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SQUARES IN (12 + m2) · · · (n2 + m2)
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Abstract
Recently, Cilleruelo proved that the product

∏n
k=1(k

2+1) is a square only for n = 3.
In this note, using similar techniques, we prove that for the positive integer m whose
divisors are of the form of 4q + 1, the product

∏n
k=1(k

2 + m2) is not a square for n
sufficiently large. As a corollary, we prove that for m = 5, 13, 17,

∏n
k=1(k

2 + m2) is
not a square for all n.

1. Introduction

In [2], Cilleruelo proved that
∏n

k=1(k
2 +1) is a square only for n = 3. In particular,

he proved that
∏n

k=1(k
2 + 1) is not a square for n large enough. Using similar

techniques, we prove the following result.

Theorem 1. Let m be a positive integer such that its divisors are of the form of
4q + 1 and N = max(m, 108). Then Pm(n) =

∏n
k=1(k

2 + m2) is not a square for
n ≥ N .

As corollaries, we prove the following results.

Corollary 2. P5(n) =
∏n

k=1(k
2 + 52) is not a square for all n.

Corollary 3. P13(n) =
∏n

k=1(k
2 + 132) is not a square for all n.

Corollary 4. P17(n) =
∏n

k=1(k
2 + 172) is not a square for all n.

As an easy consequence, we deduce that for m = 5, 13, 17 the sequence

xm(n) := tan

(
n∑

k=1

arctan(k/m)

)
(1)

does not vanish for all n. To see this, note that
∑n

k=1 arctan(k/m) is the argument
of the Gaussian integer

∏n
k=1(m + k

√
−1) = r + s

√
−1. Hence, if xm(n) = 0, then

s = 0 which implies that Pm(n) =
∏n

k=1(k
2+m2) = r2. This contradicts Corollaries

2, 3 and 4. This result is similar to the main result of [1], which states that x1(n)
does not vanish for n ≥ 4.
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2. Results

Proof of Theorem 1. Throughout the proof, p denotes a prime. If Pm(n) were
square, then p|Pm(n) would imply that p2|Pm(n). If p2|Pm(n), then there are two
possibilities both of which imply p < 2n:

• p2|k2 + m2 for some k ≤ n, which implies that p ≤
√

k2 + m2 < 2n since
n ≥ N ≥ m.

• p|k2 + m2 and p|j2 + m2 for some j < k ≤ n. This implies that p|(k2 − j2) =
(k − j)(k + j), which infers that p|k − j or p|k + j. This also gives p < 2n.

In either case, we have p < 2n. Therefore we can write

Pm(n) =
∏

p<2n

pαp .

Writing

n! =
∏

p≤n

pβp ,

the inequality Pm(n) > (n!)2 yields
∑

p≤n

βp log p <
∑

p<2n

αp

2
log p. (2)

Now we estimate αp and βp. Since all divisors of m are of the form of 4q + 1, m
is odd. This implies that

k2 + m2 ≡
{

0 (mod 2), if k ≡ 1 (mod 2);
1 (mod 2), if k ≡ 0 (mod 2).

Hence,

α2 ≤ &n
2
',

It is well known that if an odd prime p divides k2 + m2, then p ≡ 1 (mod 4) when
(k,m) = 1. Also, if (k,m) (= 1, by our assumption that all divisors of m are of the
form of 4q+1, we also have p ≡ 1 (mod 4). In this case, if p ! m2, then each interval
of length pj contains two solutions of x2 + m2 ≡ 0 (mod pj); and if pj |m2, then
each interval of length pj contains at most one solution of x2 + m2 ≡ 0 (mod pj).
It follows that

αp =
∑

j≤ log(n2+m2)
log p

#{k ≤ n : pj |k2 + m2} ≤
∑

j≤ log(n2+m2)
log p

2& n

pj
'. (3)
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On the other hand,

βp =
∑

j≤ log n
log p

#{k ≤ n : pj |k} =
∑

j≤ log n
log p

) n

pj
*. (4)

Combining (3) and (4), we conclude that if p ≡ 1 (mod 4), then

αp

2
− βp ≤

∑

j≤ log(n2+m2)
log p

& n

pj
' −

∑

j≤ log n
log p

) n

pj
*

=
∑

j≤ log n
log p

(
& n

pj
' − ) n

pj
*
)

+
∑

log n
log p <j≤ log(n2+m2)

log p

& n

pj
'

≤
∑

j≤ log n
log p

1 +
∑

log n
log p <j≤ log(n2+m2)

log p

1

=
log(n2 + m2)

log p
.

Substituting these into (2), we get

∑

p≤n

βp log p <
∑

p<2n

αp

2
log p

=
α2

2
log 2 +

∑

p≤n,p≡1(4)

αp

2
log p +

∑

n<p<2n

αp

2
log p

≤ 1
2
&n
2
' log 2 +

∑

p≤n,p≡1(4)

(
βp +

log(n2 + m2)
log p

)
log p

+
∑

n<p<2n

αp

2
log p,

which implies that

∑

p≤n,p≡3(4)

βp log p <
n + 1

4
log 2 + log(n2 + m2)π(n; 1, 4) +

∑

n<p<2n

αp

2
log p. (5)

If p > n, then n
pj < 1 for j ≥ 1 and log(n2+m2)

log p ≤ log(2(p−1)2)
log p < 3 since m ≤ n.

Hence, from (3), αp ≤ 4. Moreover, if p ≤ n, by (4),

βp ≥
n

p− 1
− p

p− 1
− log n

log p
≥ n− 1

p− 1
− log(n2 + m2)

log p
.

We substitute it into (5) to get
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∑

p≤n,p≡3(4)

log p

p− 1
<

(n + 1) log 2
4(n− 1)

+
log(n2 + m2)

n− 1
π(n) +

2
n− 1

∑

n<p<2n

log p

≤ (n + 1) log 2
4(n− 1)

+
log(2n2)
n− 1

π(n) +
2

n− 1

∑

n<p<2n

log p

since m ≤ N ≤ n. Now we apply the Chebyshev inequalities
∑

n<p<2n log p ≤
n log 4 and π(n) ≤ 2 log 4 n

log n +
√

n (see [3] for example) to obtain

∑

p≤n,p≡3(4)

log p

p− 1
<

(n + 1) log 2
4(n− 1)

+
log(2n2)
n− 1

(
2 log 4

n

log n
+
√

n

)
+

2n log 4
n− 1

.

This is a contradiction: The right hand side is less than 8.92 for n ≥ 108. On the
other hand, it can be checked that

∑

p≤n,p≡3(4)

log p

p− 1
> 8.92. (6)

for n ≥ 108. !

From the proof of Theorem 1, we can prove Corollaries 2, 3 and 4.

Proof of Corollary 2. It suffices to prove Corollary 2 for 1 ≤ n < 108. It is clear
that P5(1) = 26 is not a square. For n ≥ 2, since 52 + 22 = 29, the next time that
the prime 29 divides k2 + 52 is for 29 − 2 = 27. Hence P5(n) is not a square for
2 ≤ n ≤ 26.

Since 262 + 52 = 701, the next time that the prime 701 divides k2 + 52 is for
701− 26 = 675. Hence P5(n) is not a square for 26 ≤ n ≤ 674.

Since 6722 + 52 = 451609, the next time that the prime 451609 divides k2 + 52

is for 451609− 672 = 450937. Hence P5(n) is not a square for 672 ≤ n ≤ 450936.
Since 200162 + 52 = 400640281, the next time that the prime 400640281 divides

k2 + 52 is for 400640281 − 20016 = 400620265. Hence, P5(n) is not a square for
20016 ≤ n ≤ 400620264. !

Proof of Corollary 3. It suffices to prove Corollary 3 for 1 ≤ n < 108. It is clear
that P13(1) = 170 is not a square. For n ≥ 2, since 132 + 22 = 173, the next time
that the prime 173 divides k2 + 132 is for 173 − 2 = 171. Hence P13(n) is not a
square for 2 ≤ n ≤ 170.

Since 1682 + 132 = 28393, the next time that the prime 28393 divides k2 + 132

is for 28393− 168 = 28225. Hence P13(n) is not a square for 168 ≤ n ≤ 28224.
Since 282182 +132 = 796255693, the next time that the prime 796255693 divides

k2 + 132 is for 796255693− 28218 = 796227475. Hence, P13(n) is not a square for
28218 ≤ n ≤ 796227474. !
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Proof of Corollary 4. It suffices to prove Corollary 4 for 1 ≤ n < 108. It is clear
that P17(1) = 290 is not a square. For n ≥ 2, since 172 + 22 = 293, the next time
that the prime 293 divides k2 + 132 is for 293 − 2 = 291. Hence P17(n) is not a
square for 2 ≤ n ≤ 290.

Since 2902 + 172 = 84389, the next time that the prime 84389 divides k2 + 172

is for 84389− 290 = 84099. Hence P17(n) is not a square for 290 ≤ n ≤ 84098.

Since 200022 +172 = 400080293, the next time that the prime 400080293 divides
k2 + 172 is for 400080293− 20002 = 400060291. Hence, P17(n) is not a square for
20002 ≤ n ≤ 400060290. !

We remark that by the same proof, one can check that Pm(n) is not a square for
all n for some small m. More generally, it would be interesting to find all the pairs
(n,m), n ≥ 2, m ≥ 1 such that

∏n
k=1(k

2 + m) is a square. In view of Theorem
1, it seems that there are only finite number of such pairs. Based on extensive
numerical evidence, we conjecture that the only ones are the pairs (3, 1), (3, 11),
(4, 5). However, proving it seems to be a difficult problem. On the other hand, the
sequence xm(n) defined in (1) satisfies the recurrence

xm(n) =
n + mxm(n− 1)
m− nxm(n− 1)

,

with the initial condition xm(0) = 0. This sequence seems to have similar properties
as x1(n). In particular it is an open question whether x1(n) is an integer for n ≥ 5
(see Conjecture 1.2 in [1]). It is an interesting problem to decide whether xm(n) is
an integer for m > 1.
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