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Abstract
It is well-known that a continued fraction is periodic if and only if it is the rep-
resentation of a quadratic irrational α. In this paper, we consider the family of
sequences obtained from the recurrence relation generated by the numerators of the
convergents of these numbers α. These sequences are generalizations of most of
the Fibonacci-like sequences, such as the Fibonacci sequence itself, r-Fibonacci se-
quences, and the Pell sequence, to name a few. We show that these sequences satisfy
a linear recurrence relation when considered modulo k, even though the sequences
themselves do not. We then employ this recurrence relation to determine the gen-
erating functions and Binet-like formulas. We end by discussing the convergence of
the ratios of the terms of these sequences.

1. Introduction

Generalizations of the Fibonacci numbers have been extensively studied. From
Lucas and Catalan numbers to Gibonacci and k-Bonacci, all are evidence of the
interest Fibonacci-like sequences still hold. To generalize the Fibonacci sequence,
some authors [3, 4, 6, 13, 17] have altered the starting values, while others [2, 8,
9, 10, 12, 14] have preserved the first two terms of the sequence but changed the
recurrence relation. In a previous paper [2], we gave a generalization of the latter
type, called the generalized Fibonacci sequence. It is defined using a non-linear
recurrence relation depending on two real parameters (a, b) as follows. For any two
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nonzero real numbers a and b, the generalized Fibonacci sequence, say
�
F (a,b)

n

�∞
n=0

,
is defined recursively by

F (a,b)
0 = 0, F (a,b)

1 = 1, F (a,b)
n =

�
aF (a,b)

n−1 + F (a,b)
n−2 , if n is even

bF (a,b)
n−1 + F (a,b)

n−2 , if n is odd
(n ≥ 2).

This generalization has its own Binet-like formula and satisfies identities that are
analogous to the identities satisfied by the classical Fibonacci sequence.

We now introduce a further generalization of the Fibonacci sequence; we shall
call it the k-periodic Fibonacci sequence. This new generalization is defined us-
ing a non-linear recurrence relation that depends on k real parameters, and is an
extension of the generalized Fibonacci sequence. The non-linear recurrence rela-
tion we consider in this article can be viewed as a linear recurrence relation with
nonconstant coefficients.

Definition 1. For any k-tuple (x1, x2, . . . , xk) ∈ Zk, we recursively define the k-
periodic Fibonacci sequence, denoted

�
F (x1,x2,...,xk)

n

�∞
n=0

, by

F (x1,x2,...,xk)
0 = 0, F (x1,x2,...,xk)

1 = 1, F (x1,x2,...,xk)
n+1 = xnF (x1,x2,...,xk)

n +F (x1,x2,...,xk)
n−1

for all n ≥ 1, where xn = xi, for 1 ≤ i ≤ k, if n ≡ i (mod k).

To avoid cumbersome notation, let us denote F (x1,x2,...,xk)
n by qn. Thus, the

sequence {qn} satisfies

q0 = 0, q1 = 1, qn =






x1qn−1 + qn−2, if n ≡ 2 (mod k)
x2qn−1 + qn−2, if n ≡ 3 (mod k)

...
xk−1qn−1 + qn−2, if n ≡ 0 (mod k)
xkqn−1 + qn−2, if n ≡ 1 (mod k)

(n ≥ 2).

We now note that this new generalization is in fact a family of sequences where
each new combination of x1, x2, . . . , xk produces a distinct sequence. When x1 =
x2 = . . . = xk = 1, we have the classical Fibonacci sequence and when x1 = x2 =
. . . = xk = 2, we get the Pell numbers. Even further, if we set x1 = x2 = . . . = xk =
r, for some positive integer r, we get the r-Fibonacci numbers, and if k is even, we
can obtain the generalized Fibonacci sequence by assigning a to the odd-numbered
subscripts and b to the even-numbered subscripts.

Example 2. The sequence descriptions that follow give reference numbers found
in Sloane’s On-Line Encyclopedia of Integer Sequences, [16]. When k = 3 and
(x1, x2, x3) = (1, 0, 1), we obtain the sequence [A092550], beginning

0, 1, 1, 1, 2, 3, 2, 5, 7, 5, 12, 17, 12, 29, . . . .
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This sequence is described in [16] as a “two-steps-forward-and-one-step-back Fibonacci-
based switched sequence inspired by Per Bak’s sand piles.” When (x1, x2, x3) =
(2, 1, 1), we obtain the sequence [A179238] and when (x1, x2, x3) = (1,−1, 2), we
obtain the sequence [A011655]. When k = 4 and (x1, x2, x3, x4) = (2,1,2,1), we get
the sequence [A048788] and when (x1, x2, x3, x4) = (1,2,1,2), we get the sequence
[A002530].

We now consider the connection between this family of sequences (for positive
xi) and the set of quadratic irrational numbers. If an irrational number α satisfies
a quadratic equation with integer coefficients, α is said to be a quadratic irrational.
In addition, we say a continued fraction expansion of a number x is periodic if it
can be written in the form

x = [x0;x1, x2, . . . , xm, xm+1, . . . , xm+k].

It is well known that a number α is a quadratic irrational if and only if it has a peri-
odic continued fraction expansion. If we restrict our quadratic irrational α to the in-
terval [0, 1], we get a continued fraction expansion of the form α = [0;x1, x2, . . . , xk].
Therefore, given a quadratic irrational �α = [x0;x1, x2, . . . , xm, xm+1, . . . , xm+k],
if we associate it with the quadratic irrational α = [0;xm+1, xm+2, . . . , xm+k],
which is purely periodic with period k, we have that for each quadratic irrational
there is a corresponding k-periodic Fibonacci sequence with associated k-tuple
(x1, x2, . . . , xk). Furthermore, we can derive this k-periodic Fibonacci sequence
directly from the convergents of α.

Consider the sequence of convergents of α,
p0

q0
,

p0

q0
,

p1

q1
, . . . ,

pn

qn
, . . . .

It can be shown that the numerators and denominators of these convergents sat-
isfy the following recurrence relations. If p−2 = 0, p−1 = 1, then the sequence of
numerators satisfies the relation

pn = xnpn−1 + pn−2,

and if q−2 = 1, q−1 = 0, then the sequence of denominators satisfies the relation

qn = xnqn−1 + qn−2.

It is not difficult to see that we obtain the k-periodic Fibonacci sequence of α from
the sequence of numerators of the convergents of α, as the two sequences have the
same initial values and satisfy the same recurrence relation. For further reading on
continued fractions, the books [5, 11] are excellent sources.

Example 3. From the continued fraction expansion of φ = [1; 1, 1, 1, . . .], the golden
ratio, we have x1 = x2 = . . . = xk = 1 and obtain the Fibonacci sequence. From
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the continued fraction expansion of
√

2 = [1; 2, 2, 2, . . .], we consider the periodic
portion and derive the Pell sequence from −1 +

√
2 = [0; 2, 2, 2, . . .], by setting

x1 = x2 = . . . = xk = 2.

We will describe the terms of the sequence {qn} explicitly by using a general-
ization of Binet’s formula. In order to do this, we must first show that for some
constant A, the qn satisfy the recurrence relation

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

Therefore, we begin by establishing that the {qn} satisfy a linear recurrence modulo
k, and we follow by deriving a generalization of Binet’s formula (via generating
functions). Finally, we consider the convergence of the ratios of successive terms
of the sequence. It is well-known that the ratios of successive Fibonacci numbers
approach the golden mean, Φ, so it is natural to ask if analogous results exist
for the variations and extensions of the Fibonacci sequence. We show in [2] that
successive terms of the generalized Fibonacci sequence do not converge, though we
show convergence of ratios of terms when increasing by two’s or ratios of even or
odd terms. We end with a discussion of the convergence of the ratios of subsequent
terms modulo k.

2. The Recurrence Relation

In order to obtain the generating function, we first show that our sequences satisfy
a linear recurrence relation modulo k. So, fix k and the k-tuple (x1, x2, . . . , xk).
We consider the sequence

�
F (x1,x2,...,xk)

n

�
, and use the short-hand notation {qn},

as defined in the introduction. We show that for some constant A,

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

To achieve this, we introduce a family of sequences related to {qn}.

Definition 4. For each j, where 0 ≤ j ≤ k − 1, we define a sequence
�
qj
n

�
as

follows. Let qj
0 = 0 and qj

1 = 1. For n = mk + r ≥ 2, with 0 ≤ r ≤ k − 1, we define

qj
n = qj

mk+r = xj−r+1q
j
mk+r−1 + qj

mk+r−2,

where xj−r+1 = xi, for 1 ≤ i ≤ k, if (j − r + 1) ≡ i (mod k).

For example, the sequence q0
n begins,

0, 1, xk−1, xk−1xk−2 + 1, xk−1xk−2xk−3 + xk−1 + xk−3, . . . .

Note that there are k-many sequences
�
qj
n

�
associated with {qn}.
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We set the constant A = q0
k+1 + qk−1. Now through a series of lemmas, we will

arrive at the linear recurrence

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

Throughout the remainder of this paper, we assume k to be a fixed positive
integer.

Lemma 5. For 0 ≤ j ≤ k − 1, qk+j = qj
k+j.

Proof. To begin, we see that

qk+j = xj−1qk+j−1 + qk+j−2

= qj
2qk+j−1 + qj

1qk+j−2

= qj
2(xj−2qk+j−2 + qk+j−3) + qj

1qk+j−2

= (xj−2q
j
2 + qj

1)qk+j−2 + qj
2qk+j−3

= qj
3qk+j−2 + qj

2qk+j−3.

Following the same process, one can easily show that

qk+j = qj
i+1qk+j−i + qj

i qk+j−(i+1),

where 0 ≤ i ≤ k + j − 1.
Hence,

qk+j = qj
k+jqk+j−(k+j−1) + qj

k+j−1qk+j−(k+j)

= qj
k+jq1 + qj

k+j−1q0

= qj
k+jq1

= qj
k+j .

Similarly, we obtain the identity qj = qj
j .

Lemma 6. For all n ≥ 2 and 0 ≤ j ≤ k − 1,

qj
n = xj−1q

j−1
n−1 + qj−2

n−2 = qj
2q

j−1
n−1 + qj−2

n−2.

Proof. We proceed by strong induction on n. For n = 2, we have

qj
2 = xj−1

= xj−1q
j
1 + qj

0

= qj−1
1 qj

2 + qj
0

= qj
2q

j−1
1 + qj−2

0
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Now, if we assume our claim is true for all n ≤ t, we shall show that qj
t+1 =

qj
2q

j−1
t + qj−2

t−1 . We write t = mk + r for some 0 ≤ r ≤ k − 1. Then

qj
t+1 = qj

mk+r+1

= xj−rq
j
mk+r + qj

mk+r−1

= xj−r

�
qj
2q

j−1
mk+r−1 + qj−2

mk+r−2

�
+

�
qj
2q

j−1
mk+r−2 + qj−2

mk+r−3

�

= qj
2q

j−1
mk+r + qj−2

mk+r−1

= qj
2q

j−1
t + qj−2

t−1 .

Lemma 7. For all integers 0 ≤ j ≤ k − 1 we have q0
k+1 = qj

k+1 − qk−1 + qj−1
k−1.

Proof. Using Lemma 2, we have that

q0
k+1 + qk−1 = q0

k+1 + qk−1
k−1

= xk−1q
k−1
k + qk−2

k−1 + qk−1
k−1

= qk−1
k+1 + qk−2

k−1

= xk−2q
k−2
k + qk−3

k−1 + qk−2
k−1

= qk−2
k+1 + qk−3

k−1 .

By continuing this process for k − j steps, we have q0
k+1 + qk−1 = qj

k+1 + qj−1
k−1.

Lemma 8. For all integers 0 ≤ j ≤ k − 1,m ≥ 2, and 2 ≤ t ≤ km + j,

qkm+j = qj
t qkm+j−t+1 + qj

t−1qkm+j−t.

Proof. Using Definitions 1 and 2, we have

qkm+j = xj−1qkm+j−1 + qkm+j−2

= qj
2qkm+j−1 + qj

1qkm+j−2.

We then achieve qkm+j = qj
t qkm+j−t+1 + qj

t−1qkm+j−t in t − 1 steps by repeated
applications of Definitions 1 and 2.

Lemma 9. For 0 ≤ j ≤ k − 1, and k,m ≥ 2, we have that if 0 ≤ i ≤ k − 1,

qkm+j = Aqk(m−1)+j + (qj
kqj−1

i − qj
i+1q

j−1
k−1)qk(m−1)+j−i

+(qj
kqj−1

i−1 − qj
i q

j−1
k−1)qk(m−1)+j−(i+1).
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Proof. By Lemmas 3 and 4, when t = k + 1, we have that

qkm+j = qj
k+1qkm+j−k + qj

kqkm+j−k−1

=
�
q0
k+1 + qk−1 − qj−1

k−1

�
qk(m−1)+j + qj

kqk(m−1)+j−1.

It remains to see that
�
−qj−1

k−1

�
qk(m−1)+j + qj

kqk(m−1)+j−1

=
�
qj
kqj−1

i − qj
i+1q

j−1
k−1

�
qk(m−1)+j−i +

�
qj
kqj−1

i−1 − qj
i q

j−1
k−1

�
qk(m−1)+j−(i+1).

For this, we employ a similar method as in Lemma 4, always replacing the largest
term of the sequence using the definition and gathering like terms.

Lemma 10. For all integers 0 ≤ j ≤ k − 1, and for all k ≥ 2,

qj
kqj−1

k−2 − qj
k−1q

j−1
k−1 = (−1)k−1.

Proof. Employing the method used in Lemmas 4 and 5 (applying the definition and
gathering like terms), we get

qj
kqj−1

k−2 − qj−1
k−1q

j
k−1 =

�
xj+1q

j
k−1 + qj

k−2

�
qj−1
k−2 − qj−1

k−1q
j
k−1

= −qj−1
k−3q

j
k−1 + qj

k−2q
j−1
k−2

= qj
k−2q

j−1
k−4 − qj

k−3q
j−1
k−3.

Continuing in the same manner, we have that at step k − 2,

qj
kqj−1

k−2 − qj
k−1q

j−1
k−1 = (−1)k−2qj

2q
j−1
0 − (−1)k−2qj

1q
j−1
1 = (−1)k−1.

Theorem 11. For 0 ≤ j ≤ k − 1 and m ≥ 2,

qkm+j = Aqk(m−1)+j + (−1)k−1qk(m−2)+j .

Proof. This follows directly from Lemmas 5 and 6.

Remark 12. The recurrence relation discussed in Section 2 is also discussed in a
very recent paper by C. Cooper [1]. We note that in [1], there is no explicitly stated
formula for the coefficient A. Instead, a very interesting combinatorial description
is given, based on the number of ways to create a bracelet of length k using beads
of length one or two.
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3. Generating Function for the k-Periodic Fibonacci Sequence

Generating functions provide a powerful technique for solving linear homogeneous
recurrence relations. Even though generating functions are typically used in con-
junction with linear recurrence relations with constant coefficients, we will systemat-
ically make use of them for linear recurrence relations with nonconstant coefficients.
In this section, we consider the generating functions for the k-periodic Fibonacci
sequences.

Theorem 13. The generating function for the k-periodic Fibonacci sequence given
by {qn} is

G(x) =

k−1�
r=0

qrxr +
k−1�
r=0

(qk+r −Aqr)xk+r

1−Axk + (−1)kx2k
.

Proof. We begin with the formal power series representation of the generating func-
tion for {qn}, G(x) = q0 + q1x + q2x2 + · · ·+ qnxn + · · · =

�∞
m=0 qmxm. We rewrite

G(x) as

G(x) =
k−1�

r=0




∞�

j=0

qjk+rx
jk+r



 .

Now denote the inner sum as Gr(x) =
∞�

j=0
qjk+rxjk+r. Note that G(x) = G0(x) +

G1(x)+ · · ·+Gk−1(x). To get the desired result, we consider each of the summands
separately. For 0 ≤ r < k, we have

Gr(x) = qrx
r + qk+rx

k+r + q2k+rx
2k+r + · · · + qjk+rx

jk+r + · · ·

= qrx
r + qk+rx

k+r +
∞�

j=2

qjk+rx
jk+r

= qrx
r + qk+rx

k+r +
∞�

j=2

�
Aq(j−1)k+r − (−1)kq(j−2)k+r

�
xjk+r

= qrx
r + qk+rx

k+r + Axk
∞�

j=2

q(j−1)k+rx
(j−1)k+r

−(−1)kx2k
∞�

j=2

q(j−2)k+rx
(j−2)k+r

= qrx
r + qk+rx

k+r + Axk
∞�

j=1

qjk+rx
jk+r − (−1)kx2k

∞�

j=0

qjk+rx
jk+r

= qrx
r + qk+rx

k+r + Axk [Gr(x)− qrx
r]− (−1)kx2kGr(x)

= qrx
r + (qk+r −Aqr)xk+r +

�
Axk − (−1)kx2k

�
Gr(x).
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Therefore,
�
1−Axk + (−1)kx2k

�
Gr(x) = qrxr + (qk+r −Aqr)xk+r, resulting in

Gr(x) =
qrxr + (qk+r −Aqr)xk+r

1−Axk + (−1)kx2k
. (1)

Thus,

G(x) = G0(x) + G1(x) + · · · + Gk−1(x)

=
q0 + (qk −Aq0)xk

1−Axk + (−1)kx2k
+

q1x + (qk+1 −Aq1)xk+1

1−Axk + (−1)kx2k

+ · · · + qk−1xk−1 + (q2k−1 −Aqk−1)x2k−1

1−Axk + (−1)kx2k
. (2)

After simplifying the above expression, we get the desired result as claimed in the
theorem;

G(x) =

k−1�
r=0

qrxr +
k−1�
r=0

(qk+r −Aqr)xk+r

1−Axk + (−1)kx2k
.

4. Binet’s Formula for the k-Periodic Fibonacci Sequence

In this section, we will state and prove an extension of Binet’s formula for the
k-periodic Fibonacci sequences.

Lemma 14. If

α =
(−1)kA +

�
A2 − (−1)k4
2

and β =
(−1)kA−

�
A2 − (−1)k4
2

,

then α and β are roots of z2 − (−1)kAz + (−1)k = 0.

Lemma 15. If α and β are as in Lemma 14, then

(a) α + β = (−1)kA, α− β =
�

A2 − (−1)k4, and αβ = (−1)k

(b) αm+1 + βαm = (−1)kAαm, βm+1 + αβm = (−1)kAβm

(c)
1

1−Axk + (−1)kx2k
=

1
α− β

�
α

1− (−1)kαxk
− β

1− (−1)kβxk

�
.

Theorem 16. (Generalized Binet’s Formula) The terms of the k-periodic Fibonacci
sequence {qn} are given by

qkm+r = (−1)k(m+1)

��
αm − βm

α− β

�
qk+r −

�
αm−1 − βm−1

α− β

�
qr

�
,

where α and β are as in Lemma 14.
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Proof. Suppose that 0 ≤ r < k. The generating function for the subsequence
{qmk+r} is given by (see Equation (1))

Gr(x) =
qrxr + (qk+r −Aqr)xk+r

1−Axk + (−1)kx2k
= xr qr + (qk+r −Aqr)xk

1−Axk + (−1)kx2k

=
xr

�
qr + (qk+r −Aqr)xk

�

α− β

�
α

1− (−1)kαxk
− β

1− (−1)kβxk

�

=
xr

�
qr + (qk+r −Aqr)xk

�

α− β

∞�

n=0

(−1)kn
�
αn+1 − βn+1

�
xnk

= xr
�
qr + (qk+r −Aqr)xk

� ∞�

n=0

(−1)kn
�
αn+1 − βn+1

�
xnk

α− β

= xr

� ∞�

n=0

(−1)kn
�
αn+1 − βn+1

�
qrxnk

α− β

+
∞�

n=0

(−1)kn
�
αn+1 − βn+1

�
(qk+r −Aqr)x(n+1)k

α− β

�

= xr

� ∞�

n=0

(−1)kn
�
αn+1 − βn+1

�
qrxnk

α− β

+(−1)k
∞�

n=1

(−1)kn (αn − βn) (qk+r −Aqr)xnk

α− β

�

= xr

�
qr +

∞�

n=1

(−1)kn
�
αn+1 − βn+1

�
qrxnk

α− β

+(−1)k
∞�

n=1

(−1)kn (αn − βn) (qk+r −Aqr)xnk

α− β

�

= xr

�
qr +

∞�

n=1

(−1)kn

�
αn+1 − βn+1

�
qr + (−1)k (αn − βn) (qk+r −Aqr)

α− β
xnk

�

= qrx
r +

∞�

n=1

(−1)k(n+1)

��
αn − βn

α− β

�
qk+r −

�
αn−1 − βn−1

α− β

�
qr

�
xnk+r.

Therefore,

Gr(x) =
∞�

n=0

(−1)k(n+1)

��
αn − βn

α− β

�
qk+r −

�
αn−1 − βn−1

α− β

�
qr

�
xnk+r.

Thus

qkn+r = (−1)k(n+1)

��
αn − βn

α− β

�
qk+r −

�
αn−1 − βn−1

α− β

�
qr

�
.
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Theorem 17. The ratios of succesive terms of the subsequence {qmk+r} converge
to

η =
A + sgn(A)

�
A2 − 4(−1)k

2

if |A| > 2, where sgn(A) =
A

|A| is the sign of A.

Proof. We will show the case A > 2. First note that when k is odd, |α| < |β| and
when k is even, |α| > |β|. From Theorem 16, we have

q(m+1)k+r

qmk+r
= (−1)k

�
αm+1 − βm+1

�
qk+r − (αm − βm) qr

(αm − βm) qk+r − (αm−1 − βm−1) qr
.

=






−β

��
α

β

�m+1

− 1

�
qk+r −

1
β

��
α

β

�m

− 1
�

qr

��
α

β

�m

− 1
�

qk+r −
1
β

��
α

β

�m−1

− 1

�
qr

if k is odd

α

�
1−

�
β

α

�m+1
�

qk+r −
1
α

�
1−

�
β

α

�m�
qr

�
1−

�
β

α

�m�
qk+r −

1
α

�
1−

�
β

α

�m−1
�

qr

if k is even.

Since
����
α

β

���� < 1 when k is odd and
����
β

α

���� < 1 when k is even, we get

lim
m→∞

q(m+1)k+r

qmk+r
=

�
−β ; if k is odd
α ; if k is even =

A +
�

A2 − 4(−1)k

2
.

The case A < −2 can be handled in the same fashion.

One can prove in a similar way that for each r = 1, 2, · · · , k−1, the ratios
qmk+r

qmk+r−1

converge to ηr =
qk+r + (−1)k−1βqr

qk+r−1 + (−1)k−1βqr−1
as m→∞.
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