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benjamin.dupuy@math.u-bordeaux1.fr

Received: 3/8/10, Accepted: 12/29/10, Published: 2/4/11

Abstract
In this paper, we consider the diophantine equation Xt + Y t = BZt where X, Y ,
Z are nonzero coprime integers. We prove that this equation has no non-trivial
solution with the exponent t dividing Z under certain conditions on t and B.

1. Introduction

Let t > 3 be a prime number, B be a nonzero rational integer. Consider the equation

Xt + Y t = BZt (1)

where X, Y, Z are coprime nonzero rational integers.

Definition 1 Let t > 3 be a prime number. We say that t is a good prime number
if and only if

• its index irregularity ι(t) is equal to zero, or

• t � h+
t and none of the Bernoulli numbers B2nt, n = 1, . . . , t−3

2 , is divisible by
t3.

For a prime number t with t < 12.106, it has been recently proved that none of
the Bernoulli numbers B2nt, n = 1, . . . , t−3

2 , is divisible by t3 (see [2]). Furthermore,
h+

t is prime to t for t < 7.106. In particular, every prime number t < 7.106 is a
good prime number.

Recently the diophantine Equation (1) has been studied by Preda Mihăilescu in
[3]. In his paper, he requires that B is such that B > 1, (t,φ(Rad(B))) = 1, and
the pairwise relatively prime nonzero integers X, Y , Z satisfy the condition t3|BZ
where t is a prime number such that t � h+

t and none of the Bernoulli numbers B2nt,



INTEGERS: 11 (2011) 2

n = 1, . . . , t−3
2 , is divisible by t3. Particularly, if B is prime to t, he requires that

t3|Z. Unfortunately, the proof of a very fundamental fact in his proof is wrong (see
Section 4 of this paper), so that Theorem 1 of [3] has not been yet proved.

As usual, we denote by φ the Euler function. For the following, we fix t > 3 a
good prime number, and a rational integer B prime to t, such that for every prime
number l dividing B, we have −1 mod t is a member of < l mod t >, the subgroup
of F×t generated by l mod t. For example, it is the case if for every prime number l
dividing B, l mod t is not a square.

In this paper, using very similar methods to those used in [3], we prove the
following theorem (with a stronger condition on B, but a much weaker condition
on Z than that used by Mihăilescu).

Theorem 2 Equation (1) has no solution in pairwise relatively prime non zero
integers X, Y, Z with t|Z.

In particular, using a recent result of Bennett et al., we deduce the following
corollary.

Corollary 3 Suppose that Bt−1 �= 2t−1 mod t2 and B has a divisor r such that
rt−1 �= 1 mod t2. Then Equation (1) has no solution in pairwise relatively prime
nonzero integers X, Y, Z.

2. Proof of the Theorem

First, we suppose that ι(t) = 0. Let us prove the following lemma.

Lemma 4 Let ζ be a primitive t-th root of unity and λ = (1− ζ)(1− ζ). Suppose
there exist algebraic integers x, y, z in the ring Z[ζ + ζ], an integer m ≥ t, and a
unit η in Z[ζ + ζ] such that x, y, z and λ are pairwise coprime and satisfy

xt + yt = ηλmBzt. (2)

Then z is not a unit of Z[ζ + ζ]. Moreover, there exist algebraic integers x�, y�, z� in
Z[ζ + ζ], an integer m� ≥ t, and a unit η� in Z[ζ + ζ] such that x�, y�, z�, λ and η�

satisfy the same properties. The algebraic number z� divides z in Z[ζ]. The number
of prime ideals of Z[ζ] counted with multiplicity and dividing z� is strictly less than
that dividing z.

Proof. Equation (2) becomes

(x + y)
t−1�

a=1

(x + ζay) = ηλmBzt.



INTEGERS: 11 (2011) 3

By hypothesis, for every prime number l dividing B, we have−1 mod t ∈ < l mod t >.
In particular B is prime to xt+yt

x+y . In fact, suppose there exists γ a prime factor of B

in Z[ζ] such that γ|x
t+yt

x+y . Then there exist a ∈ {1, . . . , t− 1} such that γ | (x+ζay).
Let l be the rational prime number under γ. Since −1 mod t is an element of the
subgroup of F×t generated by l mod t, we deduce that the decomposition group of
γ contains the complex conjugation j ∈ Gal(Q(ζ)/Q) that is γj = γ. In particular,
γ | (x+ζay) implies that γ | (x+ζ−ay) since x, y are real. So γ | (ζa−ζ−a)y. Since
γ is a prime ideal, we deduce that γ | y or γ | (ζa − ζ−a). But x and y are coprime
so y is prime to γ. Since (B, p) = 1 and ζa − ζ−a is a generator of the only prime
ideal of Z[ζ] above p, we cannot have γ | (ζa − ζ−a): we get a contradiction. So B

and xt+yt

x+y are coprime as claimed. In fact, we have proved the following result: B

is prime to every factor of the form at+bt

a+b where a and b are coprime elements of
Z[ζ + ζ].

Then B | (x + y) in Z[ζ]. Therefore we get

x + y

B

t−1�

a=1

(x + ζay) = ηλmzt.

Following the same method1 as in Section 9.1 of [4], one can show that there
exist real units η0, η1, . . . , ηt−1 ∈ Z[ζ + ζ]× and algebraic integers ρ0 ∈ Z[ζ + ζ],
ρ1, . . . , ρt−1 ∈ Z[ζ] such that

x + y = η0Bλm− t−1
2 ρt

0,
x + ζay

1− ζa
= ηaρt

a, a = 1, . . . , t− 1. (3)

Let us show that z is not a unit. As ρ1 divides z in Z[ζ], it is thus enough to show
that ρ1 is not one. Put α = x+ζy

1−ζ . One has

α = −y +
x + y

1− ζ
≡ −y mod (1− ζ)2.

So α
α ≡ 1 mod (1− ζ)2. Suppose that ρ1 is a unit. Then, the quotient ρ1

t

ρt
1

is a unit
of modulus 1 of the ring Z[ζ], thus a root of the unity of this ring by the Kronecker
theorem. However, the only roots of the unity of Z[ζ] are the 2t-th roots of the
unity (see [4]). As the unit η1 is real, thus there exists an integer l and � = ±1 such
as η1·ρ1

t

η1·ρt
1

= ρ1
t

ρt
1

= �ζl. Therefore, we have

α

α
= �ζl.

As α
α ≡ 1 mod (1− ζ)2, we get �ζl ≡ 1 mod (1− ζ)2, so �ζl = 1, i.e., α

α = 1. So

x + ζy

1− ζ
=

x + ζy

1− ζ
,

1Recall that t � h+
t since ι(t) = 0
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because x and y are real numbers. From this equation, we deduce that

x + ζy

1− ζ
=

ζx + y

ζ − 1
, i.e., (x + y)(ζ + 1) = 0.

We get a contradiction. So the algebraic integer ρ1 (and then z) is not a unit. This
completes the proof of the first part of the lemma.

Let us prove the existence of x�, y�, z�, η�, and m�. It is just an adaptation of the
computations done in Paragraph 9.1 of Chapter 9 of [4] for the second case of the
Fermat equation. Here we give the main ideas. Let a ∈ {1, . . . , p− 1} be a fixed
integer. We take λa = (1 − ζa)(1 − ζ−a). By (3), there exist a real unit ηa and
ρa ∈ Z[ζ] such that

x + ζay

1− ζa
= ηaρt

a,

and taking the conjugates (we know that x, y ∈ R), we have

x + ζ−ay

1− ζ−a
= ηaρa

t.

Thus
x + ζay = (1− ζa)ηaρt

a, x + ζ−ay = (1− ζ−a)ηaρa
t.

Multiplying the previous equalities, we obtain

x2 + y2 +
�
ζa + ζ−a

�
xy = λaη2

a (ρaρa)t . (4)

Taking the square of x + y = η0Bλm− t−1
2 ρt

0 gives

x2 + y2 + 2xy = η2
0B

2λ2m−t+1ρ2t
0 . (5)

The difference between equations (5), (4) and then division by λa gives

−xy = η2
a (ρaρa)t − η2

0B
2λ2m−t+1ρ2t

0 λ−1
a . (6)

As t > 3, there exists an integer b ∈ {1, . . . , t− 1} such that b �= ±a mod t. For this
integer b, we get

−xy = η2
b (ρbρb)

t − η2
0B

2λ2m−t+1ρ2t
0 λ−1

b . (7)

The difference between equations (6) and (7) gives, after simplifying,

η2
a (ρaρa)t − η2

b (ρbρb)
t = η2

0B
2λ2m−t+1ρ2t

0

�
λ−1

a − λ−1
b

�
.

But as b �= ±a mod t, we have λ−1
a − λ−1

b = (ζ−b−ζ−a)(ζa+b−1)
λaλb

= δ�

λ , where δ� is a
unit. We know that λa, λb and λ are real numbers and so the unit δ� is a real unit.
So there exists a real unit η� = δ�·η2

0
η2

b
such that

�
ηa

ηb

�2

(ρaρa)t + (−ρbρb)
t = η�B2λ2m−t

�
ρ2
0

�t
. (8)
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The condition ι(t) = 0 implies that ηa

ηb
is a t-th power in Z[ζ + ζ]. Thus there exists

ξ ∈ Z[ζ + ζ] such that ηa

ηb
= ξt. In fact, we know that

ηaρt
a =

x + ζay

1− ζa
, x + y = η0Bλm− t−1

2 ρt
0 ≡ 0 mod (1− ζ)2m−t+1.

Then

ηaρt
a = −y +

x + y

1− ζa
≡ −y mod (1− ζ)2m−t ≡ −y mod t.

Also ηbρt
b ≡ −y mod t and ηa

ηb
≡

�
ρb

ρa

�t
mod t. But Lemma 1.8 in [4] shows that

there exists an integer l such that
ηa

ηb
≡ l mod t,

with
�

ρb

ρa

�t
congruent to l modulo t.

By Theorem 5.36 of [4], the unit ηa

ηb
is a t-th power in Z[ζ] so we have the existence

of ξ1 ∈ Z[ζ] such that ηa

ηb
= ξt

1. As the unit ηa

ηb
is real, one has ξt

1 = ξ1
t
. Therefore,

there exists an integer g such that ξ1 = ζgξ1. Taking ξ = ζghξ1 where h is the
inverse of 2 mod t, we have

ξ = ξ, ξt = ξt
1 =

ηa

ηb
,

i.e., ηa

ηb
= ξt, where ξ ∈ Z[ζ + ζ]. We put

x� = ξ2ρaρa, y� = −ρbρb, z� = ρ2
0, m� = 2m− t.

One can verify that x�t + y�t = η�B2λm�
z�t. Obviously, B2 is prime to t and for

all prime l dividing B2, we have −1 mod t ∈ < l mod t >, the subgroup of F×t
generated by l mod t. Moreover, we have already seen that the algebraic integer ρ1

is not a unit in Z[ζ]. As ρ0ρ1 divides z in Z[ζ], the number of prime ideals counted
with multiplicity and dividing z� in Z[ζ] is then strictly less than that dividing z
and m� = 2m− t ≥ 2t− t = t. This completes the proof of the lemma. ✷

Now let (X,Y,Z) be a solution of (1) in pairwise relatively prime non zero integers
with t|Z. Let Z = tvZ1 with t � Z1. Equation (1) becomes

Xt + Y t = BttvZt
1.

Let ζ be a primitive t-th root of unity and λ = (1−ζ)(1−ζ). The previous equation
becomes

Xt + Y t = B
ttv

λtv t−1
2

λtv t−1
2 Zt

1.
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The quotient η = ttv

λtv t−1
2

is a real unit in the ring Z[ζ + ζ]. Take m = tv t−1
2 ≥ t.

We have just proved that there exist η ∈ Z[ζ + ζ]× and an integer m ≥ t such that

Xt + Y t = ηBλmZt
1, (9)

where X, Y , λ and Z1 are pairwise coprime.
We can apply Lemma 4 to Equation (9). By induction, one can prove the ex-

istence of the sequence of algebraic Zi such that Zi+1|Zi in Z[ζ] and the number
of prime factors in Z[ζ] is strictly decreasing. So there exists an n such that Zn is
a unit. But Lemma 4 indicates that each of the Zi is not a unit, a contradiction
which proves the theorem in the case ι(t) = 0.

In the other case, (t, h+
t ) = 1 and none of the Bernoulli numbers B2nt, n =

1, . . . , t−3
2 is divisible by t3. In particular, with the notation of the proof of the

lemma, there exists ξ ∈ Z[ζ + ζ] such that ηa

ηb
= ξt (see [4], pp. 174-176). So the

results of the previous lemma are valid in the second case. We conclude as before.
The theorem is proved.

3. Proof of the Corollary

Let X, Y, Z be a solution in pairwise relatively prime nonzero integers of Equation
(1). By the theorem, the integer Z is prime to t. Furthermore, Bφ(B) is coprime
to t, Bt−1 �= 2t−1 mod t2 and B has a divisor r such that rt−1 �= 1 mod t2. So by
the theorem 4.1 of [1], Equation (1) has no solution for such t and B.

4. Some Remarks on Mihăilescu’s Paper

For the reader’s convenience, recall “Fact 3:”

Fact 3 of [3] Let ρ, � ∈ Q[ζ]+; set

µa =
ρ− ζa�

1− ζa
, C =

ρt −�t

t(ρ−�)
,

and suppose (µa, µb) = 1 for a �= b. If ρt − �t = β · γt and none of the prime
ideals τ |β are totally split, then (β, µa) = 1 for all a ∈ {1, . . . , t− 1}. In particular,
β|(ρ−�).

His method to prove this fact is the following: he supposes that we can find a
prime ideal τ of β such that τ |µa for some a ∈ {1, . . . , t− 1}. By hypothesis, none
of the prime ideals of β are totally split in the extension Q(ζ)/Q. So there exist
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σ ∈ Gal(Q(ζ)/Q) such that σ(τ) = τ . In particular σ(τ) = τ |σ(µa). So we have
τ |µa and τ |σ(µa).

Then Mihăilescu claims we have a contradiction since (µa, µb) for all a �= b. But
this last argument does not follow. Indeed,

σ(µa) =
σ(ρ)− σ(ζa)σ(�)

1− σ(ζa)

and this last number is not of the form µb for some b ∈ {1, . . . , t− 1}. Indeed, ρ
and � are just elements of Q[ζ]+.

Acknowledgments I thank Professor Yuri Bilu, Florian Luca and the referee for
very helpful suggestions.

References

[1] M.A. Bennett, K. Gyory, M. Mignotte, A Pintèr, Binomial Thue equations and polynomial
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