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Abstract
Motivated by the Cauchy-Davenport theorem for sumsets, and its interpretation in
terms of Cayley graphs, we prove the following main result: There is a universal
constant � > 0 such that, if G is a connected, regular graph on n vertices, then
either every pair of vertices can be connected by a path of length at most three, or
the number of pairs of such vertices is at least 1 + � times the number of edges in
G. We discuss a range of further questions to which this result gives rise.

1. Introduction and Statement of Results

Let A be a subset of an abelian group G, written additively, and h a positive integer.
The h-fold sumset hA is defined as

hA = {g ∈ G : g = a1 + · · · + ah for some a1, . . . , ah ∈ A}.

We say that A is a basis for G if hA = G for some h. The cardinality of a set S
will be denoted |S|. The following is a (special case of a) fundamental result in the
theory of sumsets:

Theorem 1. (Cauchy-Davenport) Let p be a prime and A a subset of Zp. Then
|hA| ≥ min{p, h|A|− (h− 1)}.

There is a well-known generalisation of this result to arbitrary abelian groups,
due to Kneser [3], but that is not what is of primary interest to us here. Instead,
we are interested in interpreting the Cauchy-Davenport result in terms of graphs.
First, recall the following definition:

Definition 2. Let G be an abelian group and S a subset of G. The Cayley graph1

G = G(G,S) is the directed graph whose vertices are the elements of G and whose
edges consist of the ordered pairs (g1, g2) such that g2 − g1 ∈ S.

1Throughout this paper, the letter G will be reserved to denote an abelian group and graphs
will be denoted by the scripted letter G.
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Note that the graph G(G,S) is strongly connected if and only if S is a basis for
G. For simplicity, let us assume this, plus that the set S is symmetric, i.e., S = −S,
and contains the identity element of G. Then we can think of the Cayley graph as
being undirected, with a loop at every vertex. In this case, let G0(G,S) be the part
of G(G,S) with all the loops removed. For the rest of the paper, we shall only deal
with undirected, loopless graphs. Now consider the following definition:

Definition 3. Let G be a graph on the vertex set V and h a positive integer. We
denote by hG the graph on vertex set V such that {v1, v2} is an edge in hG if and
only there is a path joining v1 to v2 in G of length at most h. We shall call hG the
h-fold sumgraph2 of G and denote its set of edges by hE = E(hG).

Then the following is an immediate consequence of the Cauchy-Davenport
theorem:

Theorem 4. Let p be a prime and let A be a subset of Zp such that 0 ∈ A and
A = −A. Let G = G0(Zp, A) be the Cayley graph of A, minus all loops. Then for
every positive integer h,

|hE| ≥ min
��

p
2

�
, h|E|

�
.

The question which motivated this paper is whether anything like this result is
true for more general connected graphs. More precisely, the feature of Theorem 4
that we are interested in generalising is the fact that the (edge) sizes of the graphs
hG grow at least linearly in h, as long as G isn’t already too dense. As we shall
show below, it is hopelessly optimistic to hope for anything like this phenomenon in
arbitrary connected graphs. However, Cayley graphs have the very important prop-
erty that they are regular. Our main result is the following partial generalization
of Theorem 4:

Theorem 5. There is a universal constant � > 0 such that if G is a regular,
connected graph on n vertices, then

|3E| ≥ min
��

n
2

�
, (1 + �)|E|

�
.

In fact, we can take � to be the unique positive root of the equation

� =
1
4
(1−

√
�)3, (� ≈ 0.087 . . . ). (1)

2This definition is well-known in the literature, though it is standard to use multiplicative
notation instead, which is natural when one thinks in terms of the adjacency matrix of the graph.
So what we are calling the h-fold sumgraph hG is usually referred to as the h-th power of G and
denoted Gh. Observe that if we add a loop at each vertex of G and let A be the adjacency matrix
of the resulting graph, then |E(Gh)| is just half the number of non-zero off-diagonal entries in Ah.

For the remainder of this note we shall retain our additive notation and terminology for graphs
so as to emphasise the connection to sumsets. The reader should also be aware, however, that the
term ‘sum graph’ (two words) has also been used in a different context by F. Harary [2].
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We were surprised by the simplicity and elegance of this result, which is why we
considered it worth mentioning. Of course, it is unsatisfactory in many respects so
some detailed remarks are in order:

1. The obvious problem with our result is that it cannot be used recursively to obtain
estimates for the growth of h-fold sumgraphs for arbitrary h. This is because, even
if the graph G is regular, then the graphs hG need not be, for any h > 1 (note
that regularity is preserved for Cayley sum-graphs). Thus it remains to obtain a
generalization of Theorem 5 to h-fold sumgraphs for arbitrary h. Note that, for fixed
degree, the sumgraphs hG grow at least linearly ‘on average’ until the graph becomes
complete. This is a trivial observation, but a more precise result is contained in
the next proposition. Recall that the diameter of a graph is the smallest δ > 0
such that any pair of vertices are connected by a path of length at most δ. In the
notation of Definition 3, the diameter of a graph G on n vertices is the smallest h
such that hG = Kn, the complete graph. Now we have

Proposition 6. Let G be a connected graph on n vertices and of minimal degree d.
Then

diam(G) ≤ 3n− (d + 3)
d + 1

. (2)

2. However, the growth of sumgraphs can certainly be irregular. In particular, and
this is the most natural thing to ask about, there is no constant �� > 0 such that
the analogue of Theorem 5 holds for 2-fold sumgraphs. To see this consider the
following example.

Example 7. Fix d > 0 and let n be a multiple of d + 1, say n = m(d + 1). Let
G = Gd,m be the following graph on n vertices: Partition the vertex set V into m
disjoint subsets of size d + 1, say V1, V2, . . . , Vm. For each i = 1, . . . ,m pick two
vertices vi1, vi2 ∈ Vi. Now the graph Gd,m contains the following edges:

(i) for each i = 1, . . . ,m, insert all edges among the vertices of Vi, except the
edge {vi1, vi2}.

(ii) for each i = 1, . . . ,m− 1, insert the edge {vi1, v(i+1),2}, and then finally add
the edge {vm1, v12}.

Clearly, this graph is connected and d-regular, so

|Ed,m| =
�

d

2

�
n.

However, one easily checks that

|2Ed,m\Ed,m| =
�

2d− 1
d + 1

�
n, (3)
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so that |2Ed,m| = (1 + od(1))|Ed,m|. Note also that for this graph one may check
that

|3Ed,m\Ed,m| =
�

d2 + 4
d + 1

�
n, (4)

so that |3Ed,m| = (3− od(1))|Ed,m|.

Considering this example naturally leads one to ask for more precise extremal
results. We believe that the graphs Gd,m are essentially extremal for 2-fold sum-
graphs, but these latter objects are still somewhat mysterious to us. Motivated by
(3), we are prepared at this stage to conjecture the following:

Conjecture 8. Let d, n be positive integers. If G is a d-regular, connected graph
on n vertices, then either 2G = Kn or |2E\E| ≥ (2− od(1))n.

Note that, in the notation of this conjecture, if n ≥ d + 2 then trivially |2E\E| ≥
n/2, since every vertex is connected to at least one non-neighbor by a path of length
two. Hence there is a factor of four separating (asymptotically) the trivial lower
bound for |2E\E| and what we conjecture to be the truth.

Neither is it clear to us whether the graphs Gd,m are essentially extremal for 3-fold
sumgraphs. The question here is what is the best-possible choice of the constant �
in Theorem 5? By (4), we cannot take � > 2. Indeed, the same conclusion could be
drawn by considering the Cayley graph of an arithmetic progression.

Also, note that the graphs Gd,m are certainly not close to being extremal sum-
graphs in general. This is because it is easy to see that Gd,m has diameter m + 1 =

n
d+1 +1, whereas from the proof of Proposition 6 we will easily be able to construct
examples which show that the upper bound in (2) is essentially best-possible, even
for regular graphs (see Remark 9). Hence, we suspect that the extremal problem
for sumgraphs in general might be quite hard.

3. Finally, note that there doesn’t seem to be any hope of obtaining meaningful
generalizations of our results to graphs which are not regular. For example, let
n be a positive integer and let Gn be the graph on n vertices which is the union
of a complete subgraph on �n3/4� vertices and a path of length n − �n3/4� which
is joined to the complete subgraph at one vertex. This graph is connected and
contains Θ(n3/2) edges but, for any fixed h, the h-fold sumgraph contains only
Θh(n) additional edges.

The rest of the paper is organised as follows. Sections 2 and 3 are devoted to
the proofs and discussion of Theorem 5 and Proposition 6 respectively. Section 4
contains a quick recap of unresolved issues.
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2. Proof of Theorem 5

Notation. If G is a graph and X ⊆ V (G), then N(X) will denote the set of all
neighbors of the vertices in X. If X is a singleton set, say X = {x}, then we simply
write N(x).

Let d, n be positive integers and let G be a connected, d-regular graph on n ver-
tices. Let � > 0 be the solution of (1) and suppose that |3E| < (1 + �)|E|. We must
show that 3G = Kn. Since 2E ⊆ 3E , we can first of all deduce that |2E| < (1+ �)|E|.
We present the argument in a sequence of steps.

Step 1: Set �1 :=
√

�. For each v ∈ V (G), let

Tv := {w ∈ V (G) : {v, w} ∈ 2E\E}

and let
V1 := {v ∈ V (G) : |Tv| < �1d}.

Since, by assumption,
�dn > 2× |2E\E| =

�

v

|Tv|,

it follows easily that |V1| > (1− �1)n.

Step 2: Let v ∈ V1. Set Av := N(v), Bv := N(N(v)) and Cv := Bv\({v} ∪ Av).
If the set Cv were empty then, since the graph is connected, it would imply that
V (G) = {v}∪Av and hence that 2G = Kn. So we may assume that Cv is non-empty.
If c ∈ Cv then there is a path v → a → c in G, for some a ∈ Av, hence {v, c} ∈ 2E .
By definition of the set V1, it follows that

|Cv| < �1d. (5)

Set Dv := V (G)\({v}∪Av∪Cv). Suppose this set were empty. Since G is connected,
it would imply that V (G) = {v} ∪ Av ∪ Cv. We claim that, in this case, 3G = Kn.
We need to show that any two vertices in {v}∪Av ∪Cv can be connected by a path
of length at most 3. This is obvious unless both vertices lie in Cv. Consider a pair
of such vertices, say c1 and c2. Our assumptions say that N(c1)∪N(c2) ⊆ Av ∪Cv.
But by (5), d-regularity and the fact that �1 < 1/2 (see the statement of Theorem 5),
it follows that c1 and c2 must have a common neighbor in Av. Hence {c1, c2} ∈ 2E ,
in fact.

So we may now assume that the set Dv is non-empty. There must be at least
one edge between Cv and Dv. For any such edge, say {cv, dv}, we know by (5) that
at least (1− �1)d of the neighbors of cv lie in Av ∪Dv. Let Cv be the set of vertices
in Cv with at least one neighbor in Dv and set

αv :=
1− �1

d
×max{|N(cv) ∩Av| : cv ∈ Cv}.
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In the steps to come, we consider the following two cases, at least one of which must
obviously apply:

Case 1: For at least half of all v ∈ V1, one has αv ≤ 1
2 .

Case 2: For at least half of all v ∈ V1, one has αv > 1
2 .

Step 3: Suppose Case 1 holds. Let V2 := {v ∈ V1 : αv ≤ 1
2}. For each v ∈ V2,

pick any vertex cv ∈ Cv. Then there are at least 1
2 (1 − �1)d choices for an edge

{cv, dv} such that dv ∈ Dv. Notice that, for any choice of dv, there is a path
v → av → cv → dv in G, for some av ∈ Av. Hence {v, dv} ∈ 3E\E . Summing over
all v ∈ V2 and noting that any given pair of vertices is counted at most twice, it
follows that

|3E\E| ≥ 1
2
· |V2| ·

1
2
(1− �1)d ≥

1
2
(1− �1)2|E| > �|E|,

contradicting our assumptions.

Step 4: Suppose Case 2 holds. Let V3 := {v ∈ V1 : αv > 1
2}, so that |V3| ≥ 1

2 |V |.
Let v ∈ V3 and fix a choice of a vertex cv ∈ Cv such that cv has at least 1

2 (1− �1)d
neighbors inside Av. Let dv be any neighbor of cv inside Dv. Observe that all the
neighbors of dv lie inside Cv ∪Dv. Hence, by (5), there are at least (1− �1)d choices
for a vertex ev ∈ N(dv)∩Dv. For any such vertex ev and any vertex av ∈ N(cv)∩Av,
there is a path in the graph av → cv → dv → ev. Hence {av, ev} ∈ 3E\E . Therefore,
if we set

S :=
�

v∈V3

#{{av, ev} ∈ 3E\E : av ∈ Av, ev ∈ Dv},

then we have

|S| ≥ |V3|×
(1− �1)d

2
× (1− �1)d ≥

�
(1− �1)3

2

�
d2n

2
.

On the other hand, since since v ∈ N(av) always, any pair of vertices can appear
in the sum at most 2d times. It follows that

|3E\E| ≥ 1
4
(1− �1)3|E| ≥ �|E|,

which again contradicts our assumptions, and completes the proof of the theorem.

3. Proof of Proposition 6

Let G be a connected graph on n vertices of minimal degree d. Let δ be the diameter
of G and let v, w be a pair of vertices such that a shortest path between them has
length exactly δ. Let such a path be

v1 = v → v2 → · · ·→ vδ → vδ+1 = w. (6)
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Let A be the set of vertices along the path and B := V (G)\A. Using the fact that
there is no shorter path in G between v and w, we shall count in two ways the
number e(A,B) of edges in G between A and B. On the one hand, this fact implies
that there are no edges between the vertices along the path other than those in the
path itself. Since G has minimal degree d, it follows that

e(A,B) ≥ (δ − 1) · (d− 2) + 2 · (d− 1) = (δ + 1)(d− 2) + 2. (7)

On the other hand, the absence of a shorter path between v and w means that
no vertex in B can be joined to more than three vertices of A (and if it joined to
exactly three of them, then they must be adjacent along the path (6)). Hence,

e(A,B) ≤ 3|B| = 3(n− δ − 1).

From (6) and (7) one easily deduces (2).

Remark 9. The proof just given can be easily adapted to construct explicit exam-
ples of graphs which show that the upper bound in (2) is essentially best-possible.
Let d ≥ 5 be odd for simplicity and choose a non-negative integer k. Let

a := 3(k + 1), b := k(d− 2) + 2(d− 1) = (k + 2)(d− 2) + 2, n := a + b.

We construct a d-regular graph on n vertices as follows. The vertices of G are
partitioned into two disjoint sets A and B such that |A| = a, |B| = b. Denote

A := {v1, . . . , va}, B := {w1, . . . , wb}.

The graph G will contain the following edges:

Type 1: The edges of the path v1 → v2 → · · ·→ va.

Type II: All edges {vi, wj} such that 1 ≤ i ≤ 3 and 1 ≤ j ≤ d−1, except the edges
{v2, wd−1} and {v3, w1}.

Type III: All edges {v(a+1)−i, w(b+1)−j} such that 1 ≤ i ≤ 3 and 1 ≤ j ≤ d − 1,
except the edges {va−1, wb+2−d} and {va−2, wb}.

Type IV: All edges {v3r+s, w(d−2)r+1+t} such that 1 ≤ r ≤ k, 1 ≤ s ≤ 3 and
1 ≤ t ≤ d− 2.

Type V: The complete subgraph on the vertices w1, . . . , wd−1, minus a perfect
matching on the d− 3 vertices w2, . . . , wd−2.

Type VI: The complete subgraph on the vertices wb+2−d, . . . , wb, minus a perfect
matching on the d− 3 vertices wb+3−d, . . . , wb−1.

Type VII: For each 1 ≤ r ≤ k, the complete subgraph on the vertices wr(d−2)+2, . . . ,
w(r+1)(d−2)+1.
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One can readily check that this graph is indeed d-regular and, for sufficiently large
k, of diameter a− 1 := δ. Moreover, for d ≥ 5 one has

δ =
�

3n− (d + 3)
d + 1

�
.

For further known results on the maximum diameter of regular (di)graphs, the
interested reader is referred to [5], for example.

4. Concluding Remarks

There are two obvious directions in which the results of this paper need to be
improved upon. The first is to generalise them to h-fold sumgraphs for arbitrary
h, and in particular to understand better the most natural case when h = 2. The
second is to sharpen them, in particular to obtain the best-possible constant � in
Theorem 5. Both directions naturally lead in turn to Freiman-type inverse problems,
where one wishes to say something about the ‘structure’ of regular, connected graphs
whose sumgraphs grow slowly.

Finally, we note that, while studying Cayley graphs purely from the point of view
of sumgraph growth appears to be a new idea, a related property of such graphs -
that of possessing short cycles - has been previously studied in connection with the
so-called Caccetta-Häggkvist conjecture. See, for example, [1] and [4].
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