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Abstract
In this paper, we show that the only triple of positive integers a < b < c such

that ab + 1, ac + 1 and bc + 1 are all members of the Lucas sequence (Ln)n≥0 is
(a, b, c) = (1, 2, 3).

1. Introduction

A Diophantine m-tuple is a set {a1, . . . , am} of positive rational numbers, or integers,
such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. Diophantus found the
rational quadruple {1/16, 33/16, 17/4, 105/16}. Fermat found the first recorded
integer quadruple {1, 3, 8, 120}. Infinitely many Diophantine quadruples of integers
are known and it is conjectured that there is no Diophantine quintuple. By results of
Dujella [4], it is now known that there is no Diophantine sextuple and there can be
at most finitely many Diophantine quintuples which are all effectively computable.
In the rational case, it is not known if the size m of the Diophantine m-tuples must
be universally bounded. A few examples with m = 6 are known by the work of
Gibbs [7]. Several generalizations of this problem, when the squares are replaced
by higher powers of fixed, or variable exponents, were treated in many papers (see
[1], [2], [8], [9]) and [10]).

In the paper [6], the following variant of this problem was treated. Let (un)n≥0

be a binary recurrent sequence of integers satisfying the recurrence

un+2 = run+1 + sun for all n ≥ 0.

Here, r and s are nonzero integers satisfying the condition that ∆ = r2 + 4s #= 0.
It is then well-known that if we write α and β for the two distinct roots of the
characteristic equation x2− rx− s = 0, then there exist constants γ, δ ∈ Q[α] such
that

un = γαn + δβn holds for all n ≥ 0. (1)
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Assume further that the sequence (un)n≥0 is nondegenerate in the sense that γδ #= 0
and α/β is not root of unity. Say that the positive integers a < b < c form a
Diophantine triple with values in the set U = {un : n ≥ 0} if ab + 1, ac + 1 and
bc + 1 are all three in U . Note, for example, that if un = 2n + 1 for all n ≥ 0 (i.e.,
(r, s) = (3,−2) and (u0, u1) = (2, 3)), then there are infinitely many such triples
(namely, just take a < b < c to be all three powers of two). The main result in
[6] shows that the above example is representative for the nondegenerate binary
recurrent sequences (un)n≥0 with real roots α and β for which there exist infinitely
many Diophantine triples with values in U . The precise result proved there is the
following.

Theorem 1. Assume that (un)n≥0 is a nondegenerate binary recurrence sequence
with ∆ > 0 such that there exist infinitely many sextuples of nonnegative integers
(a, b, c;x, y, z) with 1 ≤ a < b < c satisfying

ab + 1 = ux, ac + 1 = uy and bc + 1 = uz. (2)

Then β ∈ {±1}, δ ∈ {±1}, α, γ ∈ Z. Furthermore, for all but finitely many of the
sextuples (a, b, c;x, y, z) as above one has δβz = δβy = 1 and one of the following
holds:

(i) δβx = 1. In this case, one of δ or δα is a perfect square;

(ii) δβx = −1. In this case, x ∈ {0, 1}.

No finiteness result was proved for the case when ∆ < 0. The proof of Theorem 1
uses deep results from Diophantine approximation such as the subspace theorem, the
finiteness of the number of nondegenerate solutions of unit equations with variables
in a finitely generated multiplicative group of C∗, as well as nontrivial bounds for
the greatest common divisor of values of two rational functions at unit points in the
number fields setting. Due to the ineffective nature of the results used in the proof
of Theorem 1, the proof of this theorem is also ineffective in the sense that given
a nondegenerate binary recurrent sequence (un)≥0 for which Theorem 1 guarantees
the existence of only finitely many Diophantine triples with values in the set U , we
do not know how to actually compute all such triples.

As usual, let (Fn)n≥0 and (Ln)n≥0 be the sequences of Fibonacci and Lucas
numbers given by F0 = 0, F1 = 1, L0 = 2, L1 = 1 and by the recurrence relations

Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln for all n ≥ 0,

respectively. Putting α = (1 +
√

5)/2 and β = (1 −
√

5)/2 = −1/α for the
two roots of the common characteristic equation x2−x−1 = 0 of the sequences of Fi-
bonacci and Lucas numbers, the formulae (1) of the general terms of these particular
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sequences are

Fn =
αn − βn

α− β
and Ln = αn + βn (3)

for all n ≥ 0, respectively.
According to Theorem 1, there should be only finitely many triples of distinct

positive integers {a, b, c} such that ab + 1, ac + 1 and bc + 1 are either all three
Fibonacci numbers or all three Lucas numbers. In [12], we showed that there is no
such triple for the case of the Fibonacci sequence. In this paper, we deal with the
same problem for the case of the Lucas sequence. Our main result says that there
is only one such triple.

Theorem 2. The only positive integers a < b < c such that

ab + 1 = Lx, ac + 1 = Ly and bc + 1 = Lz (4)

hold with some positive integers x, y and z are (a, b, c) = (1, 2, 3).

In [12], the crucial point of the proof for the case of the Fibonacci sequence was
the existence of a factorization of Fn−1 (see Lemma 6) in terms of smaller Fibonacci
and Lucas numbers. Here, the case of the Lucas numbers is more complicated since
such a factorization of Ln − 1 exists if and only if n is odd. To deal with the
remaining situation, we proved that Ln − 1 divides F3n (see Lemma 13). This
relation can be usefully applied and the bounds we obtain have similar size as the
bounds obtained in the case of the Fibonacci numbers.

Allowing equalities, namely 0 ≤ a ≤ b ≤ c, we additionally gain only trivial
solutions. Indeed, applying the result of Finkelstein [5] related to the Lucas numbers
of the form k2 + 1, it follows easily that either (x, y, z; a, b, c) = (0, t, t; 1, 1, Lt − 1),
or (x, y, z) = (1, 1, 1), a = b = 0, and c is arbitrary. If we allow a = 0, then we
obtain x = y = 1, and (x, y, z; a, b, c) = (1, 1, s; 0, b, c), where bc = Ls − 1. This is
why we only deal with the case 0 < a < b < c.

Thus, in the sequel, we only examine system (4) under the conditions

2 ≤ x < y < z and 1 ≤ a < b < c. (5)

Note also that there is at least one additional rational solution with 0 < a < b < c,
namely

(a, b, c;x, y, z) =
(

2
5
, 5, 15; 2, 4, 9

)
.

It would be interesting to decide whether equations (4) have only finitely many
positive rational solutions (a, b, c;x, y, z), and in the affirmative case whether the
above one is the only one.

There are many identities involving Fibonacci and Lucas numbers. For the sake of
brevity, we introduce the notation En for the nth term of either the Fibonacci or the
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Lucas sequence. Further, we let δe equal 5 if we are dealing with Fibonacci numbers,
and equal 1 if we are dealing with Lucas numbers. Finally, we write En to mean
the nth term of the complimentary sequence (i.e., Fn = Ln and vice versa).

As an example of our notation, the second statement of Lemma 6 for n odd is
reformulated as Ln−1 = δeEn−1

2
En+1

2
. In the sequel, we will exploit the advantages

of the notation En, En and δe.
Before proving our main result, Theorem 2, we remark that the auxiliary results

used throughout its proof, namely Lemmas 1–10, are located in the last section.

2. The Proof of Theorem 2

Case 1. z ≤ 98

In this case, we ran an exhaustive computer search to detect all the positive
integer solutions of system (4). Observe that we have

a =

√
(Lx − 1)(Ly − 1)

Lz − 1
, 2 ≤ x < y < z ≤ 98.

Going through all possible values for x, y and z and checking if the above number
a is an integer, we found only the triple (x, y, z) = (2, 3, 4).

Case 2. z ≥ 99

We distinguish four main cases depending on the parities of the indices y and z.

2.1. Both y and z Are Odd

Here, we recall the method developed in [12] to deal with the Fibonacci Diophantine
triples. Put G = gcd(Ly − 1, Lz − 1). Since y and z are odd, by Lemma 6, we have

G =






gcd(5F y−1
2

F y+1
2

, 5F z−1
2

F z+1
2

) if y, z ≡ 1 (mod 4),

gcd(5F y−1
2

F y+1
2

, L z−1
2

L z+1
2

) if y ≡ 1 (mod 4), z ≡ 3 (mod 4),

gcd(L y−1
2

L y+1
2

, 5F z−1
2

F z+1
2

) if y ≡ 3 (mod 4), z ≡ 1 (mod 4),

gcd(L y−1
2

L y+1
2

, L z−1
2

L z+1
2

) if y, z ≡ 3 (mod 4).

(6)

The lower three branches can be joined since 5 does not divide Ln for any n ≥ 0
(see Lemma 3). Therefore, it remains to investigate the following two cases:

G ≤






G1 = 5gcd(F y−1
2

, F z−1
2

) gcd(F y−1
2

, F z+1
2

)

× gcd(F y+1
2

, F z−1
2

) gcd(F y+1
2

, F z+1
2

),

G234 = gcd(A y−1
2

, B z−1
2

) gcd(A y−1
2

, B z+1
2

)

× gcd(A y+1
2

, B z−1
2

) gcd(A y+1
2

, B z+1
2

),

(7)
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where (Au, Bv) equals either (Eu, Ev), or (Lu, Lv). In the sequel, we prove upper
bounds on gcd(Au, Bv). Recalling Lemma 5, the above number is 1, 2, or a term of
the Lucas sequence. Since we are interested only in upper bounds, we may ignore
the values 1 or 2 provided that we work with an upper bound which is at least
L2 = 3.

We now apply Lemma 5 in (7) to conclude that

G1 = 5Fgcd( y−1
2 , z−1

2 )Fgcd( y−1
2 , z+1

2 )Fgcd( y+1
2 , z−1

2 )Fgcd( y+1
2 , z+1

2 ),

G234 ≤ G2 = Lgcd( y−1
2 , z−1

2 )Lgcd( y−1
2 , z+1

2 )Lgcd( y+1
2 , z−1

2 )Lgcd( y+1
2 , z+1

2 ),

which, together with Fn ≤ Ln, yield G ≤ 5G2.
Put

gcd
(

y ∓ 1
2

,
z − 1

2

)
=

z − 1
2d∓1

and gcd
(

y ∓ 1
2

,
z + 1

2

)
=

z + 1
2d∓2

, (8)

respectively. If all the four d’s above are at least 5, then we use Lemma 7 with
u0 = z0 > 8 and Lemma 9 with (a, b) = (5, 0), to derive that ε1 < 0.01, κ < 3.35,
and

G ≤ 5G2 ≤ 5L4
z+1
10

< 5
(
α

z+1
10 +0.01

)4
< α

2
5 z+3.79. (9)

Combining the above inequality with Lemma 12, we get the inequality

z

2
− 0.01 <

2
5
z + 3.79,

which leads to the contradiction z < 38.
Suppose now, that one of d−1, d+1, d−2 and d+2 is at most 4. For simplicity,

write d ∈ {1, 2, 3, 4}.

One of the factors of G2 may be large since gcd
( z+η1

2 , y+η2
2

)
= z+η1

2d for some
η1, η2 ∈ {±1}. We now proceed to show that the other three factors of G2 are small.
Fixing η1 and η2, it follows that there exists a positive integer c coprime to d such
that

y + η2

2
= c

z + η1

2d
. (10)

Observe that the only possibilities for the pair (d, c) are:

(d, c) = (4, 1), (3, 1)︸ ︷︷ ︸
group 1

, (4, 3), (3, 2), (2, 1)︸ ︷︷ ︸
group 2

, (1, 1). (11)

The groups arranged in (11) are motivated by the forthcoming treatment.
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Part 2.1.1: Group 1 (d = 4 or 3, and c = 1).

From (10) and Lemma 11, we get that

z =
d

c
(y + η2)− η1 = d(y + η2)− η1 ≤ 2y.

Hence, (d− 2)y ≤ η1 − dη2. By Lemma 11 again, we obtain

z ≤ 2(η1 − dη2)
d− 2

≤ 2(d + 1)
d− 2

≤ 8.

Thus, z is too small.

Part 2.1.2: Group 2 ((d, c) = (4, 3), (3, 2), (2, 1)).

Here, (10) implies y = cz+cη1−dη2
d . Put η′1, η

′
2 ∈ {±1} such that (η′1, η′2) #= (η1, η2).

Then

y + η′2
2

=
cz + cη1 − dη2 + dη′2

2d
.

Using the fact that d = c + 1 and Lemma 10 with λ = c, we get

gcd
(

z + η′1
2

,
y + η′2

2

)
= gcd

(
z + η′1

2
,
cz + cη1 − dη2 + dη′2

2d

)

≤
∣∣∣∣
cη′1 − (cη1 − dη2 + dη′2)

2

∣∣∣∣
≤ c + d ≤ 7.

Here, we used that the numerator is nonzero. To see that this is indeed so, observe
that by assuming that it were zero we would get cη′1− (cη1−dη2 +dη′2) = 0, leading
to c(η′1 − η1) = d(η′2 − η2), which contradicts the fact that (η′1, η′2) #= (η1, η2). We
now have

α
z
2−0.01 < 5L z+η1

2d
L3

c+d ≤ 5α
z+1
2d +0.01L3

7 < α
z
2d +24.6,

where we used the fact that 1
2d ≤ 0.25. In the above inequality, we used Lemma 9

with a = 5L3
7 and κ < 24.34. Thus,

z

2
− 0.01 <

z

2d
+ 24.6,

and the last inequality above leads to z < 24.61·2d
d−1 ≤ 98.44, which is not the case is

being considered now.
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Part 2.1.3: d = 1 and c = 1.

Here,
z + η1

2
=

y + η2

2
yields z = y + η2 − η1. Since y < z, we get that z = y + 2. In particular,
y #≡ z (mod 4). Therefore, by (6) together with the fact that 5 ! Ln, we get that
gcd(Lz−2 − 1, Lz − 1) does not exceed

gcd(E z−3
2

, E z−1
2

) gcd(E z−3
2

, E z+1
2

) gcd(E z−1
2

, E z−1
2

) gcd(E z−1
2

, E z+1
2

). (12)

Thus, by Lemmas 5 and 12, we get

α
z
2−0.01 < gcd(Lz−2 − 1, Lz − 1) ≤ max{L1, 2} · max{L2, 2} · 2 · max{L1, 2} = 24,

leading to z < 13.3, which is again too small.

2.2. Both y and z Are Even

By Lemmas 5 and 13, we have

gcd(Ly − 1, Lz − 1) ≤ gcd(F3y, F3z) = Fgcd(3y,3z) = F3 gcd(y,z). (13)

Put d = gcd(y, z), y = dy1, z = dz1, where d is even. Furthermore, y1 and z1 are
coprime.

Part 2.2.1: d ≤ z/7.

In this case, Lemma 7 (with δ1 < −1.67), Lemma 12, and relation (13), imply the
contradiction

α
z
2−0.01 < gcd(Ly − 1, Lz − 1) ≤ F 3z

7
< α

3z
7 −1.67.

Part 2.2.2: d > z/7.

The above condition is equivalent to z1 = z
d ≤ 6. On the other hand, the condition

d = gcd(y, z) ≤ y < z implies that 2 ≤ z1. Thus, in order to get an upper
bound on the greatest common divisor of Ly1d − 1 and Lz1d − 1, it is sufficient
to consider the pairs (y1, z1) with coprime components, where z1 = 2, 3, . . . , 6 and
y1 = *z1/2+ , . . . , z1 − 1. Note that, by Lemma 11, we have that *z1/2+ ≤ y1. Since
d is even, we have that Ld = αd + α−d. Furthermore, for any positive integer k
there exists a polynomial Ck(t) ∈ Z[t] such that Lkd = Ck(Ld). Indeed, C0(t) = 2
since L0·d = 2. Since L1·d = Ld, we have that C1(t) = t. Moreover,

α(k+1)d + α−(k+1)d =
(
αkd + α−kd

) (
αd + α−d

)
−

(
α(k−1)d + α−(k−1)d

)
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provides the second order recurrence relation Ck+1(t) = tCk(t) − Ck−1(t). The
resulting polynomials are called Cardan polynomials Ck(t) (see, for instance [13]).
It is worth noticing that if Tn(t) denotes the nth Chebyshev polynomial, then Ck(t) =
2Tk(t/2).

Table 1 gives the Cardan polynomials Ck(t) for those values of k in the range
0 ≤ k ≤ 12 which are of interest to us here and in the forthcoming subsections.

k Ck(t)

1 t

2 t2 − 2

3 t3 − 3t

4 t4 − 4t2 + 2

5 t5 − 5t3 − 5t

6 t6 − 6t4 + 9t2 − 2

7 t7 − 7t5 + 14t3 − 7t

11 t11 − 11t9 + 44t7 − 77t5 + 55t3 − 11t

12 t12 − 12t10 + 54t8 − 112t6 + 105t4 − 36t2 + 2

Table 1: Polynomials Ck(t)

We next determine the greatest common divisor of the values of two Cardan
polynomials shifted by −1, since

gcd(Ldy1 − 1, Ldz1 − 1) = gcd(Cy1(Ld)− 1, Cz1(Ld)− 1). (14)

Consider the greatest common divisor gcdpol(Cy1(t)−1, Cz1(t)−1) of the two polyno-
mials Cy1(t)− 1 and Cz1(t)− 1. This can be determined by applying the Euclidean
algorithm for polynomials with rational coefficients. If we write gcdpol(Cy1(t) −
1, Cz1(t) − 1) = γD(t), where γ ∈ Q and D(t) ∈ Z[t] is a primitive polynomial,
then

gcd(Cy1(Ld)− 1, Cz1(Ld)− 1)
∣∣∣ num(|γ|)D(Ld),

where num(|γ|) denotes the absolute value of the numerator of the rational number
γ.

(z1, y1) (2,1) (3,2) (4,3) (5,3) (5,4) (6,5)
gcdpol −2 −1 1 3 2 1

Table 2: gcdpol(Cz1(t)− 1, Cy1(t)− 1) provided by the Euclidean algorithm

Table 2 shows the values of gcdpol(Cz1(t)− 1, Cy1(t)− 1) provided by Euclidean
algorithm for the possible pairs (y1, z1) that are of interest for us. In all the six cases,
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we find D(t) = 1 and num|γ| ≤ 3. Thus, we can conclude

gcd(Ly − 1, Lz − 1) = gcd(Ly1d − 1, Lz1d − 1) ≤ 3. (15)

Comparing this relation to Lemma 12, we get the contradiction z < 4.6.

2.3. y is Odd and z is Even

It follows, from Lemmas 3, 6 and 13, that

gcd(Ly − 1, Lz − 1) ≤ gcd(δeE y−1
2

E y+1
2

, F3z)

≤ δegcd(E y−1
2

, F3z)gcd(E y+1
2

, F3z)

≤
√

5Lgcd( y−1
2 ,3z)Lgcd( y+1

2 ,3z). (16)

The last inequality in (16) holds by Lemma 4 when En = Fn (i.e., when δe = 5),
and it is trivial when En = Ln (i.e., δe = 1). In both these cases we have also used
Lemma 5.

Next let us write

gcd
(

y − 1
2

, 3z
)

=
3z
d1

and gcd
(

y + 1
2

, 3z
)

=
3z
d2

. (17)

Furthermore, let us write

y − 1
2

= c1
3z
d1

and
y + 1

2
= c2

3z
d2

, (18)

where gcd(ci, di) = 1 for i = 1, 2. By Lemma 11, we have that z/2 ≤ y < z.
Together with the fact that y = 6c1

d1
z + 1, and y = 6c2

d2
z − 1, respectively, we get

19
240

d1 < c1 <
1
6
d1 and

1
12

d2 < c2 ≤
1
6
d2, (19)

where the lower bound on c1 holds because z > 40.

Part 2.3.1: di ≥ 13 for i = 1, 2.

By Lemmas 7 and 12, together with inequality (16), we derive

α
z
2−0.01 < gcd(Ly − 1, Lz − 1) ≤

√
5L2

3z
13

<
√

5
(
α

3z
13 +0.01

)2
< α

6z
13 +1.7.

This leads to the contradiction z < 44.5.



INTEGERS: 9 (2009) 450

Part 2.3.2: 1 ≤ d1 ≤ 12, or 1 ≤ d2 ≤ 12.

Here, we return to the direct estimate of the upper bound on gcd(Ly − 1, Lz − 1).
First, d1 > 6 since if d1 ≤ 6, then there is no positive integer c1 satisfying relations
(19). Similar arguments show that d2 ≥ 6. Again by estimates (19) together with
the condition that di ≤ 12 for some i = 1, 2, it follows that c1 = 1, and c2 ≤ 2,
respectively. Recall, that gcd(ci, di) = 1 for i = 1, 2, which excludes the pair
(c2, d2) = (2, 12). Thus c2 = 1, also holds. Put εi = (−1)i for i = 1, 2. Then the
relation y+εi

2 = 3ci
di

z implies that y = 6ci
di

z− εi. Putting gcd(6ci, di) = fi, it follows
that we can write 6ci = afi and di = bfi with gcd(a, b) = 1. Clearly, y = a

b z − εi,
where the possible fractions a

b are

a

b
=

1
1
,

6
7
,

3
4
,

2
3
,

3
5
,

6
11

,
1
2
. (20)

Most of the fractions shown in (20) occur for both i = 1 and i = 2 except for 1
1 and

1
2 which appear only if i = 2, and i = 1, respectively.

Since y is odd, we get that a
b z is even. There exist a positive even integer s such

that z = bs. For b odd (i.e., b = 1, 7, 3, 5, 11) this is trivial, while for b even
(i.e., b = 4, 2) this comes from the fact that a is odd and the integer a

b z even; thus,
entailing that b is divisible by a smaller power of 2 than z is.

After these preparations, we are ready to give an upper bound on the number

W := gcd(Ly − 1, Lz − 1) = gcd(L a
b z−εi − 1, Lz − 1).

We start with

W = gcd(Las−εi − 1, Lbs − 1) = gcd(δeE as
2

E as
2 −εi , Lbs − 1)

= gcd(E as
2

, Lbs − 1) gcd(E as
2 −εi , Lbs − 1) =: W1W2. (21)

In the above, we used the fact that 5 # | (Lbs − 1) and gcd(E as
2

, E as
2 −εi) = 1.

Observe that E as
2

∣∣Fas. Thus, the first factor W1 = gcd(E as
2

, Lbs − 1) of the
rightmost product in formula (21) is at most

gcd(Fas, Lbs − 1) ≤ gcd(5F 2
as, Lbs − 1) = gcd(L2

as − 4, Lbs − 1)

= gcd(C2
a(s)− 4, Cb(s)− 1). (22)

Next, we follow the procedure involving shifted Cardan polynomials from Part
2.2. Table 3 gives the greatest common divisor of the polynomials C2

a(t) − 4 and
Cb(t)− 1.

We now distinguish two cases. If gcdpol is constant, then W1 ≤ num|γ| ≤ 3.
When gcdpol is linear, then num|γ| ≤ 11, and therefore W1 ≤ 11(Ls − 1) < 11Ls

(here, clearly, b ≥ 5). Obviously, the second bound on W1 is larger.
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(a, b) (1,1) (6,7) (3,4) (2,3) (3,5) (6,11) (1,2)
gcdpol −3 7

9 (t− 1) −2 −3
4 −5

4 (t− 1) −11
16 (t− 1) −1

Table 3: The polynomials gcdpol(C2
a(t) − 4, Cb(t) − 1) provided by the Euclidean

algorithm

We continue with an upper bound on the second factor W2 = gcd(E as
2 −εi , Lbs −

1). Using Lemma 13, we have

W2 ≤ gcd(E as
2 −εi , F3bs) ≤ gcd(E as

2 −εi , F3bs) = Egcd( as
2 −εi,3bs). (23)

Recall that s = 2r is even and 6ci = af1. Thus,

gcd
(as

2
− εi, 3bs

)
= gcd(ar − εi, 6br) ≤ gcd(6cir − εif1, 6cibr)

= gcd(6cir − εif1, εif1b)

≤ f1b = di ≤ 17.

Consequently, by (23), we get that W2 ≤ E17 ≤ L17. Thus, by Lemma 12, we have

α
z
2−0.01 < gcd(Ly − 1, Lz − 1) < L17 · 11Ls < αs+0.01+κ,

where we can take κ < 22. Since s = z
b and b ≥ 5 (see Table 3), we obtain z < 71.5.

2.4. y is Even and z is Odd

This is similar to the procedure explained in Section 2.3, so we shall only emphasize
the differences from that case, and omit some of the obvious details.

By Lemmas 3, 6 and 13, we get

gcd(Ly − 1, Lz − 1) ≤ gcd(F3y, δeE z−1
2

E z+1
2

)

≤ δegcd(F3y, E z−1
2

)gcd(F3y, E z+1
2

)

≤
√

5Lgcd(3y, z−1
2 )Lgcd(3y, z+1

2 ). (24)

We write again, as in the previous case,

gcd
(

3y,
z − 1

2

)
=

z − 1
2d1

and gcd
(

3y,
z + 1

2

)
=

z + 1
2d2

, (25)

and put

3y = c1
z − 1
2d1

and 3y = c2
z + 1
2d2

, (26)
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where gcd(ci, di) = 1 for i = 1, 2. By Lemma 11, the relations y = c1
6d1

(z − 1) and
y = c2

6d2
(z + 1) imply

3d1 < c1 ≤ 6d1 and
38
13

d2 < c2 < 6d2, (27)

respectively, where the lower bound on c2 holds whenever z > 38.

Part 2.4.1: d1 ≥ 3 and d2 ≥ 3.

Lemmas 7 and 12 together with (24) yield

α
z
2−0.01 < gcd(Ly − 1, Lz − 1) ≤

√
5L2

z+1
6

<
√

5
(
α

z
6 +0.17+0.01

)2
< α

z
3 +2.04.

We arrive at the contradiction z < 13.

2.5. Part 2.4.2: d1 ≤ 2 or d2 ≤ 2.

Assume that di ≤ 2 for some i = 1, 2. From inequalities (27), it follows that
4 ≤ c1 ≤ 12 and 3 ≤ c2 < 12. Put again εi = (−1)i for i = 1, 2. Then the relation
3y = ci

2di
(z + εi) implies z = 6di

ci
y − εi. Putting gcd(6di, ci) = fi and writing

6di = afi and ci = bfi with gcd(a, b) = 1, we get that z = a
b y − εi, where the

fraction a
b is one of the following:

a

b
=

2
1
,

3
2
,

6
5
,

1
1
,

12
7

,
4
3
,

12
11

. (28)

Most of the fractions in (28) occur for both i = 1 and i = 2, except for 2
1 and 1

1

which appear only if i = 2, and i = 1, respectively. Since z is odd, we get that a
b y

is even so that if we write y = bs, then s is even.
We again put W := gcd(Ly − 1, Lz − 1) = gcd(Ly − 1, L a

b y−εi − 1), and further
write it as

W = gcd(Lbs − 1, Las−εi − 1) = gcd(Lbs − 1, δeE as
2

E as
2 −εi)

= gcd(Lbs − 1, E as
2

) gcd(Lbs − 1, E as
2 −εi) =: W1W2. (29)

Now

W1 = gcd(Lbs − 1, E as
2

) ≤ gcd(Lbs − 1, Fas) ≤ gcd(Lbs − 1, 5F 2
as)

= gcd(Lbs − 1, L2
as − 4) = gcd(Cb(s)− 1, C2

a(s)− 4). (30)

Table 4 shows the greatest common divisor polynomial of the two polynomials
Cb(t)− 1 and C2

a(t)− 4.
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(a, b) (2,1) (3,2) (6,5) (1,1) (12,7) (4,3) (12,11)
gcdpol −3 −4 5

4 (t− 1) −3 −7
4 (t− 1) −3 − 11

1225(t− 1)

Table 4: The polynomial gcdpol(Cb(t) − 1, C2
a(t) − 4) provided by the Euclidean

algorithm

When this polynomial is constant, then W1 ≤ num|γ| ≤ 4, while when this
polynomial linear, then num|γ| ≤ 11 and W1 ≤ 11Ls. Observe that the second
bound is larger than the first one.

Applying Lemma 13, we have

W2 = gcd(Lbs − 1, E as
2 −εi) ≤ gcd(F3bs, E as

2 −εi) ≤ gcd(F3bs, E as
2 −εi)

= Egcd(3bs, as
2 −εi). (31)

Since s = 2r and 6di = afi,

gcd
(
3bs,

as

2
− εi

)
= gcd(6br, ar − εi) ≤ gcd(6dibr, 6dir − εifi)

= gcd(εifib, 6dir − εifi)

≤ fib = ci ≤ 12.

Consequently, by (31), we get W2 ≤ E12 ≤ L12. Therefore, by Lemma 12, we have

α
z
2−0.01 < gcd(Ly − 1, Lz − 1) < L12 · 11Ls < αs+0.01+κ,

where we can take κ < 17. Since z = as − εi, we get that s ≤ z+1
6 , which implies

that z < 51.6.

The proof of the theorem is now complete.

3. Lemmas

Lemma 3. (i) Fn ≤ Ln, with equality if and only if n = 1.

(ii) 5 ! Ln.

(iii) 5 ! (Ln − 1) if n is even.

(iv) FnLn = F2n.

(v) L2
n − 5F 2

n = 4(−1)n.

(vi) L2n = L2
n − 2(−1)n.

(vii) Ln+m = δeEnEm ∓ (−1)mLn−m if n ≥ m. (Here and anywhere near Eu, in
± and ∓ the upper sign relates to Lucas numbers, while the lower sign relates
to Fibonacci numbers.)

(viii) Fn+m = EnEm ± (−1)mFn−m if n ≥ m.
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Proof. These statements are well-known. However, item (i) can be proved, for
instance, by induction. Items (ii) and (iii) follow easily by looking at the Lucas
sequence modulo 5. The statements (iv)–(viii) can be verified using the formulae
for Ln and Fn appearing at (3).

Lemma 4. If both k and n are at least 2, then 5FkFn ≤
√

5LkLn.

Proof. We prove that 5F 2
k F 2

n ≤ L2
kL2

n holds, under the given condition, and this
implies the lemma. The fifth point of Lemma 3 provides 25F 2

k F 2
n ≤ (L2

k+4)(L2
n+4).

Therefore it is sufficient to show that L2
k + L2

n + 4 ≤ L2
kL2

n. This last inequality is
equivalent to 5 ≤ (L2

k − 1)(L2
n − 1), which holds if both k and n are at least 2.

Lemma 5. The following divisibility relations hold:

(i) gcd(Fu, Fv) = Fgcd(u,v),

(ii) gcd(Lu, Lv) =





Lgcd(u,v), if u

gcd(u,v) ≡
v

gcd(u,v) ≡ 1 (mod 2),

1 or 2, otherwise,

(iii) gcd(Fu, Lv) =





Lgcd(u,v), if u

gcd(u,v) #≡
v

gcd(u,v) ≡ 1 (mod 2),

1 or 2, otherwise.

Proof. This is well-known (see, for instance, the proof of Theorem VII in [3]).

Lemma 6. The following formulae hold:

(i)

Fn − 1 =






Fn−1
2

Ln+1
2

, if n ≡ 1 (mod 4);

Fn+1
2

Ln−1
2

, if n ≡ 3 (mod 4);

Fn−2
2

Ln+2
2

, if n ≡ 2 (mod 4);

Fn+2
2

Ln−2
2

, if n ≡ 0 (mod 4).

(ii)

Ln − 1 =





5Fn−1

2
Fn+1

2
if n ≡ 1 (mod 4);

Ln−1
2

Ln+1
2

if n ≡ 3 (mod 4).

Proof. For the first part see, for example, Lemma 2 in [11]. Nevertheless, both parts
can be verified by using (3).

Lemma 7. Let u0 be a positive integer. Put

εi = logα

(
1 + (−1)i−1

(
|β|
α

)u0)
, δi = logα




1 + (−1)i−1

(
|β|
α

)u0

√
5




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for i = 1, 2, respectively, where logα is the logarithm in base α. Then for all integers
u ≥ u0, the two inequalities

αu+ε2 ≤ Lu ≤ αu+ε1 (32)

and
αu+δ2 ≤ Fu ≤ αu+δ1 (33)

hold.

Proof. This is Lemma 5 in [12].

In order to make the application of Lemma 7 more convenient, we shall suppose
that u0 ≥ 8. Then we have the following corollary.

Corollary 8. If u0 ≥ 8, then

−0.01 < ε2 , ε1 < 0.01 , −1.68 < δ2 , δ1 < −1.67 .

Lemma 9. Suppose that a > 0 and b ≥ 0 are real numbers, and that u0 is a positive
integer. Then for all integers u ≥ u0, the inequality

aαu + b ≤ αu+κ

holds with κ = logα

(
a + b

αu0

)
.

Proof. This is Lemma 6 in [12].

Lemma 10. Assume that a, b, z and λ #= −1 are integers. Furthermore, assume
that all the expressions appearing inside the gcd’s below are also integers. Then the
following inequality holds:

gcd
(

z + a

2
,

λz + b

2(λ + 1)

)
≤






∣∣λa−b
2

∣∣ , if λa #= b;
z+a

2(λ+1) , otherwise.
(34)

Proof. Put A1 = z+a
2 , B1 = λz+b

2(λ+1) . Further, let A2 = A1 − B1, B2 = B1 − λA2.
Then, using the Euclidean algorithm, we have

G7 = gcd(A1, B1) = gcd(A2, B1) = gcd(A2, B2)

= gcd
(

z + (λ + 1)a− b)
2(λ + 1)

,
−λa + b

2

)
.

If b #= λa, then G7 ≤
∣∣λa−b

2

∣∣. Otherwise, if b = λa, then G7 = z+(λ+1)a−b
2(λ+1) =

z+a
2(λ+1) .
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We point out that the particular cases λ = 1 and λ = 3 of Lemma 10 were used
in [12].

Lemma 11. All positive integer solutions of the system (4) satisfy z ≤ 2y.

Proof. The last two equations of system (4) imply that c divides both Ly − 1 and
Lz − 1. Consequently,

c | gcd(Ly − 1, Lz − 1). (35)

Obviously, Lz = bc + 1 < c2, hence
√

Lz < c. From (35), we obtain
√

Lz < Ly − 1.
Clearly, √

αz − 1 <
√

Lz < Ly − 1 < αy. (36)

We then get that αz−1 < α2y, which easily leads to the conclusion that 2y ≥ z.

Lemma 12. If the integers 0 < a < b < c and 0 < x < y < z satisfy the system
(4), then α

z
2−0.01 < gcd(Ly − 1, Lz − 1).

Proof. By the proof of Lemma 11 above, we know that c | gcd(Ly − 1, Lz − 1) and
that c >

√
Lz. Combining these with Lemma 7 (with u0 = z ≥ 8), we obtain

gcd(Ly − 1, Lz − 1) >
√

Lz >
√

αz−0.02 = α
z
2−0.01.

Lemma 13. If n is even then Ln − 1 divides F3n.

Proof. By Lemma 3.8, it follows immediately that F3n = Fn(L2n + 1). By Lemma
3.6, this coincides Fn(L2

n − 1) = Fn(Ln − 1)(Ln + 1) for n even.
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