)ϕ(w)

f-image

f-image

f-image

f-image

Figure 4: Circular structure of infinite LS branches.

Our example substitution ϕ (see (3)) has five periodic points

ϕ∞(1),ϕ∞(4),ϕ∞(5), (ϕ2)∞(2), (ϕ2)∞(3).

It is an easy exercise to show that Lext(1) = {1, 2, 3, 4, 5},Lext(2) = {1, 4, 5},
Lext(3) = {1, 4, 5},Lext(4) = {1, 2, 3}, and Lext(5) = {1, 2, 3}. Looking at the
graph GLϕ depicted in Figure 3, we see that ϕ∞(4),ϕ∞(5) are not infinite LS
branches, as none of the vertices, (1, 2), (2, 3) and (1, 3), is a vertex of a cycle
labelled by ε only. Hence, only ϕ∞(1), (ϕ2)∞(2), (ϕ2)∞(3) are infinite LS branches
with left extensions 1, 4, 5.

As for infinite LS branches corresponding to Equation (5), in the case of our
example, there is only one cycle not labelled by the empty word: between vertices
(1, 2) and (2, 3). There are two (= the length of the cycle) equations corresponding
to this cycle:

w = ϕ(11)ϕ2(w) and w = 11ϕ2(w).

They give us two infinite LS branches

ϕ(11)ϕ3(11)ϕ5(11) · · · ,

11ϕ2(11)ϕ4(11) · · · ,

the former having left extensions 1 and 2 and the latter 2 and 3.
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Remark 27. Consider an infinite LS branch of a fixed point of a substitution ψ
having two distinct left extensions a and b, and let (a, b) be a vertex of a cycle of
length k in GLψ whose edges are all labelled by ε. Regarding the relation between
the length k of the cycle and the integer % from (4), % can be equal to, greater or
less than k.

In the case of our example substitution ϕ, % = 1 and k = 2 for the vertex (1, 4)
and the infinite LS branch ϕ∞(1), % = 2 and k = 2 for the vertex (1, 4) and the
infinite LS branch (ϕ2)∞(2) and, finally, % = 2 and k = 1 for the vertex (4, 5) and
the infinite LS branch (ϕ2)∞(2).

It can even happen that % is not a multiple of k: Consider the substitution

ψ : 1 !→ 243, 2 !→ 32, 3 !→ 121, 4 !→ 41.

The graph GLψ contains two cycles all of whose edges have label ε, namely, the loop
at vertex (1, 3) and the cycle between vertices (1, 2) and (2, 3). There are no other
cycles in GLψ, i.e., the only candidates for infinite LS branches are the periodic
points (ψ3)∞(1), (ψ3)∞(2) and (ψ3)∞(3). Using the same steps as in the case of
the example substitution above, we can show that (ψ3)∞(1) is an infinite LS branch
such that 2 and 3 are its left extensions. Hence, for this pair, we have % = 3 and
k = 2.

Remark 28. Assumption 21 could be reformulated into a weaker form but to do
so, it would require the introduction of rather complicated notation. The important
fact here is that the canonical substitution ϕβ satisfies Assumption 21.

4. Infinite LS Branches of uβ

At first, let us recall known results for simple Parry numbers. The substitution
ϕβ from Definition 5 is suffix-free and it implies that it satisfies Assumption 21.
As mentioned earlier, the last letters of images of letters are all distinct and so
fL(a, b) = ε for all pairs a, b ∈ A. The graph GLϕβ then looks as in Figure 5. It
contains m− 1 cycles labelled by ε only and hence the only candidate for being an
infinite LS branch is the unique fixed (and periodic) point of ϕβ , namely uβ with
Lext(uβ) = A. The same result is proved in [17] using different techniques.

Theorem 29. ([5],[17]). Let β > 1 be a simple Parry number with dβ(1) = t1 · · · tm
and let uβ be the fixed point of the canonical substitution ϕβ given by Definition 5.
Then

(i) if t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1}, the exact value of
C(n) is known [17],

(ii) in particular, (m− 1)n + 1 ≤ C(n) ≤ mn, for all n ≥ 1,

(iii) C(n) is affine if and only if the following two conditions are fulfilled:
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1
k + 1

0
k m− 1

m− k − 1ε ε

m− 1
k − 1

m− k
0

ε
εε

k = 1, . . . ,m− 1

Figure 5: GLϕβ for Simple Parry β.

(1) tm = 1,
(2) for all i = 2, 3, . . . ,m−1 we have

titi+1 · · · tm−1t1 · · · ti−1 . t1t2 · · · tm−1.

Then C(n) = (m− 1)n + 1.

In this paper, we will find the necessary and sufficient condition for the complexity
being affine in the case of non-simple Parry numbers. We will see that it is more
restrictive than the one from point (iii).

4.1. Infinite LS Branches in Case of Non-Simple Parry Numbers

In this section, we will apply the hitherto introduced theory on the fixed point uβ

of the substitution ϕβ , where β is a non-simple Parry number. To be able to do so,
we need some more notation and simple but useful technical lemmas.

Definition 30. For all k, % ∈ N, we define an addition ⊕ : N× N → A as follows:

k ⊕ % :=

{
k + % if k + % < m + p,
m + (k + %−m mod p) otherwise.

Similarly, if used with parameters ti, we define for all k, % ∈ N, k + % > 0,

tk⊕% :=

{
tk+% if 0 < k + % < m + p + 1,
tm+1+(k+%−m−1 mod p) otherwise.

In fact, the addition ⊕ tracks the last letters of the words ϕn
β(0), n = 0, 1, . . .,

or, if used with parameters ti, the indices of letters in the infinite word dβ(1) =
t1 · · · tm(tm+1 · · · tm+p)ω. Note that these two cases are not the same, e.g., (m+p−
1)⊕1 = m but t(m+p−1)⊕1 = tm+p. We can rewrite the definition of the substitution
ϕ in a simpler form

ϕβ(k) = 0tk+1(k ⊕ 1), ∀k ∈ A.
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Further, employing the new notation and the definition of the substitution ϕβ , one
can easily prove the following simple observations.

Lemma 31. For the substitution ϕβ the following hold:

(i) for all n ∈ N and all k ∈ A

ϕn
β(k) = (ϕn−1

β (0))tk⊕1(ϕn−2
β (0))tk⊕2 · · · (ϕβ(0))tk⊕(n−1)0tk⊕n(k ⊕ n),

(ii) if avb is a factor of uβ, v ∈ A∗ and a, b (= 0, then there exists a unique factor
v′ such that ϕβ(v′) = vb.

Our aim is to obtain the graph GLϕβ ; thus, we need to know left extensions of
letters and also all gL(a, b).

Definition 32. Let us define for all k ∈ A, k (= 0, a function z : {1, . . . ,m+p−1}→
{0, 1, . . . ,m + p− 2} by

z(k) = max{j ∈ N | 0j is a suffix of t1t2 · · · tk}.

For k ∈ {m, . . . ,m + p − 1} we also define a function y : {m, . . . ,m + p − 1} →
{0, 1, . . . , p− 1} by

y(k) =

{
max{j ∈ N | 0j is a suffix of tm+1tm+2 · · · tm+ptm+1 · · · tk} if k > m,

max{j ∈ N | 0j is a suffix of tm+1tm+2 · · · tm+p} if k = m.

Further, we define

%0 =

{
0 if t1 > 1,
1 + max{j ∈ N | 0j is a prefix of t2t3 · · · tm} otherwise

and finally we put t = min{tm, tm+p}.

Note that z(k) and y(k) can return different values for k ≥ m, and a necessary
condition for z(k) (= y(k) is that t = 0 and z(%) (= y(%) for all m ≤ % < k. Due
to the Parry condition (1) we must have 1 ≤ %0 ≤ m − 1, as the case dβ(1) =
10 · · · 0(tm+1 · · · tm+p−11)ω is not admissible.

Lemma 33. For uβ, the fixed point of ϕβ, the following hold:

(i) Lext(0) = {%0, . . . ,m + p− 1} ⊃ {m, . . . ,m + p− 1},

(ii) Lext(k) = {z(k)}, for k ∈ {1, 2, . . . ,m− 1},

(iii) Lext(k) = {z(k), y(k)}, for k ∈ {m,m + 1 . . . ,m + p− 1}.
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Proof. (ii) Each letter k > 0 can appear in uβ in the image of k − 1, namely
ϕβ(k − 1) = 0tkk. If tk > 0, then z(k) = 0 ∈ Lext(k), if tk = 0, we consider
ϕ2

β(k− 2) = ϕβ(0tk−1)k = (0t11)tk−1k. Again, if tk−1 > 0, then z(k) = 1 ∈ Lext(k),
otherwise we continue in the same way. Since t1 > 0, this process is finite.

(iii) The letter m can appear in uβ not only in the image ϕβ(m − 1) (i.e., case
(ii)) but also in ϕβ(m + p− 1) = 0tm+pm. If we realize this other possible origin of
occurrences of the letters m,m + 1, . . . ,m + p− 1, then the proof is the same as for
(ii).

(i) If t1 > 1, then 00 is a factor of u and %0 = 0. Hence, for all n ∈ N, the word
ϕn

β(0)0 = · · · (0⊕ n)0 is a factor of u as well and thus Lext(0) = A.
If t1 = 1, this implies that ti ∈ {0, 1} for i = 1, . . . ,m + p. Since either %0 = 1

and t2 = 1 or %0 > 1, t2 = · · · = t%0 = 0 and t%0+1 = 1, we have ϕ%0
β (01) =

ϕβ((%0 − 1)%0) = %00(%0 + 1), and hence, %0, %0 + 1, . . . ,m + p − 1 ∈ Lext(0). But
dβ(1) cannot contain a sequence of consecutive 0’s shorter than %0 due to Parry
condition (1) and so %0 is the least letter in Lext(0).

The previous lemma allows us to get auxiliary results about prefixes of all LS
factors of uβ .

Corollary 34. If v is an LS factor of uβ containing at least one nonzero letter,
then one of the following factors is a prefix of v:

(i) 0t11,
(ii) 0tm,
(iii) 0tkk, if k > m and t = tm+1 = tm+2 = · · · = tk−1 = 0.

Proof. Taking into account the definition of ϕβ , each LS factor of uβ containing
at least one nonzero letter must begin in 0tkk, k ∈ A \ {0} or 0tm+pm. Of course,
0tkk is then LS as well. Consider k ∈ A different from 1 and m. In order for the
factor 0tkk = ϕ(k− 1) to be LS, the letter k− 1 must have at least two distinct left
extensions. It means, according to Lemma 33, that k−1 ≥ m and z(k−1) (= y(k−1).
Item (iii) then follows from the definition of the functions z and y. Note that the
factors from item (iii) are successive images of the factor 0tm in the case when
t = 0.

Lemma 35. For the fixed point uβ of ϕβ, the following hold:

(i) if (k, %) is an unordered pair of distinct letters of A such that Rext(k) ∩
Rext(%) (= ∅, and (k, %) (= (m− 1,m + p− 1), then fL(k, %) = ε and gL(k, %) =
{k ⊕ 1, %⊕ 1},

(ii) fL(m− 1,m + p− 1) = 0tm and gL(m− 1,m + p− 1) = {0, z}, where

z =

{
1 + z(m− 1) if tm < tm+p,

1 + z(m + p− 1) if tm+p < tm.
(7)
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Proof. (i) follows directly from the definitions of gL, fL and ϕβ . (ii) is a simple
consequence of Lemma 33. Note that if tm > tm+p ≥ 0, then z(m + p − 1) =
y(m + p− 1).

This lemma along with Lemma 33 implies the following.

Corollary 36. The substitution ϕβ from Definition 6 satisfies Assumption 21.

Now, we know all we need to be able to construct the graph GLϕβ . For the case
when t1 > 1, the graph is depicted in Figure 6. Since Lext(0) = A, all possible
unordered pairs of letters are vertices of the graph. If z is not a multiple of p (i.e.,
the decision condition z = sp in Figure 6 returns no), then the graph contains only
cycles with edges labelled by ε. If z = sp for a certain positive integer s, then there
is a cycle on the vertices (0, z), (1, z ⊕ 1), . . . , (m − 1, z ⊕m − 1), where the edge
from the vertex (m − 1, z ⊕m − 1) to the vertex gL(m − 1, z ⊕m − 1) = (0, z) is
labelled by fL(m− 1, z ⊕m− 1) = 0tm.

If t1 = 1, the graph GLϕβ is the same as in Figure 6, but we have to remove
vertices (k, %), where k < %0 or % < %0 and (k, %) (= (0⊕n, z⊕n) for any n ∈ N, because
such pairs of letters are not left extensions of any LS factor, i.e., Rext(k)∩Rext(l) =
∅ (see Definition 23). For our purpose, it is important that the structure of cycles
is the same for arbitrary value of t1.

1
k ⊕ 1

ε

0
k k ⊕m

m + p− 1
k ⊕m + p− 1

mε εε

k #= sp

1
sp⊕ 1

0
sp sp⊕m− 1

m− 1ε ε
z = sp

0tm
yes

no

0tm

Figure 6: GLϕβ for non-simple Parry β, s is a positive integer.

Since the fact whether z is or is not a multiple of p is crucial for the structure of
cycles in GLϕβ , we introduce the following set.

Definition 37. A non-simple Parry number β > 1 is an element of the set S if and
only if there exists a positive integer s such that z = sp, where z is defined in (7).

Note that if p = 1, then β ∈ S.
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Employing Lemmas 33 and 35 and Definition 32, one can easily prove the fol-
lowing.

Lemma 38. A non-simple Parry number β > 1 belongs to S if and only if one of
the following conditions is satisfied:

a) dβ(1) = t1 · · · tm(0 · · · 0tm+p)ω and tm > tm+p,

b) dβ(1) = t1 · · · tm−qp︸ ︷︷ ︸
*=0

0 · · · 0︸ ︷︷ ︸
qp−1

tm(tm + 1 · · · tm+p)ω, q ≥ 1, and tm < tm+p.

Putting this all together, we obtain a proof of the following proposition which gives
us the complete list of infinite LS branches of uβ for all non-simple Parry numbers.

Proposition 39. Let β > 1 be a non-simple Parry number and let uβ be the fixed
point of the canonical substitution ϕβ. Then:

(i) if p > 1, then uβ is an infinite LS branch with left extensions {m,m +
1, . . . ,m + p− 1},

(ii) if β /∈ S, then uβ is the unique infinite LS branch,

(iii) if β ∈ S, then there are m infinite LS branches

0tmϕm(0tm)ϕ2m(0tm) · · · ,

...
ϕm−1(0tm)ϕ2m−1(0tm)ϕ3m−1(0tm) · · · .

There are no other infinite LS branches of uβ.

5. Maximal LS Factors

As explained earlier, in order to determine the complexity of an infinite word, we
need to find all infinite LS branches as well as all (a, b)-maximal LS factors. The
structure of (a, b)-maximal LS factors is not so simple as the one of infinite LS
branches, but still it can be described using the notion of f -image. To define an
f -image for (a, b)-maximal LS factors, we need Assumption 21 to be satisfied also
for gR – we will say that the right version of Assumption 21 is satisfied.

Lemma 40. For the substitution ϕβ and for all distinct a, b ∈ A we have fR(a, b) =
0ta,b , where

ta,b = min{ta, tb}. (8)

Thus, the right version of Assumption 21 is satisfied for ϕβ is prefix-free.
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Definition 41. Let a, b, c, d be letters of a finite alphabet A such that a (= c and
b (= d. A factor v ∈ A+ is an (a − c, b − d)-bispecial factor of an infinite word u
defined over A if both avc and bvd are factors of u.

Definition 42. Let a substitution ϕ defined over a finite alphabet A satisfy the left
and right versions of Assumption 21 and let v be an (a − c, b − d)-bispecial factor
of a fixed point of ϕ. Then fL(a, b)ϕ(v)fR(c, d) is said to be the f-image of v.

Obviously, the f -image of v is (ã − c̃, b̃ − d̃)-bispecial, where gL(a, b) = {ã, b̃}
and gR(c, d) = {c̃, d̃}. An LS factor v having a, b ∈ Lext(v) is (a, b)-maximal if
Rext(av) ∩ Rext(bv) = ∅. Thus, it is as well an (a − c, b − d)-bispecial for all
c ∈ Rext(av) and d ∈ Rext(bv). Are f -images of v again (gL(a, b))-maximal? This
question will be discussed only for our particular case of ϕβ .

Lemma 43. Let v be a bispecial factor of uβ having left extensions a and b. If its
f-image

fL(a, b)ϕβ(v)fR(c, d) = fL(a, b)ϕβ(v)0tc⊕1,d⊕1 ,

is (gL(a, b))-maximal, then c ∈ Rext(av) and d ∈ Rext(bv) satisfy

tc⊕1 ≥ max{te⊕1,f⊕1 | e ∈ Rext(av), f ∈ Rext(bv)},
td⊕1 ≥ max{te⊕1,f⊕1 | e ∈ Rext(av), f ∈ Rext(bv)}.

(9)

Proof. As we have already mentioned, for any e ∈ Rext(av) and f ∈ Rext(bv), the
factor fL(a, b)ϕβ(v)fR(e, f) = fL(a, b)ϕβ(v)0te⊕1,f⊕1 is bispecial and therefore LS
as well. These LS factors differ only in the length of the strings of zeros 0te⊕1,f⊕1

being their suffixes. Clearly, the (gL(a, b))-maximal LS factor among these LS
factors must be the longest one, i.e., the length of its corresponding string of zeros
is greater than or equal to te⊕1,f⊕1 for all e ∈ Rext(av) and f ∈ Rext(bv).

Definition 44. An f -image of a bispecial factor v having left extensions a and b

fL(a, b)ϕβ(v)fR(c, d),

where c ∈ Rext(av) and d ∈ Rext(bv) satisfy (9), is said to be the max-f-image of
v.

The following lemma is crucial for understanding the structure of the max-f -
images of (a, b)-maximal factors.

Lemma 45. If %, k ∈ A, % (= k, and t%⊕1t%⊕2 · · · 3 tk⊕1tk⊕2 · · · , then for all
n ∈ N the longest common prefix of the factors ϕn

β(k) and ϕn
β(%), denoted by

lcp(ϕn
β(k),ϕn

β(%)), satisfies

lcp(ϕn
β(k),ϕn

β(%)) = ϕn
β(k)(k ⊕ n)−1,
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i.e., ϕn
β(k) without the last letter k ⊕ n.

Moreover, denote by c the letter such that (lcp(ϕn
β(k),ϕn

β(%)))c is a prefix of ϕn
β(%).

Then, tc⊕1tc⊕2 · · · 3 tk⊕(n+1)tk⊕(n+2) · · · for all n ∈ N.

Proof. The case n = 0 is trivial. The rest of the proof is carried on by induction on
n. We have

ϕn+1
β (k) = (ϕn

β(0))tk⊕1ϕn
β(k ⊕ 1),

ϕn+1
β (%) = (ϕn

β(0))tk⊕1(ϕn
β(0))t"⊕1−tk⊕1ϕn

β(%⊕ 1). (10)

If t%⊕1 = tk⊕1, we apply the induction hypothesis on lcp(ϕn
β(k ⊕ 1),ϕn

β(%⊕ 1)) and
if t%⊕1 > tk⊕1, then on lcp(ϕn

β(k ⊕ 1),ϕn
β(0)) (see the Parry condition (1)).

As for the second part of the statement, the letter c is given by (10) and this
along with the Parry condition concludes the proof.

Lemma 46. Let n ∈ N. The n-th max-f-image of a bispecial factor v with left
extensions a and b, i.e., the factor we obtain if we apply n times the mapping
max-f-image on v, equals

v = sϕn
β(v)lcp(ϕn

β(c),ϕn
β(d)),

where c ∈ Rext(av), d ∈ Rext(bv), s is given by (cf. (6))

s = fL(gn−1
L (a, b)) · · ·ϕn−2(fL(gL(a, b))ϕn−1(fL(a, b)), (11)

and

tc⊕1tc⊕2 · · · 3 tc′⊕1tc′⊕2 · · · ,

td⊕1td⊕2 · · · 3 td′⊕1td′⊕2 · · ·

for all c′ ∈ Rext(av) and d′ ∈ Rext(bv).

Proof. The case n = 0 is obvious, we carry on by induction on n. Let us assume,
without loss of generality, that

tc⊕1tc⊕2 · · · 3 td⊕1td⊕2 · · ·

and that gn
L(a, b) = {ã, b̃}. Hence, we have

v = sϕn
β(v)ϕn

β(d)(d⊕ n)−1

and
Rext(b̃v) = {d′ ⊕ n | td′⊕1 · · · td′⊕n = td⊕1 · · · td⊕n}.

Further, if c′ ∈ Rext(ãv), then, due to Lemma 45,

tc′⊕1tc′⊕2 · · · 3 td′⊕(n+1)td′⊕(n+2) · · ·
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for all d′⊕ n ∈ Rext(b̃v). But td⊕(n+1) ≥ td′⊕(n+1) for all d′⊕ n ∈ Rext(b̃v), and so
the max-f -image of v equals

fL(gn
L(a, b))ϕβ(v)0td⊕(n+1) = fL(gn

L(a, b))ϕβ(s)ϕn+1
β (v)lcp(ϕn+1

β (c),ϕn+1
β (d)).

!

Every bispecial factor v having left extensions a and b has a unique max-f -
image. Since the substitution ϕβ is injective, the structure of max-f -images cannot
be circular as it is for f -images of infinite LS branches; v cannot be the k-th max-
f -image of itself for any k. However, the notion of a max-f -image allows us to
describe all (a, b)-maximal factors of uβ for all a, b ∈ A. We will prove that each
(a, b)-maximal factor is the k-th max-f -image either of 0t1−1 if t1 > 1 or of 0
if t1 = 1, for some k ∈ N. A sketch of the proof is as follows. Let v be an
(a, b)-maximal factor containing at least two nonzero letters. Employing item (ii)
of Lemma 31, one can find a bispecial factor v such that its max-f -image is v.
Again, if v contains at least two nonzero letters, we find a bispecial factor v such
that its max-f -image is v. In this way, we obtain a bispecial factor containing at
most one nonzero letter such that its k-th max-f -image equals v. According to
Corollary 34, the only candidates for such bispecial factors are of the form 0s or
0tm0q, where 1 ≤ s ≤ t1 and 0 ≤ q ≤ t1. Note that 0t1+1 cannot be a factor of uβ

and that is why we consider s, q ≤ t1. In the case when t = 0, words 0tkk0q, with
k > m, tm+1 = · · · = tk−1 = 0, could also be taken as candidates but we do not
consider them as they are just prefixes of ϕk−m

β (m0q). The following two lemmas
tell us that 0t1−1 (resp. 0 if t1 = 1) is the only candidate.

Lemma 47. Let t1 > 1 and k ∈ N. Then the k-th max-f-image of factors 0t1 , 0s

and 0tm0q, where 1 ≤ s < t1 − 1 and 0 ≤ q ≤ t1, is not (a, b)-maximal for any
distinct letters a and b.

Proof. First, consider 0t1 with distinct left extensions a and b. We have that
Lext(0t1) = Lext(0t11) and Rext(0t1) = {k ∈ A\{0} | tk = t1 or k = m, tm+p = t1}.
For each k ∈ Rext(0t1), we must have tk⊕1tk⊕2 · · · ≺ t2t3 · · · (see Parry condi-
tion (1)) and, due to Lemma 46, the k-th max-f -image of 0t1 is a prefix of a k-th
f -image of the LS factor 0t11, both having the same left extensions.

Similar arguments can be used in order to prove that the k-th max-f -image of
0s is always a prefix of the k-th f -image of the LS factor 0t1−1. Again, Lext(0s) =
Lext(0t1−1) and the rest is implied directly by the Parry condition.

Finally, consider the LS factor 0tm0q having just two left extensions 0 and z
(see (7)). According to Lemma 46, the m-th max-f -image of 0t1−1 with left exten-
sions 0 and p equals

0tmϕm
β (0t1−1)ϕm

β (1)(m + 1)−1 = 0tm0t11 · · · . (12)

Indeed, Rext(00t1−1) = {k ∈ A \ {0}|tk = t1 or k = m, tm+p = t1}, and 0 ∈
Rext(p0t1−1). Therefore the fact that tk⊕1tk⊕2 · · ·≺ t2t3 · · · and the Parry condition
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imply that the m-th max-f -image is 0tmϕm
β (0t1−1)lcp(ϕm

β (0),ϕm
β (1)). Thus, 0tm0q,

as a prefix of (12), is not (0, z)-maximal.

Lemma 48. Let t1 = 1 and k ∈ N. Then t = 0 and the k-th max-f-image of the
factor m0q, where 0 ≤ q ≤ 1, is not (a, b)-maximal for any distinct letters a and b.

Proof. As in the proof of the previous lemma, we can prove that the (m − %0)-th
max-f -image of 0 with left extensions %0 and %0 + p is the factor

mϕm
β (1)(m + 1)−1, (13)

where, according to item (i) of Lemma 31,

ϕm
β (1) = (ϕm−1

β (0))t2(ϕm−2
β (0))t3 · · · (ϕβ(0))tm0tm+1(m + 1).

In order that m0 may be (0, z)-maximal, we must have ϕm
β (1) = m + 1, and thus

t2 = · · · = tm+1 = 0. Then we have tm+p = 1 and t1t2 · · · ≺ tm+ptm · · · tm+ptm · · · ,
a contradiction with the Parry condition.

Proposition 49. Let v be an (a, b)-maximal factor of uβ. Then there exists k ∈ N
such that v is the k-th max-f-image of

(i) 0t1−1 if t1 > 1,

(ii) 0 if t1 = 1.

Proof. We will prove that if v contains at least two nonzero letters, then it is the
k-th max-f -image of a bispecial factor of the form 0s or 0tm0q, where 1 ≤ s ≤ t1
and 0 ≤ q ≤ t1. The rest of the proof then follows from the previous two lemmas.

Let us assume that v contains at least two nonzero letters. Then, due to item (ii)
of Lemma 31, v = fL(a′, b′)ϕβ(v)fR(c′, d′), where v is an (a′ − c′, b′ − d′)-bispecial
factor such that v is the max-f -image of v and gL(a′, b′) = {a, b}. Analogously, if
v contains at least two nonzero letters, there exists an (a′′ − c′′, b′′ − d′′)-bispecial
factor v which is an f -preimage of v. But it must also be a max-f -preimage. Indeed,
if it is not, then v0q′ is also an f -image of v having the left extensions a′ and b′

for some q′ > 0 and so v cannot be (a, b)-maximal as it is a proper prefix of the
max-f -image of the LS factor v0q′ with the left extensions a and b. Using this
argument iteratively, we will obtain a bispecial factor of the form 0s or 0tm0q such
that v is its k-th max-f -image.

In fact, the previous proposition along with Lemma 46 provides us with the
complete list of (a, b)-maximal factors. However, in the last section of this paper
we will need to know some details to be able to determine under which conditions
the complexity of uβ is affine.
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Corollary 50. If dβ(1) (= t1(0 · · · 0(t1 − 1))ω, then the k-th max-f-image of the
factor (12) is (gk

L(0, z))-maximal for all k ∈ N.
If β /∈ S, then the k-th max-f-image reads

ϕk
β(0tm)ϕm+1

β (0t1−1)ϕm+1
β (1)(m⊕ k)−1.

Proof. The factor (12) is always LS with just two left extensions 0 and z. Therefore,
it is (0, z)-maximal if it is neither a prefix of any infinite LS branch nor a proper
prefix of the k-th max-f -image of itself for any k > 0.

In the case when β /∈ S, the longest common prefix of the k-th max-f -image of
the factor (12) and of the unique infinite LS branch uβ equals

ϕk
β(0tm)(m⊕ k)−1.

Hence, either it is non-empty and shorter than the longest common prefix of the
(k +1)-th max-f -image of (12) and uβ , or it is empty, k < p, and t = tm+1 = · · · =
tm+k = 0 (or only t = 0 for k = 0). In the latter case, the k-th max-f -image of (12)
begins in letter m + k which is different from the first letters of uβ and of all other
max-f -images of (12). Putting all this together, the k-th max-f -image of (12) is
neither a prefix of uβ nor of the %-th max-f -image of (12) for any % (= k.

If β ∈ S, then uβ is not the only infinite LS branch; there are m other branches:

u1 = 0tmϕm
β (0tm)ϕ2m

β (0tm) · · · (14)

and u% = ϕ%−1
β (u1), l = 2, . . . ,m. To finish the proof, we have to foreclose the

possibility that the factor (12) is a prefix of u1. Looking at (14) and (12), we see that
it happens only if t = t1−1 and m = 1, in other words, if dβ(1) = t1(0 · · · 0(t1−1))ω.
The proof that the factor (12) is not a prefix of any max-f -image of itself is analogous
to the one above.

Let us state the immediate consequence of the previous corollary and its proof.

Corollary 51. Each LS factor in uβ is a prefix of an infinite LS branch if and only
if dβ(1) = t1(0 · · · 0(t1 − 1))ω.

Corollary 52. If t1 > 1, then the k-th max-f-image of 0t1−1 with left extensions 0
and a is a (gk

L(0, a))-maximal factor for all a ∈ A \ {0, z} and for all 0 ≤ k < m.
Moreover, put

k0 =






−1 if t (= t1 − 1,
0 if t = t1 − 1 and t2 (= tm+1,

max{% ∈ N | t%+1 = tm⊕%} otherwise,
(15)

then the k-th max-f-image of 0t1−1 is also a (gk
L(0, z))-maximal factor for all k0 <

k < m.
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Proof. We have

Rext(00t1−1) = {k ∈ A \ {0} | tk = t1 or k = m, tm+p = t1}

and for all a ∈ A \ {0} we have k ∈ Rext(a0t1−1) if and only if k = 0 or both the
following conditions are satisfied:

(i) z(k) = a− 1 or y(k) = a− 1,

(ii) tk = t1 − 1, or k = m and tm+p = t1 − 1.

The intersection of Rext(00t1−1) and Rext(a0t1−1) is non-empty if and only if a = z
and t = t1 − 1. In other words, if and only if 0t1−1 is a prefix of 0tm, which is an
LS factor having just two left extensions 0 and z.

Similarly, we can prove that the k-th max-f -image of 0t1−1 is a (gk
L(0, a))-

maximal factor for all a ∈ A \ {0, z}. In the same way, the k-th max-f -image
of 0t1−1, namely

ϕk
β(0t1−1)ϕk

β(1)(k + 1)−1,

is (gk
L(0, z))-maximal if it is not a prefix of the LS factor

ϕk
β(0tm) = ϕk

β(0t)ϕk
β(m)

having the left extensions gk
L(0, z). The proof then follows from item (i) of Lemma 31

and Lemma 45 applied on ϕk
β(1) and ϕk

β(m).

Taking into account Lemmas 33 and 49, one can prove the following corol-
lary using analogous techniques as in the proof of the Corollary 52. Note that
Rext(%00) = {k ∈ A | z(k−1) = %0−1 or y(k−1) = %0−1} and Rext(a0) = {1} for
all a > %0, i.e., 0 is (%0, %0 +z)-maximal if it is not a prefix of the %0-th max-f -image
of the factor (12) which reads

ϕ%0
β (m)ϕm+%0

β (1)(1⊕ (m + %0))−1 = ϕ%0
β (m)ϕm

β (%0 + 1)(1⊕ (m + %0))−1.

Corollary 53. If t1 = 1, then the k-th max-f-image of 0 is a (gk
L(%0, a + %0))-

maximal factor for all letters a > %0, a (= z and for all 0 ≤ k < m− %0.
Moreover, the k-th max-f-image of 0 is (gk

L(%0, z + %0))-maximal if k0 ≥ %0 and
k = k0 − %0, k0 − %0 + 1, . . . ,m− %0, where k0 is defined by (15).

6. Affine Complexity

The aim of the present section is to find a necessary and sufficient condition for the
factor complexity of uβ being affine. In order for the complexity to be affine, the
first difference of complexity ! C(n) must be constant. The following lemma says
when !C(n) can change its value. The proof is an immediate consequence of (2).
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Lemma 54. Let u be an infinite word over a finite alphabet.

(i) If !C(n+1) >!C(n), then the number of LS factors of length n+1 is greater
than the number of LS factors of length n.

(ii) If ! C(n + 1) <! C(n), then u contains an (a, b)-maximal factor of length n
for some letters a and b.

That is, the complexity is affine if either u does not contain any (a, b)-maximal
factor and all infinite LS branches have empty common prefix, or if each (a, b)-
maximal factor of length n is “compensated” by appearance of a “new” LS factor
of length n + 1. Examples of the first case are Arnoux-Rauzy words, all of whose
LS factors are prefixes of a unique infinite LS branch. As for the latter case, the
appearance of a “new” LS factor of length n + 1 means there is an LS factor v of
length n and its right extensions c and d such that vc and vd are both LS, i.e., v
is the longest common prefix of two different LS factors – Cassaigne [11] calls such
LS factors strong bispecial.

Since uβ always comprises at least one (a, b)-maximal factor, each such (a, b)-
maximal factor must be as long as the longest common prefix of two different
LS factors in order that the complexity may be affine. We will prove that it is
only possible if the number of (a, b)-maximal factors is finite, thus, in the case of
dβ(1) = t1(0 · · · 0(t1 − 1))ω.

Lemma 55. If k0 < m− 1, where k0 is defined by (15), then the factor complexity
of uβ is not affine.

Proof. First assume that t1 > 1. If k0 < m− 1, then the (k0 + 1)-th max-f -image
of 0t1−1 is gk0

L (0, z)-maximal. Consider the longest common prefix of the LS factor
ϕk0

β (0tm) having the left extensions gk0
L (0, z) and of the infinite LS branch uβ if p >

1, or of the LS factor ϕm−1
β (0t1−1) with the left extensions m−1 and m if p = 1 (in

such a case uβ is not an infinite LS branch). This factor equals ϕk0
β (0tm)(m⊕k0)−1

which is a prefix of the (k0 + 1)-th max-f -image of 0t1−1 and hence it is not (a, b)-
maximal for any distinct a, b ∈ A. Overall, !C(n0) <!C(n0 + 1), where n0 is the
length of the factor ϕk0

β (0tm)(m⊕ k0)−1.
Similar arguments work for the case t1 = 1, where we replace k0 +1 by k0−%0 +1

and the factor 0t1−1 by 0.

Lemma 56. If dβ(1) = t1(0 · · · 0(t1−1))ω, then the factor complexity of uβ is affine,
namely C(n) = pn + 1, n ∈ N.

Proof. In this case, t = t1 − 1 and so k0 = 0 = m − 1. Hence, the (0, a)-maximal
factor 0t1−1 is at the same time the longest common prefix of the only infinite LS
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branches uβ and 0tmϕβ(0tm)ϕ2
β(0tm) · · · . But 0t1−1 is the only (a, b)-maximal

factor and prefixes of these two infinite LS branches are the only LS factors of uβ ;
thus, the proof is complete.

Lemma 57. If β ∈ S and dβ(1) (= t1(0 · · · 0(t1− 1))ω, then the factor complexity of
uβ is not affine.

Proof. In the case when p > 1, there are m + 1 infinite LS branches given by
Proposition 39. Let us denote them by u0 = uβ ,u1, . . . ,um and put

n0 = max{|v| | v = lcp(ui,uj), i (= j, i, j = 0, 1, . . . ,m}.

We have !C(n) ≥ #Lext(u0)−1+
∑m

k=1 #Lext(uk)−1 ≥ p−1+m for all n > n0.
Due to Corollary 50, we know that there exist infinitely many (gk

L(0, z))-maximal
factors, k = 0, 1, . . ., and hence there must exist an LS factor of length n1 > n0

which is not a prefix of any LS branch. Therefore !C(n1) > m + p− 1 =!C(1).
In the case of p = 1, the proof is analogous. The only difference is that there are

only m infinite LS branches since uβ is not one.

Remark 58. For the word uβ with dβ(1) = t1(0 · · · 0(t1−1))ω we may easily describe
all left special factors. If the length of the period p is greater than 1, each LS factor
is a prefix of one of two infinite LS branches uβ and 0−1uβ. If p = 1, then uβ is not
an infinite LS branch and thus every LS factor is a prefix of the unique infinite LS
branch 0−1uβ. Hence, we obtain the known result that uβ is Sturmian if and only
if dβ(1) = t1(t1 − 1)ω. We were pointed out by Christiane Frougny that numbers
β satisfying dβ(1) = t1(0 · · · 0(t1 − 1))ω are Pisot units. Such Parry number β is a
root of the polynomial xp+1 − t1xp − x + 1.

Lemma 59. Let β /∈ S and let k0 ≥ m− 1. Then the factor complexity of uβ is not
affine.

Proof. As shown in the proof of Lemma 55, the k-th max-f -image of 0t1−1 (resp. 0
if t1 = 1) is equal to the longest prefix of some two LS factors for k = 0, 1, . . . ,m−1.
In order for the complexity to be affine, also all consecutive max-f -images of the
factor (12) must be as long as the longest common prefix of some two LS factors.

Let t1 > 1. Then the factor (12) must be of the same length as the longest
common prefix of uβ and the m-th max-f -image of itself. Remember that the
longest common prefix of uβ and the k-th max-f -image of (12) is the k-th max-f -
image of 0t1−1 for k = 0, 1, . . . ,m− 1. Formally,

|0tmϕm
β (0t1−11)(1 + m)−1| = |lcp(uβ ,ϕm

β (0tm)ϕ2m
β (0t1−11)(1⊕ (2m))−1)|

= |ϕm
β (0tm)(m⊕m)−1|
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which is never satisfied for |ϕm
β (0tm)| ≤ |ϕm

β (0t1−11)|.
Let t1 = 1. Following the same reasoning as for the case t1 > 1, a necessary

condition for the complexity to be affine is that the factor (12),

mϕm
β (1)(1 + m)−1,

must be of the same length as the longest common prefix of the (m− %0)-th max-
f -image of itself and uβ , namely

|lcp(uβ ,ϕm−%0
β (m)ϕ2m−%0

β (1)(1⊕ (2m− %0))−1)| = |ϕm−%0
β (m)(m⊕ (m− %0))−1|,

which is never satisfied for |ϕm−%0
β (m)| ≤ |ϕm

β (1)|.

Putting all lemmas of this section together, we obtain the main theorem of this
paper.

Theorem 60. Let β be a non-simple Parry number. The factor complexity of uβ

is affine if and only if dβ(1) = t1(0 · · · 0(t1 − 1))ω.

7. Conclusion

Among infinite words uβ associated with Parry numbers we may identify Arnoux-
Rauzy words. An infinite word is said to be Arnoux-Rauzy of order %, if for any
length n ∈ N there exists exactly one left special factor and one right special fac-
tor both of length n and, moreover, these special factors have just % left and %
right extensions, respectively. Arnoux-Rauzy words can be considered as a natural
generalization of Sturmian words to more letter alphabets.

It is easy to see that uβ is a Sturmian word if and only if dβ(1) = t11 or dβ(1) =
t1(t1 − 1)ω. The word uβ is an Arnoux-Rauzy word of order m ≥ 3 if and only
if dβ(1) = tm−1

1 1, see [17] and [2]. It means that there is no Arnoux-Rauzy word
over three or more letter alphabet associated with non-simple Parry number. A
direct consequence of the definition of Arnoux-Rauzy words is that the complexity
of Arnoux-Rauzy word is affine and that any left (right) special factor is a prefix
(suffix) of an infinite left (right) special branch.

In the previous section, we have proved that the infinite word uβ associated
with a non-simple Parry number β has affine complexity if and only if dβ(1) =
t1(0 · · · 0(t1 − 1))ω. In fact, we have proved that the complexity is affine if and
only if any left special factor of uβ is a prefix of an infinite left special branch
(Corollary 51). The validity of the same statement for infinite words associated
with simple Parry numbers is proven in [5]. However, this equivalence is not a
general rule for the factor complexity of fixed points of primitive morphisms. For a
counter example see [12] and [15].

It is known that Sturmian words have many equivalent definitions, see [8] for more.
In 2001 Vuillon [30] showed that a binary infinite word is Sturmian if and only if
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each its factor has exactly two return words. In article [29] Vuillon introduced the
property R%: an infinite word satisfies the property R% if each its factor has exactly %
return words. Therefore, words with R% can be considered as another generalization
of Sturmian words. In [19] Justin and Vuillon proved that Arnoux-Rauzy words of
order % have the property R%. Applying Theorem 4.5 of [3], we see that all uβ over
an %-letter alphabet with affine complexity have also the property R%.
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