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CHRISTOFFEL WORDS AND MARKOFF TRIPLES
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Abstract
We construct a bijection between Markoff triples and Christoffel words.

1. Introduction

A Markoff triple is a triple of natural integers a, b, c which satisfies the Diophantine
Equation

a2 + b2 + c2 = 3abc.

This equation has been introduced in the work of Markoff [13], where he finished his
earlier work [12] on minima of quadratic forms and approximation of real numbers by
continued fractions. He studies for this certain bi-infinite sequences and shows that
they must be periodic; each of these sequences is a repetition of the same pattern,
which turns out to be one of the words introduced some years before by Christoffel
[6]; Markoff was apparently not aware of this work of Christoffel. These words were
called Christoffel words much later in [1] and may be constructed geometrically, see
[14], [7], [15], [1], [5], and have also many different interpretations, in particular in
the free group on two generators, see [11]. See[3] for the theory of Christoffel words.

In this note, we describe a mapping which associates to each Christoffel word a
Markoff triple and show that this mapping is a bijection. The construction and the
result are a variant of a theorem of Harvey Cohn [7], see also [8, Chapter 7] and
[16]. Cohn uses a certain representation of the free group F2 into SL2(Z) in order to
construct all Markoff triples, by restricting the representation to primitive elements
of F2 (he does not prove unicity). We use another representation, by positives
matrices (naturally deduced from the continued fractions construction of Markoff)
and prove unicity of this representation of the Markoff triples.

As does Cohn, we use the Fricke identities in order to prove that the Diophantine
equation is satisfied. We use also the tree construction of the Christoffel words, see
[5] and [2], and moreover the arithmetic recursive construction of the solutions of
the previous Diophantine equation, see [13], [9], [8], [19], [16].

During the refereeing process, I became aware of the article of Bombieri [4]; he
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gives a new presentation of the whole Markoff theory, and our main result is equiva-
lent to his Theorem 26, once are known several facts on Christoffel words, especially
the equivalence between Christoffel words and positive primitive elements of the free
group F2, see, e.g., [7], [15], [11] or [3, Chapter 5]. The proof given here takes ad-
vantage of the theory of Sturmian words, which has close connections to the theory
of Markoff, see [17], [18], [10], [3].

2. Results

We consider lattice paths, which are consecutive elementary steps in the x, y-plane;
each elementary step is a segment [(a, b), (a+1, b)] or [(a, b), (a, b+1)], with a, b ∈ Z.

Let p, q be relatively prime integers. Consider the segment from (0, 0) to (p, q)
and the lattice path from (0, 0) to (p, q) located below this segment and such that
the polygon delimited by the segment and the paths has no interior integer point.

The Christoffel word of slope q/p is the word in the free monoid {x, y}∗ coding
the above path, where x (resp. y) codes an horizontal (resp. vertical) elementary
step. See the figure, where is represented the path with (p, q) = (7, 3) corresponding
to the Christoffel word of slope 3/7.

(0, 0)

(7, 3)

Figure 1: The Christoffel word xxxyxxyxxy of slope 3/7.

Note that the definition includes the particular cases (p, q) = (1, 0) and (0, 1),
corresponding to the Christoffel words x and y. All other Christoffel words will be
called proper.

Each proper Christoffel word w has a unique standard factorization w = w1w2;
it is obtained by cutting the path corresponding to w at the integer point closest to
the segment. In the figure, the standard factorization is given by w1 = xxxyxxy,
w2 = xxy. The words w1 and w2 are then Christoffel words.

Define the homomorphism µ from the free monoid {x, y}∗ into SL2(Z), defined
by µx =

(
2 1
1 1

)
and µy =

(
5 2
2 1

)
.

A Markoff triple is a multiset {a, b, c} of positive integers which satisfies the
equation a2 + b2 + c2 = 3abc. The triple is proper if a, b, c are distinct. It is classical
that the only improper Markoff triples are {1, 1, 1} and {1, 1, 2}, see [8, Chapter 2].

Theorem 1. A set {a, b, c} is a proper Markoff triple if and only if it is equal to
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{1/3Tr(µw1), 1/3Tr(µw2), 1/3Tr(µw)} for some unique proper Christoffel word w
with standard factorization w = w1w2.

It is known that for each Christoffel word w, one has 1/3Tr(µw) = µ(w)1,2, see
[17, Lemma 3.2] or [3, Lemma 8.7]. We use this fact in the proof below.
Proof. 1. Each couple (w1, w2) forming the standard factorization of a proper
Christoffel word is obtained by applying iteratively the rules (u, v) → (u, uv) or
(u, v)→ (uv, v) starting from the couple (x, y), see [5, Proposition 2] or [2, Lemma
7.3]. As a consequence, an easy computation shows inductively that w1w2w

−1
1 w−1

2

is conjugate to xyx−1y−1 in the free group F2 generated by x and y.
Now, let w be some proper Christoffel word with standard factorization w =

w1w2. Let a = 1/3Tr(µw1), b = 1/3Tr(µw2), c = 1/3Tr(µw). We use the Fricke
identity

Tr(A)2 + Tr(B)2 + Tr(AB)2 = Tr(ABA−1B−1) + 2 + Tr(A)Tr(B)Tr(AB)

for any A,B ∈ SL2(Z). We take A = µ(w1), B = µ(w2) and therefore AB = µ(w).
Thus 9a2 + 9b2 + 9c2 = 27abc (and we are done), provided Tr(ABA−1B−1) =
−2. Since w1w2w

−1
1 w−1

2 is conjugate to xyx−1y−1, it suffices to show the identity
Tr(µxµyµx−1µy−1) = −2. Now the matrix µxµyµx−1µy−1 is equal to

(
11 −24
−6 −13

)
,

which shows what we want.
2. It remains to show that a, b, c are distinct. In the special case where w = xy,

this is seen by inspection. Furthermore, µ(w)12 = µ(w1)11µ(w2)12+µ(w1)12µ(w2)22,
which implies that µ(w)12 > µ(w1)12, µ(w2)12, since the matrices have positive
coefficients. Thus, by the remark before the proof, c > a, b. Now, since we assume
w $= xy and by the tree construction recalled at the beginning of the proof, w1 is a
prefix of w2 or w2 is a suffix of w1. Then, similarly, a < b or a > b respectively.

Observe that we obtain as a byproduct of the previous calculation, using the
remark before the proof, that, if u, v are Christoffel words such that u is a proper
prefix (resp. suffix) of v, then Tr(µu) < Tr(µv).

3. Let {a, b, c} be a proper Markoff triple and assume that a < b < c. We shall
prove existence of the Christoffel word by using induction on the sum a + b + c.
Observe that {a, b, 3ab − c} is a Markoff triple and 0 < 3ab − c < b, as shows a
simple computation (or see [13], [9], [8], [19]). Hence a + b + 3ab− c is smaller than
a + b + c. Thus, if a + b + c is minimal, the triple {a, b, 3ab− c} must be improper.
In this case, since a $= b, we have {a, b, 3ab − c} = {1, 1, 2} and a = 1 and b = 2
or conversely. Thus 3ab − c = 1 and this implies c = 3.2.1 − 1 = 5 and {a, b, c}
corresponds to the Christoffel word xy.

Suppose now that the triple {a, b, 3ab− c} is proper. By induction, the multiset
{a, b, 3ab− c} is equal to {1/3Tr(µw1), 1/3Tr(µw2), 1/3Tr(µw)} for some Christof-
fel word w with standard factorization w = w1w2. By the second part of the proof,
b = 1/3Tr(µw), since both numbers are the maximum of their multiset. Then
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either (i) a = 1/3Tr(µw1) and 3ab− c = 1/3Tr(µw2), or (ii) a = 1/3Tr(µw2) and
3ab− c = 1/3Tr(µw1).

In case (i), we have c = 1/3Tr(µ(w2
1w2)); indeed, for A,B in SL2(Z),

Tr(A2B) + Tr(B) = Tr(A)Tr(AB), (1)

hence Tr(µ(w2
1w2)) = Tr(µw1)Tr(µw)− Tr(µw2) = 3a.3b− 3(3ab− c) = 3c.

In case (ii), we have c = Tr(µ(w1w2
2)); indeed,

Tr(AB2) + Tr(A) = Tr(AB)Tr(B), (2)

hence Tr(µ(w1w2
2)) = Tr(µw)Tr(µw2)− Tr(µw1) = 3b.3a− 3(3ab− c) = 3c.

Thus in case (i), {a, b, c} corresponds to the Christoffel word w2
1w2 (with standard

factorization w1.w1w2) and in case (ii) to the Christoffel word w1w2
2 (with standard

factorization w1w2.w2).
4. Concerning unicity, suppose that the proper Markoff triple {a, b, c} with a <

b < c may be obtained from the two Christoffel words u and v with standard
factorization u = u1u2 and v = v1v2. We may assume that they are both distinct
from xy; indeed, a direct verification shows that the triple corresponding to xy,
which is (1, 2, 5), can be obtained only from the Christoffel word xy; indeed, 5 is
the smallest c such that {a, b, c} is a proper Markoff triple with greatest element c,
since for any standard factorization (u, v) of a Christoffel word, with (u, v) $= (x, y),
one has Tr(µ(uv)) < Tr(µ(xy)).

Then, assuming that (u1, u2) $= (x, y) and (v1, v2) $= (x, y), we see by the tree
construction of Christoffel words, that u1 is a prefix of u2 or u2 is a suffix of u1,
and similarly for v1, v2. Hence, we are by symmetry reduced to two cases: (i) u1 is
a prefix of u2 and v1 is a prefix of v2, or (ii) u1 is a prefix of u2 and v2 is a suffix of
v1.

In Case (i), u2 (resp. v2) has the standard factorization u2 = u1u′2 (resp.
v2 = v1v′2). Moreover a = 1/3Tr(µu1), b = 1/3Tr(µu2), c = 1/3Tr(µu) as fol-
lows from the second part. Then the Markoff triple corresponding to the Christof-
fel word u1u′2 is equal to {a, 3ab − c, b}. Indeed, using Equation (1), Tr(µu′2) =
Tr(µu1)Tr(µ(u1u′2))−Tr(µ(u2

1u
′
2)) = 3a.3b−3c, because u1u′2 = u2 and u2

1u
′
2 = u.

Similarly, the Markoff triple corresponding to the Christoffel word v1v′2 is also equal
to {a, 3ab−c, b}. Thus, by induction, the Christoffel words u1u′2 and v1v′2 are equal,
together with their standard factorization, hence u = v.

In Case (ii), by the same calculation, the Markoff triple corresponding to the
Christoffel word u1u′2 is equal to {a, 3ab − c, b}, where the standard factorization
of u2 is u1u′2. Symmetrically, v1 has the standard factorization v1 = v′1v2 and the
Markoff triple corresponding to the Christoffel word v′1v2 is also equal to {a, 3ab−
c, b}. Indeed, we note, as follows from the second part, that a = 1/3Tr(µv2),
b = 1/3Tr(µv1), c = 1/3Tr(µv). Then, using Equation (2), we have Tr(µv′1) =
Tr(µ(v′1v2))Tr(µv2)−Tr(µ(v′1v2

2)) = 3b.3a−3c, since v′1v2 = v1 and v′1v
2
2 = v. Thus,

by induction, the Christoffel words u1u′2 and v′1v2 are equal, together with their
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standard factorization. Hence u1 = v′1 and u′2 = v2. Thus u = u1u2 = u2
1u

′
2 and

v = v1v2 = v′1v
2
2 = u1u′2

2. Thus we are reduced to the following particular case,
which shows that Case (ii) cannot happen.

5. Let w = uv be the standard factorization of the proper Christoffel word w.
Then the Markoff triple corresponding to the Christoffel words u2v and uv2 are
distinct.

Indeed, disregarding the trivial case w = xy, we may assume that u is a prefix of
v or v is a suffix of u. In the first case, each entry of the matrix µu is strictly smaller
than the corresponding entry of the matrix µv. The same therefore holds for the
matrices µuµuµv and µuµvµv. Thus Tr(µ(u2v)) is smaller than Tr(µ(uv2)), which
proves that the Markoff triples are distinct, since so are their greatest elements.
The second case is similar. !

It is known that each Markoff number (that is, a member of a Markoff triple) is
of the form 1/3Tr(µw) for some Christoffel word w, see [17, Corollary 3.1] or [3,
Theorem 8.4] (it follows also from the previous theorem). It is however not known if
the mapping associating to each Christoffel word w the Markoff number 1/3Tr(µw)
is injective. This is equivalent to the Markoff numbers injectivity conjecture; see [9,
p. 614], [8], [19], [4].
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