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Abstract
We give explicit formulae for obtaining the binary sequences which produce Stein-
haus triangles and generalized Pascal triangles with rotational and dihedral sym-
metries.

1. Introduction

Let F2 be the field of order 2 and x = (x0, . . . , xn−1) ∈ Fn
2 a binary sequence of

length n. The derivate of x is the sequence ∂x = (x0+x1, x1+x2, . . . , xn−2+xn−1).
We define ∂0x = x, ∂1x = ∂x and, for 2 ≤ i ≤ n− 1, ∂ix = ∂∂i−1x. The Steinhaus
triangle of the sequence x is the sequence S(x) formed by x and its derivatives:
S(x) = (x, ∂x, . . . , ∂n−1x). Figure 1 shows a graphical representation of S(x) for
the sequence x = (0, 0, 1, 0, 1, 0, 0). The black and white circles represent ones
and zeroes respectively; the first row corresponds to x and the following rows to the
iterated derivatives. Each entry of the triangle is the binary sum of the two values
immediately above it.

In 1958, H. Steinhaus [13] asked for which sequences x = (x0, . . . , xn−1) the
triangle S(x) is balanced, that is, S(x) has as many zeroes as ones. He observed that
no sequence of length n ≡ 1, 2 (mod 4) produces a balanced triangle, so the problem
was to decide if they exist for lengths n ≡ 0, 3 (mod 4). H. Harborth [9] answered the
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Figure 1: Steinhaus triangle S(x) for the sequence x = (0, 0, 1, 0, 1, 0, 0)

question in the affirmative by constructing examples of such sequences. S. Eliahou
et al. studied binary sequences generating balanced triangles with some additional
condition: sequences of length n, all of whose initial segments of length n−4t for 0 ≤
t ≤ n/4 generate balanced triangles [5], symmetric and antisymmetric sequences [6],
and sequences with zero sum [7]. F.M. Malyshev and E.V. Kutyreva [11] estimated
the number of Steinhaus triangles (which they call Boolean Pascal triangles) of
sufficiently large size n containing a given number ω ≤ kn (k > 0) of ones. More
recently, J. Chappelon [4] considered a generalization by J. C. Molluzzo [12] to
sequences with entries in Zm, with the condition that every element in Zm has the
same multiplicity in the triangle. Here, we focus on the symmetry of the graphical
representation of Steinhaus triangles.

Let u = (u0, . . . , u!) and v = (v0, . . . , v!) be two binary sequences in F!+1
2 with

u0 = v0. The general binary Pascal triangle, or Pascal triangle for short, P (u,v),
is the double indexed sequence z(r, c) defined by the initial conditions

z(r, 0) = ur, z(r, r) = vr, (0 ≤ r ≤ #), (1)

and the recurrence

z(r, c) = z(r − 1, c− 1) + z(r − 1, c), (2 ≤ r ≤ #, 1 ≤ c ≤ r − 1). (2)

The Pascal triangle P (u,v) is similar to the ordinary Pascal triangle, but the left
and right sides are not filled with ones, but with the given values u0, . . . , u! on the
left side and v0, . . . , v! on the right side. Recurrence (2) is the usual recurrence of
binomial numbers, but here the initial conditions are those in (1) and the sum is
done in F2. Figure 2 shows a graphic representation of a Pascal triangle.

Figure 2: The Pascal triangle P (u,v) for the sequences u = (0, 1, 0, 1, 1, 0, 0) and
v = (0, 0, 0, 0, 1, 1, 0)
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The particular case u0 = · · · = u! = v0 = · · · = v! = 1 is the ordinary Pascal
triangle modulo 2, which is known to be related to the Sierpiński sieve [8, 14].
H. Harborth and G. Hurlbert [10] showed that for every natural number n there
exists a natural number # and binary sequences of u and v of length # + 1 such
that the Pascal triangle P (u,v) has exactly n ones. Moreover, they determine the
minimum possible value of #. As for Steinhaus triangles, here we are interested in
the symmetry of Pascal triangles.

Both Steinhaus and Pascal triangles appear in the context of cellular automata,
particularly in a bi-dimensional cellular automaton following the local rule repre-
sented in Figure 3, see [1, 2, 3].

Figure 3: Local rule of a cellular automaton that generates Steinhaus and Pascal
triangles

In this context, A. Barbé [3] has studied symmetries in Steinhaus and Pascal tri-
angles (which he called binary difference pattern and ∆-binary difference pattern,
respectively) as patterns in such a bi-dimensional cellular automaton. A Steinhaus
or Pascal triangle is said to have rotational symmetry if its graphical representa-
tion is invariant under rotations of 120 and 240 degrees, and it is said to have
dihedral symmetry if it has rotational symmetry and the graphical representation
is invariant by axial symmetry with respect to the height of the triangle. Besides
enumeration results counting the number of Steinhaus and Pascal triangles with
rotational and dihedral symmetries, for example, he characterizes by matrix prop-
erties the sequences which produce Steinhaus and Pascal triangles with rotational
and dihedral symmetry. Our goal here is to give formulae for explicitly obtaining
such sequences.

In Sections 2 and 3, we give formulae for obtaining the sequences x ∈ Fn
2 such

that S(x) has rotational and dihedral symmetry, respectively.

If u = (u0, . . . , u!) and v = (v0, . . . , v!), and the Pascal triangle P (u,v) has
rotational symmetry, then obviously vi = u!−i for 0 ≤ i ≤ #, so the triangle is
determined by u. In Sections 4 and 5 we give formulae for obtaining the sequences
u such that the corresponding Pascal triangle has rotational and dihedral symmetry,
respectively.

Finally, Section 6 deals with the possibility of changing F2 to an arbitrary abelian
group throughout the discussion.
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2. Rotational Symmetry in Steinhaus Triangles

Consider the Steinhaus triangle S(x) of the sequence x = (x0, . . . , xn−1). The
coordinates of ∂rx will be indexed from 0 to n − 1 − r and denoted by x(r, c),
that is, ∂rx = (x(r, 0), x(r, 1), . . . , x(r, n − 1 − r)). In particular, x(0, i) = xi for
0 ≤ i ≤ n− 1. It is known (and easily proved by induction) that the entry x(r, c)
of the triangle is

x(r, c) =
r∑

i=0

(
r

i

)
xc+i. (3)

The set S(n) = {S(x) : x ∈ Fn
2} is a F2-vector space of dimension n. Let SR(n)

be the set of Steinhaus triangles of size n with rotational symmetry, that is, Stein-
haus triangles whose graphical representations are invariant under rotations of 120
and 240 degrees. In terms of coordinates, a Steinhaus triange S(x) is rotationally
symmetric if

x(r, c) = x(c, n− r − c− 1) or, equivalently, x(r, c) = x(n− r − c− 1, r),

for 0 ≤ r ≤ n− 1, 0 ≤ c ≤ n− r− 1. In a natural way SR(n) is a vector subspace
of S(n). Define ε3(n) = 1 if n ≡ 1 (mod3) and 0 otherwise; A. Barbé ([3], Property
7) shows that the dimension of SR(n) is d(n) = dimSR(n) = %n/3&+ ε3(n). We
shall show that the d(n) central coordinates in x = (x0, . . . , xn−1) can be given
arbitrary values determining a Steinhaus triangle with rotational symmetry. Note
that the d central coordinates are

xq, xq+1, . . . , x2q, if n = 3q + 1;
xq+1, xq+2, . . . , x2q, if n = 3q + 2;
xq, xq+1, . . . , x2q−1, if n = 3q.

(4)

In terms of coding theory, SR(n) is a binary linear code of length n(n + 1)/2 and
dimension d(n), and the d(n) central bits in x can be taken as information bits in
S(x), while the remaining x(r, c) are the redundancy bits.

Consider first the smallest values of n, see Figure 4. For n = 1, there exist two
triangles in SR(1), which are S((0)) and S((1)); both are rotationally symmetric,
and the value of x0 determines the triangle S((x0)). For n = 2, there exists one
rotationally symmetric triangle in SR(2), which is S((0, 0)), and no coordinate can
be chosen. For n ≥ 3, there exist two rotationally symmetric triangles in SR(3),
which are S((0, 0, 0)) and S((0, 1, 0)), and the central coordinate x1 determines the
triangle S(0, x1, 0).

For n ≥ 4, we have the following theorem.

Theorem 1 Let n ≥ 4 be an integer, and d = dimSR(n). For each vector x ∈ Fn
2 ,

let x̂ be the vector formed by the d central coordinates of x. Then, the mapping
f :SR(n) → Fd

2 defined by S(x) )→ x̂ is an isomorphism.
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SR(1) SR(2) SR(3)

Figure 4: Rotationally symmetric Steinhaus triangles of size n ≤ 3

Proof. The mapping f is clearly linear and both vector spaces have the same
dimension. Then, it suffices to prove that f is exhaustive. The proof depends on
the conguence class of n modulo 3.

Case n = 3q + 1. See Figure 5.

x̂

x0 xq−1 xq x2q x2q+1 x3q

x(1, q)

x(q − 1, q)

x(q, q)

x(q + s, q)

x(2q, q)

x(3q, 0)

x(q + s, q)

x(q − s, q + s)

Figure 5: Case n = 3q + 1

Let x = (x0, . . . , xn−1) ∈ Fn
2 be such that S(x) ∈ SR(n). In this case x̂ =

(xq, . . . , x2q). Because of formula (3), in S(x), all the entries in the triangle of
vertices xq = x(0, q), x2q = x(0, 2q) and x(q, q) are linearly determined by x̂ =
(xq, . . . , x2q), and, in particular, those in the lines from xq = x(0, q) to x(q, q) and
from x2q = x(0, 2q) to x(q, q). Because of the rotational symmetry, the values in
the line from x2q = x(0, 2q) to x(q, q) are the same as those in the line from x(2q, q)
to x(q, q), that is,

x(q + s, q) = x(q − s, q + s), (0 ≤ s ≤ q).

Thus, we have all the entries in column q, that is, x(0, q), . . . ,x(2q, q), as a linear
combination of xq, . . . , x2q. Column q determines linearly all the values in the
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triangle of vertices xq = x(0, q), x(2q, q) and x3q = x(0, 3q). In particular, for
x2q+1, . . . , x3q there exist ai,e ∈ F2 such that

x2q+e =
q∑

i=0

ai,exq+i, (1 ≤ e ≤ q). (5)

The values of x3q = x(0, 3q), x(1, 3q− 1), . . . ,x(q− 1, 2q+1) are also determinated
by the values in column q. Because of rotational symmetry, we have x0 = x(0, 0) =
x(0, 3q), . . . , xq−1 = x(0, q − 1) = x(q − 1, 2q + 1). Therefore, for some bi,e ∈ F2,
we have

xe =
q∑

i=0

bi,exq+i, (0 ≤ e ≤ q − 1). (6)

Now, the set of S(x) with x = (x0, . . . , xn−1) satisfying (5) and (6) is a vector
space containing SR(n) and of dimension d = q + 1 = dimSR(n). Hence, it is
SR(n). Therefore, given x̂, formulae (5) and (6) allow us to calculate the vector
x = (x0, . . . , xn−1) such that f(S(x)) = x̂.

x̂

x0 xq xq+1 x2q x2q+1 x3q+1

x(q, q) x(q, q + 1)

x(q + 1, q)

x(3q + 1, 0)

x(2q + 1, q)

Figure 6: Case n = 3q + 2

Case n = 3q + 2. See Figure 6.

Let x = (x0, . . . , xn−1) be such that S(x) ∈ SR(n). The triangle formed by the
three entries x(q, q), x(q, q + 1) and x(q + 1, q) is a triangle of size 2 rotationally
symmetric because it is concentric to the triangle S(x). Then, x(q, q) = x(q, q+1) =
x(q + 1, q) = 0. We have the equalities

0 = x(q, q) =
q∑

i=0

(
q

i

)
xq+i and 0 = x(q, q + 1) =

q∑

i=0

(
q

i

)
xq+1+i,
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which give the expression of xq and x2q+1 as a linear combination of the coordinates
of x̂ = (xq+1, . . . , x2q). As in the previous case, the entries in column q can be
written in terms of xq+1, . . . , x2q , and, by using rotational symmetry, x0, . . . , xq and
x2q+1, . . . , xn−1 are a linear combination of xq+1, . . . , x2q. Therefore, the sequence
x̂ = (xq+1, . . . , x2q) determines the triangle S(x).

Case n = 3q. See Figure 7.

x̂

x0 xq−1 xq x2q−1 x2q x3q−1

x(q − 1, q − 1) x(q − 1, q) x(q − 1, q + 1)

x(q, q − 1) x(q, q)

x(q + 1, q − 1)

x(3q − 1, 0)

x(2q, q − 1)

Figure 7: Case n = 3q

The triangle with vertices x(q − 1, q − 1), x(q − 1, q + 1) and x(q + 1, q − 1) is
a triangle of size 3 rotationally symmetric because it is concentric to the triangle
S(x). Then, we have

0 = x(q − 1, q − 1) =
q−1∑

i=0

(
q − 1

i

)
xq−1+i,

0 = x(q − 1, q + 1) =
q−1∑

i=0

(
q − 1

i

)
xq+1+i.

Thus, xq−1 and x2q are a linear combination of xq, . . . , x2q−1. As before, every entry
can be written in terms of xq−1, . . . , x2q. Hence, x̂ = (xq, . . . , x2q−1) determines
the triangle S(x). !

Following the method of the proof, next we obtain explicit formulae for x in
terms of the central coordinates x̂.

Assume n = 3q + 1. For 0 ≤ r ≤ q, we have

x(r, q) =
r∑

i=0

(
r
i

)
xq+i, (0 ≤ r ≤ q),
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and, for q + 1 ≤ r ≤ 2q, if s = r − q, we have

x(r, q) = x(q + s, q) = x(q − s, q + s) =
q−s∑

j=0

(
q − s
j

)
xq+s+j .

Now, for 0 ≤ e ≤ q − 1, we have

xe = x(e, 3q − e)

=
2q−e∑

j=0

(
2q − e

j

)
x(2q − j, q)

=
2q∑

r=e

(
2q − e
2q − r

)
x(r, q)

=
2q∑

r=e

(
2q − e
r − e

)
x(r, q)

=
q∑

r=e

(
2q − e
r − e

)
x(r, q) +

2q∑

r=q+1

(
2q − e
r − e

)
x(r, q).

The first summand is

q∑

r=e

(
2q − e
r − e

)
x(r, q) =

q∑

r=e

(
2q − e
r − e

)
r∑

i=0

(
r
i

)
xq+i

=
q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r
i

))
xq+i.

The second is, with s = r − q,

2q∑

r=q+1

(
2q − e
r − e

)
x(r, q) =

q∑

s=1

(
2q − e
q − s

)
q−s∑

j=0

(
q − s
j

)
xq+s+j

=
q∑

s=1

(
2q − e
q − s

)
q∑

i=s

(
q − s
i− s

)
xq+i

=
q∑

i=1

(
q∑

s=1

(
2q − e
q − s

)(
q − s
i− s

))
xq+i.

Putting it all together, we have

xe =
q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r
i

)
+

i∑

r=1

(
2q − e
q − r

)(
q − r
i− r

))
xq+i.

The expressions of x2q+e for 1 ≤ e ≤ q are obtained in an analogous way. Simple
but cumbersome calculations lead to the formulae for the cases n = 3q + 2 and
n = 3q. Next we resume such formulae. In each case we give the free coordinates x̂
and the formulae for the remaining coordinates.
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Case n = 3q + 1. x̂ = (xq , . . . , x2q).

(0 ≤ e ≤ q − 1) xe =
q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r
i

)
+

i∑

r=1

(
2q − e
q − r

)(
q − r
i− r

))
xq+i

(1 ≤ e ≤ q) x2q+e =
q∑

i=0

(
q∑

r=0

(
q + e
r

)(
r
i

)
+

e∑

r=1

(
q + e
q + r

)(
q − r
i− r

))
xq+i

Case n = 3q + 2. x̂ = (xq+1, . . . , x2q).

(0 ≤ e ≤ q − 1) xe =
q∑

i=1

(
q−1∑

r=e

(
2q + 1− e

r − e

)((
q
i

)
+

(
r
i

))

+
q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
i− r

)
+

(
q

i− 1

)))
xq+i

xq =
q∑

i=1

(
q
i

)
xq+i

x2q+1 =
q∑

i=1

(
q

i− 1

)
xq+i

(1 ≤ e ≤ q) x2q+1+e =
q∑

i=1

(
q−1∑

r=0

(
q + 1 + e

r

)((
q
i

)
+

(
r
i

))

+
e−1∑

r=0

(
q + 1 + e
q + 2 + r

)((
q − 1− r
i− 2− r

)
+

(
q

i− 1

)))
xq+i

Case n = 3q. x̂ = (xq, . . . , x2q−1).

(0 ≤ e ≤ q − 2) xe =
q∑

i=1

(
q∑

r=e

(
2q − e
r − e

)((
q − 1
i

)
+

(
r
i

))

+
q−2∑

r=0

(
2q − e

q − 2− r

)((
q − 2− r
i− 3− r

)
+

(
q − 1
i− 2

)))
xq−1+i

xq−1 =
q−1∑

i=1

(
q − 1
i

)
xq−1+i

x2q =
q∑

i=2

(
q − 1
i− 2

)
xq−1+i

(1 ≤ e ≤ q − 1) x2q+e =
q∑

i=1

(
q∑

r=0

(
q + 1 + e

r

)((
q − 1
i

)
+

(
r
i

))

+
e−1∑

r=0

(
q + 1 + e
q + 2 + r

)((
q − 2− r
i− 3− r

)
+

(
q − 1
i− 2

)))
xq−1+i
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n d(n) first row
1 1 (x0)
2 0 (0, 0)
3 1 (0, x1, 0)
4 2 (x1 + x2, x1, x2, x1 + x2)
5 1 (0, x2, x2, x2, 0)
6 2 (x2 + x3, x2, x2, x3, x3, x2 + x3)
7 3 (x2 + x4, x4, x2, x3, x4, x2, x2 + x4)
8 2 (x3 + x4, x4, x4, x3, x4, x3, x3, x3 + x4)
9 3 (0, x3 + x4 + x5, x4, x3, x4, x5, x4, x3 + x4 + x5, 0)

10 4 (x4 + x5, x4, x3 + x5 + x6, x3, x4, x5, x6, x3 + x4 + x6, x5, x4 + x5)
11 3 (x4 + x6, x6, x4, x4 + x5 + x6, x4, x5, x6, x4 + x5 + x6, x6, x4,

x4 + x6)
12 4 (x4 + x7, x5 + x6 + x7, x5 + x6 + x7, x4 + x5 + x6, x4, x5, x6, x7,

x5 + x6 + x7, x4 + x5 + x6, x4 + x5 + x6, x4 + x7)
13 5 (x4 + x8, x5 + x7 + x8, x8, x5 + x6 + x8, x4, x5, x6, x7, x8,

x4 + x6 + x7, x4, x4 + x5 + x7, x4 + x8)
14 4 (x5 + x8, x8, x5 + x6 + x7, x5 + x6 + x8, x8, x5, x6, x7, x8, x5,

x5 + x7 + x8, x6 + x7 + x8, x5, x5 + x8)

Table 1: First rows of Steinhaus triangles of size n with rotational symmetry

Table 1 shows the application of these formulae for 1 ≤ n ≤ 14. Figure 8 shows
all triangles in SR(7); they are formed by giving values to (x2, x3, x4) in the 7th
row of Table 1, to obtain the first rows of the triangles in SR(7). Each triangle is
labeled by (x2, x3, x4). The first three triangles form a basis of SR(7).

3. Dihedral Symmetry in Steinhaus Triangles

Let SD(n) be the vector space of the dihedrally symmetric Steinhaus triangles
of size n. All rotationally symmetric Steinhaus triangles of size n ≤ 3 are also
dihedrally symmetric; see Figure 4. Thus, we have SD(n) = SR(n) for 1 ≤ n ≤ 3.
Let ε6(n) = 1 if n ≡ 1 (mod 6) and ε6(n) = 0 otherwise. It is known ([3], Corollary
2) that the dimension of SD(n) is

d̃(n) = dimSD(n) =

⌊
n+ 3

6

⌋
+ ε6(n) =

⌈
d(n)

2

⌉
,

where d(n) = dimSR(n). Also, if x = (x0, . . . , xn−1) and S(x) is rotationally
symmetric, then S(x) is dihedrally symmetric if, and only if, xi = xn−1−i for all
i ∈ {0, . . . , n− 1}.
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(1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

Figure 8: The eight Steinhaus triangles of size 7 with rotational symmetry

Theorem 2 Let n ≥ 4 be an integer, d = dimSR(n) and d̃ = dimSD(n). For
x ∈ Fn

2 , let x̂ be the vector formed by the d central coordinates of x and x̃ the vector
formed by the first d̃ coordinates of x̂. Then, the mapping f :SD(n) → Fd̃

2 defined
by S(x) )→ x̃ is an isomorphism.

Proof. The mapping f is clearly linear, and both vector spaces have the same
dimension. Then, it suffices to prove that f is exhaustive.

Let x = (x0, . . . , xn−1) be such that S(x) is dihedrally symmetric. Since S(x)
is rotationally symmetric, the vector x̂ determines x. Since S(x) is dihedrally
symmetric, the first d̃ coordinates in x̂ determine the remaining coordinates. Thus,
every coordinate in x depends linearly on the coordinates in x̃ = (xq1 , . . . , xq1+d̃−1).
For some ci,j ∈ F2, we have

xi =
d̃−1∑

j=0

ci,jxq1+j , i ∈ {0, . . . , n− 1} \ {q1, . . . , q1 + d̃− 1}. (7)

The set of S(x) with x satisfying (7) is a vector space containing SD(n) and of
dimension d̃ = dimSD(n). Therefore, both vector spaces coincide. Thus, given x̃,
formulae (7) allows us calculate x such that f(S(x)) = x̃. !

The argument in the proof leads to the following. In each of the three cases
n = 3q+1, n = 3q+2 and n = 3q we must distinguish between the cases q odd and
q even. As before, we give the free coordinates x̃ and the formulae for the remaining
coordinates.

Case n = 3q + 1. Define

A(i, q, e) =
q∑

r=e

(
2q − e
r − e

)((
r
i

)
+

(
r

q − i

))
+

q∑

r=1

(
2q − e
q − r

)((
q − r
q − i

)
+

(
q − r
i

))
.
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• q = 2t+ 1. x̃ = (xq, . . . , xq+t).

(0 ≤ e ≤ q − 1) xe =
t∑

i=0

A(i, q, e)xq+i

(1 ≤ e ≤ q + t+ 1) xq+t+e = xq+t+1−e

• q = 2t. x̃ = (xq, . . . , xq+t).

(0 ≤ e ≤ q − 1) xe =
t−1∑

i=0

A(i, q, e)xq+i

+

(
q∑

r=e

(
2q − e
r − e

)(
r
t

)
+

q∑

r=1

(
2q − e
q − r

)(
q − r
t− r

))
xq+t

(1 ≤ e ≤ q + t) xq+t+e = xq+t−e

Case n = 3q + 2. Define

A(i, q, e) =
q−1∑

r=e

(
2q + 1− e

r − e

)((
q + 1
i

)
+

(
r
i

)
+

(
r

q + 1− i

))

+
q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1
i

)
+

(
q + 1− r
i− r

)
+

(
q + 1− r

i

))
.

• q = 2t+ 1. x̃ = (xq+1, . . . , xq+t+1).

(0 ≤ e ≤ q − 1) xe =
t∑

i=1

A(i, q, e)xq+i

+

(
q−1∑

r=e

(
2q + 1− e

r − e

)((
q

t+ 1

)
+

(
r

t+ 1

))

+
q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
t+ 1− r

)
+

(
q
t

)))
xq+t+1

xq =
t∑

i=1

(
q + 1
i

)
xq+i +

(
q

t+ 1

)
xq+t+1

(0 ≤ e ≤ q + t) x3q+1−e = xe

• q = 2t. x̃ = (xq+1, . . . , xq+t).

(0 ≤ e ≤ q − 1) xe =
t∑

i=1

A(i, q, e)xq+i

xq =
t∑

i=1

(
q + 1
i

)
xq+i

(0 ≤ e ≤ q + t) x3q+1−e = xe
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Case n = 3q. Define

A(i, q, e) =
q∑

r=e

(
2q − e
r − e

)((
q + 1
i+ 1

)
+

(
r

i+ 1

)
+

(
r

q − i

))

+
q−2∑

r=0

(
2q − e

q − 2− r

)((
q − 2− r
i− 2− r

)
+

(
q − 2− r
i+ 1

)
+

(
q − 1
i− 1

)
+

(
q − 1
i+ 1

))
.

• q = 2t+ 1. x̃ = (xq, . . . , xq+t).

(0 ≤ e ≤ q − 2) xe =
t−1∑

i=0

A(i, q, e)xq+i

+

(
q∑

r=e

(
2q − e
r − e

)((
q

t+ 1

)
+

(
r

t+ 1

))

+
q−2∑

r=0

(
2q − e

q − 2− r

)((
q − 2− r
t− 2− r

)
+

(
q − 1
t− 1

)))
xq+t

xq−1 =
t−1∑

i=0

((
q − 1
i+ 1

)
+

(
q − 1
i− 1

))
xq+i +

(
q − 1
t+ 1

)
xq+t

(0 ≤ e ≤ 3t+ 1) xq+t+e = xq+t−e

• q = 2t. x̃ = (xq, . . . , xq+t−1).

(0 ≤ e ≤ q − 2) xe =
t−1∑

i=0

A(i, q, e)xq+i

xq−1 =
t−1∑

i=0

((
q − 1
i+ 1

)
+

(
q − 1
i− 1

))
xq+i

(0 ≤ e ≤ 3t − 1) xq+t+e = xq+t−1−e

Table 2 shows the application of these formulae for 1 ≤ n ≤ 14. For instance, for
n = 7, the sequences x such that S(x) has dihedral symmetry are the sequences of
the form x = (0, x2, x2, x3, x2, x2, 0) with x2, x3 ∈ F2. Here, x̃ = (x2, x3) and x̂ =
(x2, x3, x2). Therefore, in Figure 8, the triangles labeled (0, 0, 0), (0, 1, 0), (1, 0, 1)
and (1, 1, 1) form SD(7).

4. Rotational Symmetry in Pascal Triangles

The results about rotational and dihedral symmetry in Pascal triangles will be de-
duced from the corresponding formulae in Steinhaus triangles following a technique
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n d̃(n) first row
1 1 (x0)
2 0 (0, 0)
3 1 (0, x1, 0)
4 1 (0, x1, x1, 0)
5 1 (0, x2, x2, x2, 0)
6 1 (0, x2, x2, x2, x2, 0)
7 2 (0, x2, x2, x3, x2, x2, 0)
8 1 (0, x3, x3, x3, x3, x3, x3, 0)
9 2 (0, x4, x4, x3, x4, x3, x4, x4, 0)

10 2 (0, x4, x4, x3, x4, x4, x3, x4, x4, 0)
11 2 (0, x4, x4, x5, x4, x5, x4, x5, x4, x4, 0)
12 2 (0, x4, x4, x4, x4, x5, x5, x4, x4, x4, x4, 0)
13 3 (0, x4, x4, x4 + x5 + x6, x4, x5, x6, x5, x4, x4 + x5 + x6, x4, x4, 0)
14 2 (0, x5, x5, x6, x5, x5, x6, x6, x5, x5, x6, x5, x5, 0)

Table 2: First rows of Steinhaus triangles of size n with dihedral symmetry

Figure 9: The rotational symmetry of the illustration on the left is equivalent to
the rotational symmetry of the two Pascal triangles on the right

introduced by A. Barbé [3], consisting of associating to each Pascal triangle of size
k a Steinhaus triangle of size 2k preserving the properties of symmetry.

Let u = (u0, . . . , u!) and v = (v0, . . . , v!) be vectors of F!
2 with u0 = v0, and

consider the Pascal triangle P (u, v). If P (u, v) has rotational symmetry, then
vi = u!−i for 0 ≤ i ≤ #. It follows that: (i) the triangle is determined by u; (ii)
the three vertices of the triangle are equal: u0 = v0 = u! = v!, and (iii) neither the
values of the vertices have influence on the remaining entries of the triangle, nor
are the vertices influenced by them. It follows that we can consider Pascal triangles
with the vertices removed. For instance, the rotational symmetry of the picture on
the left in Figure 9 is equivalent to the rotational symmetry of two of the triangles
obtained by adding to it the three vertices, all of them with the same value, as
shown in the two illustrations on the right. So, in the following, we consider vertex-
less Pascal triangles, though they will be still called Pascal triangles. A rotationally
symmetric (vertex-less) Pascal triangle is determined by the left side, which will be
indexed from bottom to top. Thus, for example, if a = (1, 0, 1, 1, 1), the triangle
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P (a) is that on the left in Figure 9. The length of a is the size of P (a). Our goal is
to determine explicitly which sequences a produce Pascal triangles with rotational
and dihedral symmetry. We denote by PR(k) the vector space of Pascal triangles of
size k with rotational symmetry, and by PD(k) the vector space of Pascal triangles
of size k with dihedral symmetry.

x̂

a

a′ a′′

Figure 10: Left: extension of a rotationally symmetric Pascal triangle of size 5 to a
rotationally Steinhaus triangle of size 10. Right: sketch of the general case

Let P (a) be a Pascal triangle of size k rotationally symmetric. Then, by using
the local rule (Figure 3), P (a) can be extended to a unique Steinhaus triangle S(x)
of size 2k which has P (a) as its inscribed and central triangle of size k; see Figure 10.
The triangle S(x) is the extended Steinhaus triangle of the Pascal triangle P (a).
Explicitly, if a = (a0, . . . , ak−1), then x = (x0, . . . , x2k−1) is given by

xk−i =
i−1∑

j=0

(
i− 1

j

)
ak−1−j , (1 ≤ i ≤ k), (8)

xk+i =
i∑

j=0

(
i

j

)
aj , (0 ≤ i ≤ k − 1). (9)

As P (a) is rotationally symmetric, it follows that S(x) is rotationally symmetric.
Then, we have

Lemma 3 For each integer k ≥ 3, the mapping f which sends each Pascal tri-
angle P (a) ∈ PR(k) to its extended Steinhaus triangle S(x) is an isomorphism
f :PR(k) → SR(2k).

Proof. Clearly, the mapping f is well-defined and linear. If f(P (a)) is filled with
zeroes, then P (a) is also filled with zeroes. Hence the mapping is injective. Finally,
given an Steinhaus triangle S(x) ∈ SR(2k), the extension of its central triangle of
size k is precisely S(x). Hence the mapping is exhaustive. !

As a consequence, the dimension δ(k) of PR(k) is

δ(k) = dimPR(k) = dimSR(2k) =

⌊
2k

3

⌋
+ ε3(2k) = 2

⌈
k − 1

3

⌉
.
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Theorem 4 Let k ≥ 2 be an integer and δ = dimPR(k). For each a ∈ Fk
2, let

a′ be the vector formed by the first δ/2 coordinates of a and a′′ the vector formed
by the last δ/2 coordinates of a. Then, the mapping f :PR(k) → Fδ

2 defined by
P (a) )→ (a′, a′′) is an isomorphism.

Proof. Clearly the mapping f is linear and both spaces have the same dimension δ.
Thus, it suffices to show that f is exhaustive.

Let a ∈ Fk
2 such that P (a) ∈ PR(k). As P (a) is rotationally symmetric, the same

property holds for its extended Steinhaus triangle S(x), which, by Theorem 1, is
completely determined by the vector x̂ formed by the δ central coordinates of x.
By (8), the first half of the coordinates of x̂ depend linearly on a′′, and the second
half on a′. We conclude that x depends linearly on (a′, a′′). As the k − δ central
coordinates of a depend linearly on x, we conclude that, for some ci,j , di,j ∈ F2,

aδ/2+i =

δ/2−1∑

j=0

ci,jaj +

δ/2−1∑

j=0

di,jak−1−j , (0 ≤ i ≤ k − δ − 1). (10)

The set P (a) with a ∈ Fk
2 satisfying (10) is a vector space of dimension δ containing

PR(k). Hence, it is PR(k). Therefore, given (a′, a′′), formulae (10) allows us to
find a such that f(P (a)) = (a′, a′′). !

Next, we give the results obtained by following the method of the previous proof
with explicit calculations. As before, the formulae depend on the remainder of the
division of k by 3. In each case, we give a′ and a′′ and the formula for obtaining
the k − δ central coordinates of a.

Case k = 3s+ 1. a′ = (a0, . . . , as−1), a′′ = (ak−s, . . . , ak−1).
Define

q = 2s

A(i, q, e) =
q−1∑

r=e

(
2q + 1− e

r − e

)((
q
i

)
+

(
r
i

))

+
q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
i− r

)
+

(
q

i− 1

))

B(i, q, e, s) =

(
q − e
s

)(
q
i

)
+

s−1−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t).

Then,

(0 ≤ e ≤ s) as+e =
s−1∑

j=0

(
q∑

i=s+1+j

(
i− 1− s

j

)
B(i, q, e, s)

)
aj

+
s−1∑

j=0

(
s−j∑

i=1

(
s− i
j

)
B(i, q, e, s)
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+
q−e−j∑

t=s−e+1

(
q − e
t

)(
q − e− t

j

))
ak−1−j .

Case k = 3s+ 2. a′ = (a0, . . . , as), a′′ = (ak−s−1, . . . , ak−1).
Define

q = 2s+ 1

A(i, q, e) =
q∑

r=e

(
2q − e
r − e

)(
r
i

)
+

q∑

r=1

(
2q − e
q − r

)(
q − r
i− r

)
.

Then,

(1 ≤ e ≤ s) as+e =
s∑

j=0

(
s−e∑

t=0

(
q − e
t

)
q∑

i=s+1

(
i− s− 1

j

)
A(i, q, s+ e+ t)

)
aj

+
s∑

j=0

(
s∑

i=0

(
s− i
j

)((
q − e
s− i

)
+

s−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t)

))
ak−1−j .

Case k = 3s. a′ = (a0, . . . , as−1), a′′ = (ak−s, . . . , ak−1).
Define

q = 2s

A(i, q, e) =
q∑

r=e

(
2q − e
r − e

)((
q − 1
i

)
+

(
r
i

))

+
q−2∑

r=0

(
2q − e

q − 2− r

)((
q − 2− r
i− 3− r

)
+

(
q − 1
i− 2

))

B(i, q, e, s) =
s−2−e∑

t=0

(
q − e− 1

t

)
A(i, q, s+ e+ t).

Then,

(0 ≤ e ≤ s− 1) as+e =
s−2∑

j=0

(
q∑

i=s+1

(
i− 1− s

j

)
B(i, q, e, s)

+
q−1∑

i=s+1

(
q − e− 1

s

)(
q − 1
i

)(
i− 1− s

j

))
aj

+

(
q∑

i=s+1

(
i− 1− s
s− 1

)
B(i, q, e, s)

)
as−1

+
s−1∑

j=0

(
s∑

i=1

(
s− i
j

)
B(i, q, e, s)

+

(
q − e− 1

s

)
s∑

i=1

(
q − 1
i

)(
s− i
j

)

+
q−e−1∑

t=s−e

(
q − e− 1

t

)(
q − e− t− 1

j

))
ak−1−j .
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Table 3 shows the application of these formulae for sizes k from 3 to 14. Figure 11
shows all rotationally symmetric Pascal triangles of size 5. They are formed by
giving values to (a0, a1, a3, a4) ∈ F4

2 in the 5th row of Table 3 to form the left sides
of the Pascal triangles. The four triangles in the first row form a base of PR(5).

k δ(k) left row
3 2 (a0, 0, a2)
4 2 (a0, a0 + a3, a0 + a3, a3)
5 4 (a0, a1, a1 + a3, a3, a4)
6 4 (a0, a1, a0 + a1 + a5, a0 + a5 + a4, a4, a5)
7 4 (a0, a1, a0 + a6 + a5, 0, a0 + a1 + a6, a5, a6)
8 6 (a0, a1, a2, a0 + a7 + a6 + a5, a0 + a1 + a2 + a7, a5, a6, a7)
9 6 (a0, a1, a2, a1 + a7, a1 + a2 + a7 + a6, a1 + a7, a6, a7, a8)

10 6 (a0, a1, a2, a2 + a7, a0 + a1 + a9 + a7, a0 + a2 + a9 + a8,
a2 + a7, a7, a8, a9)

11 8 (a0, a1, a2, a3, a0 + a2 + a3 + a10 + a9 + a7, a3 + a7,
a0 + a1 + a3 + a10 + a8 + a7, a7, a8, a9, a10)

12 8 (a0, a1, a2, a3, a0 + a3 + a11 + a10 + a9,
a1 + a2 + a3 + a10 + a9 + a8,

a1 + a2 + a3 + a10 + a9 + a8, a0 + a1 + a2 + a11 + a8,
a8, a9, a10, a11)

13 8 (a0, a1, a2, a3, a0 + a12 + a11 + a10 + a9, a1 + a3 + a11, a3 + a9,
a1 + a11 + a9, a0 + a1 + a2 + a3 + a12, a9, a10, a11, a12)

14 10 (a0, a1, a2, a3, a4, a0 + a2 + a3 + a13 + a12 + a10 + a9,
a2 + a3 + a11, a2 + a11 + a10,

a0 + a1 + a3 + a4 + a13 + a11 + a10, a9, a10, a11, a12, a13)

Table 3: Left rows of rotationally symmetric Pascal triangles of size k

5. Dihedral Symmetry in Pascal Triangles

The arguments in the previous section are easily extended to dihedral symmetry. In
fact, it is easy to see that the mapping f sending each Pascal triangle to its extended
Steinhaus triangle, when restricted to dihedrally symmetric Pascal triangles, also
gives an isomorphism:

Lemma 5 For each integer k ≥ 3, the mapping f which sends each Pascal tri-
angle P (a) ∈ PD(k) to its extended Steinhaus triangle S(x) is an isomorphism
f :PD(k) → SD(2k).

As noticed by Barbé ([3], Property 15), if a = (a0, . . . , ak−1), the Pascal triangle
P (a) is symmetric with respect to the height of the triangle if, and only if, ak−1−i =
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Figure 11: Rotationally symmetric Pascal triangles of size 5

ai for 0 ≤ i ≤ k − 1. This property and Theorem 4 imply the following.

Theorem 6 Let k ≥ 2 be an integer and δ = dimPR(k). For each a ∈ Fk
2,

let a′ be the vector formed by the first δ/2 coordinates of a. Then, the mapping

f :PR(k) → Fδ/2
2 defined by P (a) )→ a′ is an isomorphism.

As before, we give the vector a′ of the first δ/2 coordinates and the formulae for
the remaining coordinates. The functions A(i, q, e) and B(i, q, e, s) are defined in
each case as in the rotational symmetry.

Case k = 3s+ 1. a′ = (a0, . . . , as−1), q = 2s.

(0 ≤ e ≤ s) as+e =
s−1∑

j=0

(
q∑

i=s+1+j

(
i− 1− s

j

)
B(i, q, e, s)

+
s−j∑

i=1

(
s− i
j

)
B(i, q, e, s)

+
q−e−j∑

t=s−e+1

(
q − e
t

)(
q − e− t

j

))
aj

(1 ≤ e ≤ s) aq+e = as−e

Case k = 3s+ 2. a′ = (a0, . . . , as), q = 2s+ 1.
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(1 ≤ e ≤ s) as+e =
s∑

j=0

(
s−e∑

t=0

(
q − e
t

)
q∑

i=s+1

(
i− s− 1

j

)
A(i, q, s+ e+ t)

+
s∑

i=0

(
s− i
j

)((
q − e
s− i

)
+

s−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t)

))
aj

(0 ≤ e ≤ s) aq+e = as−e

Case k = 3s. a′ = (a0, . . . , as−1), q = 2s.

(0 ≤ e ≤ s− 1) as+e =
s−1∑

j=0

(
q∑

i=s+1

(
i− 1− s

j

)
B(i, q, e, s)

+

⌊
q − j
s+ 2

⌋(
q − e− 1

s

)
q−1∑

i=s+1

(
q − 1
i

)(
i− 1− s

j

)

+
s∑

i=1

(
s− i
j

)((
q − e− 1

s

)(
q − 1
i

)
+B(i, q, e, s)

)

+
q−e−1∑

t=s−e

(
q − e− 1

t

)(
q − e− t− 1

j

))
aj

(0 ≤ e ≤ s− 1) aq+e = as−1−e

Table 4 shows the left rows of dihedrally symmetric Pascal triangles of sizes k
from 3 to 14. For size k = 5 there exist 4 triangles, which are the triangles in the
last row in Figure 11.

6. Generalization to Arbitrary Abelian Groups

The construction of Steinhaus and Pascal triangles can be generalized by using an
arbitrary abelian group instead of F2.

Let G be an abelian group and x = (x0, . . . , xn−1) ∈ Gn. Define ∂0x = x,
∂1x = ∂x = (x0 + x1, . . . , xn−2 + xn−1), and for 2 ≤ i ≤ n− 1, ∂ix = ∂∂i−1x. The
Steinhaus triangle of x is the sequence S(x) = (x, ∂x, . . . , ∂n−1x). As before, we
can represent S(x) as a triangle, but now each position can take values in G. Next,
we see that rotational symmetry is a strong condition on the orders of the entries
of S(x).

Proposition 7 Let G be an abelian group, n ≥ 2 an integer, and x ∈ Gn such that
S(x) is rotationally symmetric. Then each entry in S(x) has order two.
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k δ′(k) left row
3 1 (a0, 0, a0)
4 1 (a0, 0, 0, a0)
5 2 (a0, a1, 0, a1, a0)
6 2 (a0, a1, a1, a1, a1, a0)
7 3 (a0, a1, a1, 0, a1, a1, a0)
8 3 (a0, a1, a2, a1 + a2, a1 + a2, a2, a1, a0)
9 3 (a0, a1, a2, 0, 0, 0, a2, a1, a0)

10 3 (a0, a1, a2, 0, a1 + a2, a1 + a2, 0, a2, a1, a0)
11 4 (a0, a1, a2, a3, a1 + a2, 0, a1 + a2, a3, a2, a1, a0)
12 4 (a0, a1, a2, a3, a1 + a2 + a3, 0, 0, a1 + a2 + a3, a3,

a2, a1, a0)
13 4 (a0, a1, a2, a3, a1 + a2 + a3, a3, 0, a3, a1 + a2 + a3, a3,

a2, a1, a0)
14 5 (a0, a1, a2, a3, a4, a1 + a2 + a4, a3, a3, a1 + a2 + a4, a4, a3,

a2, a1, a0)

Table 4: Left rows of Pascal triangles of size k with dihedral symmetry

Proof. Consider three entries u = x(r−1, c−1), v = x(r−1, c) and w = x(r, c). We
have w = u+ v. If S(x) has rotational symmetry, then the rotation of 120 degrees
produces the relation v = w+u. Thus, we have w = u+v = u+(w+u) = w+u+u.
Hence u+ u = 0. Analogously, v + v = w+w = 0. We conclude that each entry in
S(x) has order two. !

By Proposition 7, we can assume that G is a group such that each element
has order two. Therefore, G can be given a structure of F2-vector space and, as
an additive group, G is a direct sum of copies of F2. Thus, the condition of a
Steinhaus triangle S(x) with x ∈ Gn being rotationally symmetric is equivalent to
the condition that each component is a rotationally symmetric Steinhaus triangle on
F2. For instance, in order to obtain all rotationally symmetric Steinhaus triangles
of size 6 on F2×F2, we must take row 6 in Table 1. Then, the first rows are obtained
by giving values to (x2, x3, y2, y3) ∈ F4

2 in

((x2 + x3, y2 + y3), (x1, y2), (x2, y2), (x3, y3), (x3, y3), (x2 + x3, y2 + y3)).

Figure 12 shows the 16 Steinhaus triangles rotationally symmetric of size 6 on
F2 × F2. The elements in F2 × F2 are represented as follows

(0, 0) (0, 1) (1, 0) (1, 1)

Note that the four central triangles form a basis of the space of rotationally sym-
metric Steinhaus triangles of size 6 on F2 × F2.

The generalization to Steinhaus triangles to abelian groups can be done by using
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Figure 12: The 16 Steinhaus triangles rotationally symmetric of size 6 on F2 × F2

alternative definitions of ∂x. For instance, we can define

∂x = (x1 − x0, . . . , xn−1 − xn−2) or ∂x = (x0 − x1, . . . , xn−2 − xn−1),

and then define ∂ix, Steinhaus triangles and rotationally symmetric Steinhaus tri-
angles as before. Nevertheless, the above arguments can be applied in a similar way
to obtain that all elements in a rotationally symmetric Steinhaus triangle have order
two, and conclude that a rotationally symmetric Steinhaus triangle on an arbitrary
abelian group consists in a direct sum of rotationally symmetric Steinhaus triangles
on F2. The same is true about Steinhaus triangles with dihedral symmetry.

So far, in this section we have considered only Steinhaus triangles, but it is clear
that the same considerations can be applied to Pascal triangles rotationally and
dihedrally symmetric.
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[1] A. Barbé. Periodic patterns in the binary difference field. Complex Systems, 2:209–233, 1988.
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[8] A. Fraenkel and A. Kontorovich. The Sierpiński sieve of Nim-varieties and binomial coeffi-
cients. Integers, 7(2):A14 19 pp, 2007.

[9] H. Harborth. Solution of Steinhaus’s problem with plus and minus signs. J. Combinatorial
Theory Ser.A, 12:253–259, 1972.

[10] H. Harborth and G. Hurlbert. On the number of ones in general binary Pascal triangles. J.
Combin. Math. Combin. Comput., 54:99–110, 2005.

[11] F. M. Malyshev and E. V. Kutyreva. On the distribution of the number of ones in a Boolean
Pascal’s triangle. Discrete Math. Appl., 16(3):271–279, 2006.

[12] J. C. Molluzzo. Steinhaus graphs. In Theory ans Applications of Graphs (Proc. Internat.
Conf. Western Mich. Univ. Kalamazoo, Mich, 1976), number 642 in Lecture Notes in Math.,
pages 394–402. Springer, 1978.

[13] H. Steinhaus. One Hundred Problems in Elementary Mathematics. Pergamon, Elinsford,
1963. (Original in Polish, STO ZADAN, Warshau, 1958).

[14] S. Wolfram. Geometry of Binomial Coefficients. Amer. Math. Monthly, 91(9):566–571,
November 1984.


