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Abstract
In this article we will show that for every natural d and n > 1 there exists a natural
number t such that for every d-dimensional simplicial complex T with vertices in
Zd, the number of lattice points in the tth dilate of T is exactly χ(T ) modulo n,
where χ(T ) is the Euler characteristic of T .

1 Introduction

This problem was given to one of the authors by Rom Pinchasi. He noticed that
if we scale a segment with vertices in a lattice in two times, then the number of
lattice points in the scaled segment will be odd. For polygons with vertices in a
two-dimensional lattice, the same fact follows from Pick’s formula except that this
polygon must be scaled in four times. We will show that the following theorem
holds:

Theorem 1. For any natural numbers d and n > 1 there exists a natural number t
such that if T is any simplicial complex in Rd with vertices in the integer lattice Zd

then the number of lattice points in the complex tT is equivalent to χ(T ) modulo n.

Here χ(T ) is the Euler characteristic of the complex T and tT denotes the image
of T under similarity with the center at the origin and ratio equal to t.

The proof is based on Stanley’s theorem on the coefficients of Ehrhart polynomi-
als [4]. Let us recall the definition of Ehrhart polynomial [2]. A polytope is called a
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lattice polytope if all the vertices lie on Zd. For any d-dimensional lattice polytope
P in Rd, there exists a polynomial

L(P, t) = adt
d + ad−1t

d−1 + · · · + a0, (1)

such that the number of lattice points in the polytope tP is equal to L(P, t). It
is possible to prove that a0 is the Euler characteristic of P (that is one for convex
polytopes) and ad is the volume of P. Further important properties of Ehrhart poly-
nomial and its connection with number theory, combinatorics and discrete geometry
could be found in [1].

2 Proof

First we prove the following lemma. Here [·] is the floor function, that is, [x] denotes
the largest integer number not greater than x.

Lemma 2. Let P be a convex polytope in Rd with vertices in the integer lattice Zd,
p be any prime number and l =

�
logp d

�
. Then for any natural number k > l, the

number of lattice points in the convex polytope pkP is exactly one modulo pk−l.

Proof. From Stanley’s nonnegativity theorem (more precisely Lemma 3.14 in [1])
it follows that in this case the number of lattice points in the convex polytope tP
equals exactly:

�
t + d

d

�
+ h1

�
t + d− 1

d

�
+ · · · + hd−1

�
t + 1

d

�
+ hd

�
t

d

�
, (2)

where h1, h2, . . . , hd are nonnegative integer numbers.
Suppose t = pk and m ≤ d ≤ pl+1 − 1. If α is the maximal power of p which

divides m then (m + pk)/pα ≡ m/pα (mod pk−l). Using this fact it is easy to show
that

�t+d
d

�
≡ 1 (mod pk−l). Also from Kummer’s theorem (see [3], exercise 5.36) it

follows that for any i = 1, 2, . . . , d we have
�t+d−i

d

�
≡ 0 (mod pk−l). So as we can

see, the number of lattice points equals exactly one modulo pk−l.

Remark 3. It is easy to see that the statement of Lemma 2 holds for dilation factor
apk, a ∈ N. For a proof it is sufficient to apply the Lemma to the polytope aP.

Proof of Theorem 1. Consider the prime factorization of n: n = pα1
1 pα2

2 pα3
3 . . . pαs

s .
Let βi = αi +

�
logpi

d
�
. Define t = pβ1

1 pβ2
2 pβ3

3 . . . pβs
s . Suppose ∆ is a simplex. By

Lemma 2 we have that the number of lattice points in t∆ equals 1 modulo pαi
i

for any i = 1, 2, . . . , s. From the Chinese remainder theorem, it follows that this
number is equivalent to 1 modulo n.

We know that the Euler characteristic of every simplex (with its interior) equals 1
and the Euler characteristic is an additive function on simplicial complexes. Since
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the number of lattice points modulo n is also an additive function, we obtain that
the number of lattice points is equivalent to exactly χ(T ) (mod n).

Remark 4. As noted by the anonymous referee the statement of Theorem 1 is
kind of obvious for t = nd!. It is well-known that for any d-dimensional lattice
polytope, all the coefficients of the Ehrhart polynomial are rational numbers and
all the denominators except for the constant term 1 are divisors of d!. In other
words, the polynomial is of the form L(P, t) = 1 + t · p(t)/d! where the polynomial
p(t) has integer coefficients. So if t = n · d! then L(P, nd!) = 1 + n · p(n · d!), which
is 1 modulo n.

Let us show that the number t obtained in the proof of Theorem 1 is the minimal
natural number which satisfies the condition of the Theorem.

Suppose t is not divisible by pβi
i for some i. Let d� = p

[logpi
d]

i and ∆ be a d�-
dimensional simplex with vertices (0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1). Then
the number of lattice points in the simplex x∆ is equal to

�x+d�

d�

�
(see [1], Section

2.3). It is easy to see that one can choose x such that t ·x ≡ pβi−1
i (mod pβi

i ). Note
that if a ≡ b (mod pβi

i ), then
�

a + k

k

�
≡

�
b + k

k

�
(mod pαi

i ), for all k < pβi−αi
i = d�.

Since
�p

βi−1
i +d�−1

d�−1

�
≡ 1 (mod pαi

i ), we have

L(x∆, t) =
�

xt + d�

d�

�
≡

�
pβi−1

i + d�

d�

�
=

=
�

pβi−1
i + d� − 1

d� − 1

�
· pβi−1

i + d�

d�
≡ pαi−1

i + 1 (mod pαi
i ). (3)
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