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Abstract
In this paper, we consider the diophantine equation X! 4+ Y? = BZ* where X, Y,
Z are nonzero coprime integers. We prove that this equation has no non-trivial
solution with the exponent ¢ dividing Z under certain conditions on ¢ and B.

1. Introduction

Let t > 3 be a prime number, B be a nonzero rational integer. Consider the equation
X' +Y'=BZ! (1)

where X, Y, Z are coprime nonzero rational integers.

Definition 1 Let ¢ > 3 be a prime number. We say that ¢ is a good prime number
if and only if

e its index irregularity ¢(t) is equal to zero, or

e t{hf and none of the Bernoulli numbers Bo,;, n = 1,..., %, is divisible by
t3.

For a prime number ¢ with ¢ < 12.10%, it has been recently proved that none of
the Bernoulli numbers Bon, n = 1,..., 152, is divisible by ¢* (see [2]). Furthermore,
h is prime to ¢ for ¢ < 7.10%. In particular, every prime number ¢ < 7.10° is a

good prime number.

Recently the diophantine Equation (1) has been studied by Preda Mih&ilescu in
[3]. In his paper, he requires that B is such that B > 1, (¢,¢(Rad(B))) = 1, and
the pairwise relatively prime nonzero integers X, Y, Z satisfy the condition t3|BZ
where ¢ is a prime number such that ¢ 4 h;“ and none of the Bernoulli numbers Bs,,,
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n=1,..., %, is divisible by 3. Particularly, if B is prime to ¢, he requires that
t3| Z. Unfortunately, the proof of a very fundamental fact in his proof is wrong (see
Section 4 of this paper), so that Theorem 1 of [3] has not been yet proved.

As usual, we denote by ¢ the Euler function. For the following, we fitt > 3 a
good prime number, and a rational integer B prime to ¢, such that for every prime
number [ dividing B, we have —1 mod ¢ is a member of < [ mod ¢ >, the subgroup
of F}* generated by [ mod ¢. For example, it is the case if for every prime number [
dividing B, [ mod t is not a square.

In this paper, using very similar methods to those used in [3], we prove the
following theorem (with a stronger condition on B, but a much weaker condition
on Z than that used by Mihailescu).

Theorem 2 Fquation (1) has no solution in pairwise relatively prime non zero
integers X, Y, Z with t|Z.

In particular, using a recent result of Bennett et al., we deduce the following
corollary.

Corollary 3 Suppose that B'~! # 271 mod > and B has a divisor r such that
r*=1 # 1 mod t2. Then Equation (1) has no solution in pairwise relatively prime
nonzero integers X, Y, Z.

2. Proof of the Theorem
First, we suppose that ¢(t) = 0. Let us prove the following lemma.

Lemma 4 Let ¢ be a primitive t-th root of unity and A = (1 — ¢)(1 — ¢). Suppose
there exist algebraic integers x,y,z in the ring Z[C + (], an integer m > t, and a

unit n in Z[¢ + (] such that z, y, z and X are pairwise coprime and satisfy
ot +yt =\ B2, (2)

Then z is not a unit of Z[C +]. Moreover, there exist algebraic integers x',y', 2" in
Z[¢ + ], an integer m' > t, and a unit ' in Z[C + (] such that &', v, 2', X\ and 1/
satisfy the same properties. The algebraic number z' divides z in Z[(]. The number
of prime ideals of Z[(] counted with multiplicity and dividing 2’ is strictly less than
that dividing z.

Proof. Equation (2) becomes

t—1

(x+y) H (z + ¢"y) = n\" B2".

a=1
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By hypothesis, for every prime number [ dividing B, we have —1 mod t € < [ mod t >.

In particular B is prime to x;igt . In fact, suppose there exists v a prime factor of B

in Z[(] such that | = +y . Then there exist a € {1,...,¢t — 1} such that v | (x+{%).
Let [ be the ratlonal prlme number under . Since —1 mod ¢ is an element of the
subgroup of F;* generated by [ mod ¢, we deduce that the decomposition group of
7 contains the complex conjugation j € Gal(Q(¢)/Q) that is 4/ = . In particular,
v | (x+¢*y) implies that v | (z+ (™ *y) since z, y are real. So v | ((*—(~*)y. Since
~ is a prime ideal, we deduce that v |y or v | ((* — (~*). But  and y are coprime
so y is prime to «. Since (B,p) =1 and ¢(* — (~* is a generator of the only prime

ideal of Z[¢] above p, we cannot have v | (% — (~%): we get a contradiction. So B
il/'tert
Tty

is prime to every factor of the form
ZIC +¢J.
Then B | (z + y) in Z[¢]. Therefore we get

are coprime as claimed. In fact, we have proved the following result: B

a’ bt
a+b

and

where a and b are coprime elements of

t—1
T+
T @+ cog) = s,
a=1

Following the same method! as in Section 9.1 of [4], one can show that there
exist real units 79, 71,...,m—1 € Z[¢ +¢]* and algebraic integers py € Z[¢ + (],
P1s- -5 pi—1 € Z[(] such that

T+ ¢
1-¢e
Let us show that z is not a unit. As p; divides z in Z[(], it is thus enough to show

that p; is not one. Put a = “{tiy. One has

z+y =B\ b, =napl, a=1,...,t—1. (3)

a= —y—i—m = —ymod (1 —¢)%
1-¢
So g = 1mod (1 —¢)2. Suppose that p; is a unit. Then, the quotient p% is a unit
of modulus 1 of the ring Z[(], thus a root of the unity of this ring by the Kronecker
theorem. However, the only roots of the unity of Z[(] are the 2t-th roots of the
unity (See [4 ]) As the unit 7 is real, thus there exists an integer [ and e = £1 such

as TP — Pi' _ ¢l Therefore, we have
n- P1 Pl
@ _ ect.
a
As 2 =1mod (1 —¢)? we get ¢! =1mod (1 —¢)?, s0 e’ =1,ie, 2 =1. So

1:+Cy_:c+fy

1-¢  1-¢’

1Recall that ¢ t h; since ¢(t) = 0
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because = and y are real numbers. From this equation, we deduce that
T+Cy  (x+y
1-¢  ¢-1"
We get a contradiction. So the algebraic integer p; (and then z) is not a unit. This
completes the proof of the first part of the lemma.

ie, (z+y)((+1)=0.

Let us prove the existence of 2/, ¢/, 2/, ', and m/. It is just an adaptation of the
computations done in Paragraph 9.1 of Chapter 9 of [4] for the second case of the
Fermat equation. Here we give the main ideas. Let a € {1,...,p — 1} be a fixed
integer. We take A\, = (1 — (*)(1 — (~%). By (3), there exist a real unit n, and
pa € Z[¢] such that

T+ (%Y - +
1 o Ca - napm
and taking the conjugates (we know that x,y € R), we have
Tt
1— C_a aPa -

Thus
e+ Y= (1= ¢Mape: =+¢ "y = (1= ")Mapa-

Multiplying the previous equalities, we obtain

2+ g%+ (¢ + ) 2y = At (papa) - (4)
Taking the square of x +y = noB/\m_% Pl gives

2? +y? + 2wy = g BEN T it (5)

The difference between equations (5), (4) and then division by A, gives

= )~ BN ©

As t > 3, there exists an integer b € {1,...,¢t — 1} such that b # +a mod ¢. For this
integer b, we get
N\t _ _
—azy =i (ovpp)" — Mg BEN" gt (7)

The difference between equations (6) and (7) gives, after simplifying,
.\t .\t _ _ _
Mo (paPa)' =15 (o) = M BPN*™ o5t (AT = A1)
—b_r—a\(,at+b_ ,
But as b # +a mod t, we have \;! — )\b_l = (¢ <A )/\(bC D) = %, where ¢ is a
unit. We know that \,, A\ and )\ are real numbers and so the unit ¢’ is a real unit.

’ 2
So there exists a real unit ' = % such that
b

() )+ (o) =052 ()" )
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The condition ¢(t) = 0 implies that Z—: is a t-th power in Z[¢ + ¢]. Thus there exists
¢ € Z[¢ + (] such that To = &t In fact, we know that

Naply = x1+ Ccay’ T+y= nOB)\m—%pB = 0mod (1 — ¢)2m=t+1,
Then
NaPo = —Y + f—i_(ya = —ymod (1 —¢)*" " = —ymod t.

t
Also nppl = —y mod ¢ and L= (,f—Z) mod t. But Lemma 1.8 in [4] shows that

there exists an integer [ such that

L [ mod t,
b

t
with (Z—”) congruent to [ modulo t.

By Theorem 5.36 of [4], the unit ¢ is a ¢-th power in Z[(] so we have the existence

of &1 € Z[(] such that Z—Z = &t As the unit Z—Z is real, one has ¢! = 5_1t. Therefore,

there exists an integer g such that & = (9. Taking £ = ("¢, where h is the
inverse of 2 mod t, we have

E=¢ &=g="7"
b

ie., o = €, where € € Z[¢ + (]. We put

o' =Ep.pay Y = —pp, 2 =ps, m =2m—t.

One can verify that 2/t + y't = 7/ B2A™ 2/t. Obviously, B2 is prime to ¢ and for
all prime [ dividing B2, we have —1 modt € <[ mod ¢ >, the subgroup of F/
generated by [ mod t. Moreover, we have already seen that the algebraic integer p;
is not a unit in Z[¢]. As pop1 divides z in Z[(], the number of prime ideals counted
with multiplicity and dividing 2’ in Z[(] is then strictly less than that dividing z
and m' = 2m —t > 2t — t = t. This completes the proof of the lemma. |

Now let (X, Y, Z) be a solution of (1) in pairwise relatively prime non zero integers
with t|Z. Let Z = t*Z; with t 1 Z;. Equation (1) becomes

X'+ Yt =Bt 7L

Let ¢ be a primitive ¢-th root of unity and A = (1—¢)(1—¢). The previous equation
becomes
tv

X'+Y'=B AV 7t

tvt—l

2
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The quotient n = tt—:%l is a real unit in the ring Z[¢ + (]. Take m = tv'5t > ¢.

P _
We have just proved that there exist n € Z[¢ + ¢]* and an integer m > ¢ such that

X'+ Y!=nBA"Z, )

where X, Y, XA and Z; are pairwise coprime.

We can apply Lemma 4 to Equation (9). By induction, one can prove the ex-
istence of the sequence of algebraic Z; such that Z;;1|Z; in Z[(] and the number
of prime factors in Z[(] is strictly decreasing. So there exists an n such that Z, is
a unit. But Lemma 4 indicates that each of the Z; is not a unit, a contradiction
which proves the theorem in the case ¢(t) = 0.

In the other case, (¢,h;) = 1 and none of the Bernoulli numbers Bo,;, n =
1,..., % is divisible by t3. In particular, with the notation of the proof of the
lemma, there exists § € Z[( + (] such that = = & (see [4], pp. 174-176). So the
results of the previous lemma are valid in the second case. We conclude as before.

The theorem is proved.

3. Proof of the Corollary

Let X, Y, Z be a solution in pairwise relatively prime nonzero integers of Equation
(1). By the theorem, the integer Z is prime to ¢. Furthermore, B¢(B) is coprime
to t, B*7! # 2!=1 mod ¢?> and B has a divisor r such that r*=! # 1 mod ¢2. So by
the theorem 4.1 of [1], Equation (1) has no solution for such ¢ and B.

4. Some Remarks on Mihailescu’s Paper

For the reader’s convenience, recall “Fact 3:”

Fact 3 of [3] Let p, w € Q[C]T; set

p—('w

a - —7 C = —,

o= T ¢a t(p— )
and suppose (pia, pp) = 1 for a # b. If pt — @t = B-~* and none of the prime
ideals 7|0 are totally split, then (B, pa) =1 for alla € {1,...,t — 1}. In particular,

Bl(p — ).

His method to prove this fact is the following: he supposes that we can find a
prime ideal 7 of § such that 7|u, for some a € {1,...,t — 1}. By hypothesis, none
of the prime ideals of 3 are totally split in the extension Q(¢)/Q. So there exist
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o € Gal(Q(¢)/Q) such that o(7) = 7. In particular o(7) = 7|0 (). So we have
T|pe and 7]o (e )-

Then Mihailescu claims we have a contradiction since (4, pp) for all a # b. But
this last argument does not follow. Indeed,

o(p) —o(¢*)o(w)
1—0o(¢")

and this last number is not of the form p; for some b € {1,...,t —1}. Indeed, p
and w are just elements of Q[¢]*.

o(pa) =

Acknowledgments I thank Professor Yuri Bilu, Florian Luca and the referee for
very helpful suggestions.

References

[1] M.A. Bennett, K. Gyory, M. Mignotte, A Pintér, Binomial Thue equations and polynomial
powers. Compos. Math. 142 (2006), 1103-1121.

[2] Bubhler, J. Crandall, R. Ernvall, R. Metsankyla, T. Shokrollahi, A. Irregular Primes and cy-
clotomic invariants to 12 million. J. Symbolic Computation, 31 (2001), 89-96.

[3] Mihdilescu Preda. On solutions of the equation X™+Y™ = BZ™ with n|BZ. Acta Arithmetica,
136 (2009), 1-6.

[4] Washington, L. Introduction to Cyclotomic Fields, Second Ed., Springer, Berlin, 1997.



