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Abstract

In 1992, Ma made a conjecture related to Pell equations. In this paper, we use
Störmer’s Theorem and related results on Pell equations to prove some particular
cases of Ma’s conjecture.

1. Introduction

There are many papers studying the positive integer solutions and the minimal
positive solutions of the diophantine equations

kx2 − ly2 = C, C = 1, 2, 4, (1)

and the relations between these solutions. Throughout this paper, we assume that
k, l are coprime positive integers and kl is not a square. Suppose that 2 � kl when
C = 2 or 4. A well-known and interesting result is Störmer’s Theorem had been
obtained. An application of Störmer’s Theorem is Ma’s conjecture. Let N0 be
the set of all nonnegative integers. In 1992, S. L. Ma [13] presented the following
conjecture.

Conjecture 1. Let p an odd prime and a ≥ 0, b, t, r ≥ 1. Then

(A) Y = 22a+2p2t − 22a+2pt+r + 1 is a square if and only if t = r, that is, if and
only if Y = 1.
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(B) Z = 22b+2p2t − 2b+2pt+r + 1 is a square if and only if p = 5, b = 3, t = 1, and
r = 2, that is, if and only if Z = 2401.

Ma proved that Conjecture 1 implies McFarland’s conjecture on Abelian dif-
ference sets with multiplier −1. Moreover, Zhenfu Cao [1] and later Le-Xiang [8]
obtained a proof of Conjecture 1(A).

The aim of this paper is not only to give an extension of Ma’s conjecture but
also to obtain another application of Störmer’s Theorem. First, we consider the
Diophantine equation

x2 = p2ak2t1
1 · · · k2ts

s y2 − pa+bkt1+r1
1 · · · kts+rs

s δ + 1, δ ∈ {−2,−4, 2, 4}, (2)

where

x, y, a, b, ki, ti ∈ N, i = 1, 2, · · · , s, ri ∈ N0, i = 1, 2, · · · , s, 2 � y,

and p is an odd prime. Using Theorems 8, 11, and 15 we obtain the following result.

Theorem 2. Let ti > ri (i = 1, 2, · · · , s), a ≥ b and k1, k2, · · · ks > 1 be odd.
(i) Assume that δ = −2 or δ = 2. Then the only solutions to equation (2) are

given by:
(A) If p|y, then

x = pa+bkt1+r1
1 · · · kts+rs

s − δ

2
, y = pbkr1

1 · · · krs
s .

(B) If δ = 2 and

pb = 3t + 2 = 2 · 3−2tkt1+r1
1 · · · kts+rs

s − 1, 2 � t,

then
x =

1
2
(pb − 1)((pb − 1)2 − 3), y = 3−tkr1

1 · · · krs
s , a = b.

(C) If δ = −2 and

pb = 3t − 2 = 2 · 3−2tkt1+r1
1 · · · kts+rs

s + 1, 2|t,

then
x =

1
2
(pb + 1)((pb + 1)2 − 3), y = 3−tkr1

1 · · · krs
s , a = b.

(ii) Assume that δ = −4 or δ = 4. Then the Diophantine equation (2) has no
positive integer solutions.

Second, we consider the Diophantine equation

x2 = p2ak2t1
1 · · · k2ts

s y2 − pa+bkt1+r1
1 · · · kts+rs

s δ + 4, δ ∈ {−4, 4}, (3)

where

x, y, a, b, ki, ti ∈ N, i = 1, 2, · · · , s, ri ∈ N0, i = 1, 2, · · · , s, 2 � y,

and p is an odd prime. Using Theorems 9 and 13, we prove the following result.
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Theorem 3. Let ti > ri (i = 1, 2, · · · , s), a ≥ b and k1, k2, · · · ks > 1 be odd. Then
except for (x, y, p, s, r1, t1, k1, a, b, δ) = (123, 1, 11, 1, 1, 2, 5, 1, 1, 4), the only solutions
to equation (3) are given by:

(A) If p | y, then

x = pa+bkt1+r1
1 · · · kts+rs

s − δ

2
, y = pbkr1

1 · · · krs
s .

(B) If p � y and pb = kt1+r1
1 · · · kts+rs

s − δ
2 , then

x = p2b − 2, y = kr1
1 · · · krs

s , a = b.

Some similar equations were studied by Z. Cao [1], Y. D. Guo [5], Z. Cao and
A. Grytczuk [2], and X. Dong and Z. Cao [4]. For more details, one can read these
references. We organize this paper as follows. In Section 2, we introduce some
lemmas that will be useful for the proofs of the main results. So we recall some
properties on Pell equations, Störmer’s Theorem, and other results on Pell equations
that we will use to prove our two main results. Section 3 is devoted to the proofs
of Theorems 2 and 3 that are related to Ma’s conjecture, i.e., other applications of
Störmer’s Theorem.

2. Preliminaries

We recall that the minimal positive solution of Equation (1) is one of the positive
integer solutions (x, y) such that x

√
k+y

√
l is the smallest. One can easily see that

this is equivalent to determining a positive integer solution (x, y) of (1) such that
x and y are the smallest. If k = C = 1 or l = C = 1, then such a solution is also
called the fundamental solution of (1). If k = C = 1 or k = 1, C = 4, and x1 +y1

√
l

is the fundamental solution of (1), then we have the following result.

Lemma 4. ([15]) All positive integer solutions of (1) are given by

x + y
√

l√
C

=

�
x1 + y1

√
l√

C

�n

, n ∈ N.

If k > 1 or C = 2, and x1

√
k + y1

√
l is the minimal positive solution of (1), then

we have the following lemma.

Lemma 5. ([10], [15]) All positive integer solutions of (1) are given by

x
√

k + y
√

l√
C

=

�
x1

√
k + y1

√
l√

C

�n

, n ∈ N, 2 � n.
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Let R > 0, Q be nonzero coprime integers such that R−4Q > 0. Let α and β be
the two roots of the trinomial x2−

√
Rx+Q. The Lehmer sequence {Pn(R,Q)} and

the associated Lehmer sequence {Qn(R,Q)} with parameters R and Q are defined
as follows:

Pn = Pn(R,Q) =
�

(αn − βn)/(α− β), 2 � n,
(αn − βn)/(α2 − β2), 2|n,

and
Qn = Qn(R,Q) =

�
(αn + βn)/(α + β), 2 � n,
αn + βn, 2|n.

For simplicity, in this paper we denote (αdr−βdr)/(αd−βd) and (αr−βr)/(α−β)
by Pr,d and Pr, respectively.

Lehmer sequences and associated Lehmer sequences have many interesting prop-
erties and are used in the study of exponential Diophantine equations. It is not
difficult to see that Pn and Qn are both positive integers for all positive integers n.
More details can be seen in [9], [14], [18], [17].

Proposition 6. Let m, n be integers and d = gcd(m,n). We have

1. If Pm �= 1, then Pm|Pn if and only if m|n.

2. If m ≥ 1, then Qm|Qn if and only if n/m is an odd integer.

3. gcd(Pm, Pn) = Ud.

4. gcd(Qm, Qn) = Qd if m/d and n/d are odd, and 1 otherwise.

5. gcd(Pm, Qn) = Qd if m/d is even, and 1 otherwise.

6. P2m = 2PmQm.

7. For any prime p, ordp(Pmp/Pm) = 1 or 0 depending on whether p | Pm or
not.

We also recall the following result.

Lemma 7. ([11]) Assume that R and Q are odd integers. If Qn = ku2, k|n, then
n = 1, 3, 5. If Qn = 2ku2, k|n, then n = 3.

Störmer obtained an important property on Pell equations, called Störmer’s The-
orem and stated it as follows.

Theorem 8. (Störmer’s Theorem [3]) Let D be a positive nonsquare integer. Let
(x1, y1) be a positive integer solution of the Pell equation

x2 −Dy2 = ±1. (4)

If every prime divisor of y1 divides D, then x1 +y1

√
D is the fundamental solution.
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In 1991, Luo obtained an extension of Störmer’s Theorem.

Theorem 9. ([10]) Let (x, y) be a positive integer solution of the Diophantine
equation

kx2 − ly2 = 4, k > 1. (5)

(i) If every prime divisor of x divides k, then ε = x
√

k+y
√

l is the minimal positive
solution of equation (5) except for the case (k, l, x, y) = (5, 1, 5, 11).

(ii) If every prime divisor of y divides l, then ε = x
√

k+y
√

l is the minimal positive
solution of equation (5).

Remark 10. From the proof of Theorem 9 in [10], [15], [16], one can easily observe
that the above theorem is also true if every prime divisor of x divides k or x1, and
if every prime divisor of y divides l or y1.

H. Mei, L. Mei, Q. Fan, and W. Song showed the following theorem.

Theorem 11. ([12]) Let D be a positive nonsquare integer. Let (x, y) be a positive
integer solution of the Pell equation

x2 −Dy2 = 1, (6)

with y = pny�, where p is a prime not dividing D and n ∈ N. If every prime
divisor of y� divides D, then x + y

√
D = ε or ε2 or ε3, where ε = x1 + y1

√
D is the

fundamental solution of (6).

Remarks 12. 1. If x + y
√

D = ε3, then y = 3spny1, s ∈ N, s > 1 except for
(x, y,D) = (26, 15, 3).

2. A similar result was obtained by A. Grelak, A. Grytczuk [6]. But the above
theorem gives more details on different possible cases useful for the proof of
Theorem 2.

Now we prove the following theorem.

Theorem 13. Let D be a positive nonsquare integer such that the Diophantine
equation

x2 −Dy2 = 4 (7)

is solvable in odd integers x and y. Let (x, y) be a positive integer solution of the
Pell equation (7) with y = pny�, where p is a prime not dividing D and n ∈ N. If
every prime divisor of y� divides D, then x+y

√
D

2 = ε
2 or ( ε

2 )2 or ( ε
2 )3 except for the

case (x, y,D) = (123, 55, 5), where ε = x1 + y1

√
D is the minimal positive solution

of (7).
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Proof. It is easy to see that the result is true if p|y1 by Remark 10. We assume that
p � y1. By Lemma 4, we know that

x + y
√

D

2
=

�
x1 + y1

√
D

2

�m

, (8)

for some positive integer m. If m = 1, there is nothing to do.

Case 1. We assume 2|m. We write m = 2m1. From equation (8), we get

x + y
√

D

2
=

�
xm1 + ym1

√
D

2

�2

. (9)

Hence
xm1ym1 = pny�.

Since x2
m1
−Dy2

m1
= 4, we have that (xm1 , ym1) = 1 or 2. If (xm1 , ym1) = 1, then

ym1 = y�. It follows that every prime divisor of ym1 divides D. By Theorem 9,
we obtain m1 = 1, whence m = 2. If (xm1 , ym1) = 2, then p = 2, and we have
xm1 = 2n−1 and Qm1 = 2t. By Lemma 7 and Proposition 6, we have m1 = 3. This
implies that x1|2n−1 = x3, which is impossible since x1 is an odd greater than 1.

Case 2. Now we assume 2 � m. We write m = m1qr, where q is a prime divisor of m,
(m1, q) = 1, r ∈ N. We claim that p|Pq. Otherwise, every prime divisor of yq = y1Pq

divides D by the assumption. It follows that q = 1 by Theorem 9. This leads to a
contradiction. By Proposition 6, we know that (Pm1 , Pq) = P(m1,q) = P1 = 1. This
implies that every prime divisor of ym1 = y1Pm1 divides D since ym1 |ym = y = pny�.
Thus we obtain m1 = 1 by Theorem 9. Therefore, we have m = qr. It is obvious
that q �= p since

Pq =
(q−1)/2�

r=0

�
q

2r + 1

�
(x1/2)q−2r−1(Dy2

1/4)r. (10)

If r > 1, then

Pq,q =
(q−1)/2�

r=0

�
q

2r + 1

�
(xq/2)q−2r−1(Dy2

q/4)r. (11)

We will prove that q = 3, Pq,q = 3t, and 3|D. Since P3 = (3x2
1+Dy2

1)/4, we get 3|P3

so 3|y3. If t = 1, from (11) we have 12 = 3x2
3 + Dy2

3 = 4Dy2
3 + 12. It follows that

4Dy2
3 = 0, which is impossible. If t > 1, again from (11) we see that 9|3x2

3, which
is also impossible. We have shown that r = 1. If q > 3, we claim that Pq �= pn.
Otherwise, q ≡ 1 (mod 4). We write q = 4k + 1. As

Pq = P4k+1 = (P2k+1 − P2k)(P2k+1 + P2k),
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((P2k+1 − P2k), (P2k+1 + P2k)) = 1,

and
((P2k+1 − P2k), (P2k+1 + P2k))|2(P2k, P2k+1) = 2, 2 � Pq,

we have P2k+1−P2k = 1. This is impossible. If q ≡ 3 (mod 4), we write q = 4k+3.
From

Pq = P4k+3 = (P2k+2 − P2k+1)(P2k+2 + P2k+1),

((P2k+2 − P2k+1), (P2k+2 + P2k+1)) = 1

and as

((P2k+2 − P2k+1), (P2k+2 + P2k+1))|2(P2k+2, P2k+1) = 2, 2 � Pq,

we obtain P2k+2 − P2k+1 = 1, which is also impossible. Let P �= p be an arbitrary
prime divisor of Pq. Then from equation (10), we can easily prove that P = q and

q2 � Pq.

Thus we have shown that Pq = qpn if q > 3. On the other hand, if q > 5, then
when q ≡ 1 (mod 4), we write q = 4k + 1. We have k > 2 and P2k+1 − P2k = q or
P2k+1 + P2k = q. But Ps = x1Ps−1 − Ps−2, for s ≥ 2. Hence we get Ps − Ps−1 =
(x1−1)Ps−1−Ps−2 > 2(Ps−1−Ps−2), for s ≥ 3. Thus we have P2k+1−P2k > 22k =
4k > 4k + 1 = q, for k ≥ 3. This leads to a contradiction. When q ≡ 3 (mod 4), we
write q = 4k + 3. We have k ≥ 1 and P2k+2−P2k+1 = q or P2k+2 + P2k+1 = q. But
P2k++2−P2k=1 > 22k+1 > 4k +3 = q, for k ≥ 1. This also leads to a contradiction.
Therefore, we have shown that q = 3 or q = 5. If q = 5, by what we proved
before we have P3 − P2 = 5. Since P0 = 0, P1 = 1, P2 = x1, P3 = x2

1 − 1, we obtain
x1(x1 − 1) = 6. Thus x1 = 3. From x2

1 −Dy2
1 = 4, we get Dy2

1 = 5. It follows that
D = 5, y1 = 1. Therefore, y = y5 = P5 = (P3 − P2)(P3 + P2) = (8− 3)(8 + 3) = 55.
This completes the proof.

Remark 14. Again here, a similar result was obtained by A. Grelak and A.
Grytczuk [7]. But we prove the above result, which gives explicit details on dif-
ferent possible cases useful for the proof of Theorem 3.

Finally, we recall the following result.

Theorem 15. ([19]) Let D �= 2 be a given positive nonsquare integer with 8 � D.
(i) If 2|D, then the following equation

kx2 − ly2 = 1, (12)

has integer solutions, where k, l are such that k > 1, kl = D.
(ii) If 2 � D, then there is one and only one of the following equations

kx2 − ly2 = 1, kx2 − ly2 = 2 (13)
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which has integer solutions, where k, l are such that k > 1, kl = D for the first
equation and k, l are such that k > 0, kl = D for the second equation.
(iii) If 2 � D and the equation x2 −Dy2 = 4 has solutions in odd integers x and y,
then there is at least one (k, l) with k > 1, kl = D such that the following equation

kx2 − ly2 = 4 (14)

has integer solutions.

3. Proofs of the Main Results

3.1. Proof of Theorem 2

Let
l = pa−bkt1−r1

1 · · · kts−rs
s , D = l(ly2 − δ), z = pbkr1

1 · · · krs
s .

From (2), one can see that (x, z) is a solution of the equation

X2 −DY 2 = 1. (15)

(i) Since (y, 1) is the minimal positive solution of the equation

lX2 − (ly2 − δ)Y 2 = δ,

we have that (y
√

l+
�

ly2 − δ)2/2 = ly2−(δ/2)+y
�

l(ly2 − δ) gives the fundamental
solution of (15). By Theorems 8 and 11, we have

x = ly2 − δ/2, z = y, (16)

or
x = (ly2 − δ/2)2 + l(ly2 − δ)y2, z = 2y(ly2 − δ/2), (17)

or

x = (ly2−δ/2)3 +3(ly2−δ/2)l(ly2−δ)y2, z/y = (2ly2−δ)2−1 = 3tpb, a = b. (18)

It is easy to see that (17) is impossible since z is an odd integer. From (16), we
have p | y and

x = pa+bkt1+r1
1 · · · kts+rs

s − δ

2
, y = pbkr1

1 · · · krs
s .

If (18) is true, then 3ty = kr1
1 · · · krs

s . It follows that y = 3−tkr1
1 · · · krs

s . If δ = 2,
again from (18), we obtain 2ly2−3 = 3t, 2ly2−1 = pb. We get 2 � t by considerations
modulo 4. Therefore we have

pb = 3t + 2 = 2 · 3−2tkt1+r1
1 · · · kts+rs

s − 1, x =
1
2
(pb − 1)((pb − 1)2 − 3).
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If δ = −2, also from (18), we see that 2ly2 + 3 = 3t, 2ly2 + 1 = pb. We get 2|t by
considerations modulo 4. Therefore we have

pb = 3t − 2 = 2 · 3−2tkt1+r1
1 · · · kts+rs

s + 1, x =
1
2
(pb + 1)((pb + 1)2 − 3).

This proves (i) of Theorem 2.

(ii) Since (y, 1) is a positive integer solution of the equation

lX2 − (ly2 − δ)Y 2 = δ,

we have that
u
√

l + v
�

ly2 − δ = ((y
√

l + v
�

ly2 − δ)/2)3

gives a solution of the equation lX2 − (ly2 − δ)Y 2 = ±1. On the other hand, if (2)
is true, note that 2 � Dz2 and from (15) we get

x + 1 = D1z
2
1 , x− 1 = D2z

2
2 ,D1D2 = D, z = z1z2.

Thus (z1, z2) is a solution of D1X2 −D2Y 2 = 2, contradicting Theorem 15. This
completes the proof of Theorem 2.

3.2. Proof of Theorem 3

Let
l = pa−bkt1−r1

1 · · · kts−rs
s , D = l(ly2 − δ), z = pbkr1

1 · · · krs
s .

From Equation (3), one sees that (x, z) is a solution of the equation

X2 −DY 2 = 4. (19)

Since (y, 1) is the minimal solution of the equation

lX2 − (ly2 − δ)Y 2 = δ,

(y
√

l +
�

ly2 − δ)2/2 = ly2 − (δ/2) + y
�

l(ly2 − δ) gives the fundamental solution
of (19). Using Theorems 9, 13 and Proposition 6, we have

x = ly2 − δ/2, z = y, (20)

or
x = ((ly2 − δ/2)2 + l(ly2 − δ)y2)/2, z = y(ly2 − δ/2), a = b, (21)

or
x = 123, D = 5, pbkr1

1 · · · krs
s = 55, a = b. (22)
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From Equation (20), we obtain p|y and

x = pa+bkt1+r1
1 · · · kts+rs

s − δ

2
, y = pbkr1

1 · · · krs
s .

Using (21), one can see that p � y and

pb = kt1+r1
1 · · · kts+rs

s − δ

2
, x = p2b − 2, y = kr1

1 · · · krs
s , a = b.

If (22) is true, we can easily see that

y = 1, p = 11, s = 1, r1 = 1, t1 = 2, k1 = 5, a = b = 1, δ = 4.

This completes the proof of Theorem 3.
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