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Abstract
We establish two binomial coefficient–generalized harmonic sum identities using the
partial fraction decomposition method. These identities are a key ingredient in the
proofs of numerous supercongruences. In particular, in other works of the author,
they are used to establish modulo p

k (k > 1) congruences between truncated gener-
alized hypergeometric series, and a function which extends Greene’s hypergeometric
function over finite fields to the p-adic setting. A specialization of one of these con-
gruences is used to prove an outstanding conjecture of Rodriguez-Villegas which
relates a truncated generalized hypergeometric series to the p-th Fourier coefficient
of a particular modular form.

1. Introduction and Statement of Results

For non-negative integers i and n, we define the generalized harmonic sum, H
(i)
n ,

by

H
(i)
n :=

n�

j=1

1
ji

and H
(i)
0 := 0. In [3] Chu proves the following binomial coefficient-generalized

harmonic sum identity using the partial fraction decomposition method. If n is a
positive integer, then

n�

k=1

�
n + k

k

�2�
n

k

�2�
1 + 2kH

(1)
n+k + 2kH

(1)
n−k − 4kH

(1)
k

�
= 0. (1)

This identity had previously been established using the WZ method [1] and was
used by Ahlgren and Ono in proving the Apéry number supercongruence [2].
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In [4], [5] the author establishes various supercongruences between truncated
generalized hypergeometric series, and a function which extends Greene’s hyperge-
ometric function over finite fields to the p-adic setting. Specifically, let p be an odd
prime and let n ∈ Z+. For 1 ≤ i ≤ n + 1, let mi

di
∈ Q ∩ Zp such that 0 <

mi
di

< 1.
Let Γp(·) denote Morita’s p-adic gamma function. Then define

n+1G

�
m1
d1

,
m2
d2

, . . . ,
mn+1
dn+1

�

p

:=
−1

p− 1

p−2�

j=0

�
(−1)jΓp

� j
p−1

��n+1 n+1�

i=1

Γp

�
�mi

di
− j

p−1 �
�

Γp

�
mi
di

� (−p)−�
mi
di
− j

p−1 �.

Note that when p ≡ 1 (mod di) this function recovers Greene’s hypergeometric
function over finite fields. For a complex number a and a non-negative integer n let
(a)n denote the rising factorial defined by

(a)0 := 1 and (a)n := a(a + 1)(a + 2) · · · (a + n− 1) for n > 0.

Then, for complex numbers ai, bj and z, with none of the bj being negative integers
or zero, we define the truncated generalized hypergeometric series

pFq

�
a1, a2, a3, . . . , ap

b1, b2, . . . , bq

��� z

�

m

:=
m�

n=0

(a1)n(a2)n(a3)n · · · (ap)n

(b1)n(b2)n · · · (bq)n

z
n

n!
.

An example of one the supercongruence results from [5] is the following theorem.

Theorem 1. (Theorem 2.6 in [5] ) Let r, d ∈ Z such that 2 ≤ r ≤ d − 2 and
gcd(r, d) = 1. Let p be an odd prime such that p ≡ ±1 (mod d) or p ≡ ±r (mod d)
with r

2 ≡ ±1 (mod d). If s(p) := Γp

�
1
d

�
Γp

�
r
d

�
Γp

�
d−r

d

�
Γp

�
d−1

d

�
, then

4G

�
1
d ,

r
d , 1− r

d , 1− 1
d

�

p

≡ 4F3

�
1
d ,

r
d , 1− r

d , 1− 1
d

1, 1, 1

���� 1

�

p−1

+ s(p)p (mod p
3).

A specialization of this congruence is used to prove an outstanding supercongruence
conjecture of Rodriguez-Villegas, which relates a truncated generalized hypergeo-
metric series to the p-th Fourier coefficient of a particular modular form [4],[6].
Similar results to Theorem 1 exist for 4G with other parameters, and also 2G and
3G.

The main results of the current paper, Theorems 2 and 3 below, are two binomial
coefficient–generalized harmonic sum identities which factor heavily into the proofs
of all the 4G congruences. Taking particular values for n,m, l, c1 and c2 in these
identities allows the vanishing of certain terms in the proofs. Note that letting
m = n in Theorem 2 recovers (1).
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Theorem 2. Let m,n be positive integers with m ≥ n. Then

n�

k=0

�
m + k

k

��
m

k

��
n + k

k

��
n

k

��
1+k

�
H

(1)
m+k + H

(1)
m−k + H

(1)
n+k + H

(1)
n−k − 4H(1)

k

��

+
m�

k=n+1

(−1)k−n

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�
= (−1)m+n

.

Theorem 3. Let l,m, n be positive integers with l > m ≥ n ≥ l
2 and c1, c2 ∈ Q

some constants. Then

n�

k=0

�
m + k

k

��
m

k

��
n + k

k

��
n

k

���
1+k

�
H

(1)
m+k+H

(1)
m−k+H

(1)
n+k+H

(1)
n−k−4H(1)

k

��

·
�
c1

�
H

(1)
k+n −H

(1)
k+l−n−1

�
+ c2

�
H

(1)
k+m −H

(1)
k+l−m−1

��
− k

�
c1

�
H

(2)
k+n −H

(2)
k+l−n−1

�

+c2

�
H

(2)
k+m −H

(2)
k+l−m−1

���
+

m�

k=n+1

(−1)k−n

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�

·
�
c1

�
H

(1)
k+n −H

(1)
k+l−n−1

�
+ c2

�
H

(1)
k+m −H

(1)
k+l−m−1

��
= 0.

The remainder of this paper is spent proving Theorems 2 and 3.

2. Proofs

We first develop two algebraic identities of which the binomial coefficient–harmonic
sum identities are limiting cases.

Theorem 4. Let x be an indeterminate and let m,n positive integers with m ≥ n.
Then

n�

k=0

�
m + k

k

��
m

k

��
n + k

k

��
n

k

�

·
�

−k

(x + k)2
+

1 + k

�
H

(1)
m+k + H

(1)
m−k + H

(1)
n+k + H

(1)
n−k − 4H(1)

k

�

x + k

�

+
m�

k=n+1

(−1)k−n

x + k

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�
=

x(1− x)n(1− x)m

(x)n+1(x)m+1

. (2)
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Proof. Using partial fraction decomposition we can write

f(x) :=
x(1− x)n(1− x)m

(x)n+1(x)m+1

=
A

x
+

n�

k=1

�
Bk

(x + k)2
+

Ck

x + k

�
+

m�

k=n+1

Dk

x + k

for some A,Bk, Ck and Dk ∈ Q. We now isolate these coefficients by taking various
limits of f(x) as follows.

A = lim
x→0

xf(x) = lim
x→0

(1− x)n(1− x)m

(1 + x)n(1 + x)m

= 1.

For 1 ≤ k ≤ n,

Bk = lim
x→−k

(x + k)2f(x)

= lim
x→−k

x(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

=
−k(k + 1)n(k + 1)m

(−k)2k(1)n−k(1)m−k

=
−k(k + 1)n(k + 1)m

(−1)2kk!2(n− k)!(m− k)!

= −k

�
m + k

k

��
m

k

��
n + k

k

��
n

k

�
,

and, using L’Hôspital’s rule,

Ck = lim
x→−k

(x + k)2f(x)−Bk

x + k

= lim
x→−k

d

dx

�
(x + k)2f(x)

�

= lim
x→−k

d

dx

�
x(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

�
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= lim
x→−k

��
(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

��
1− x

�
n�

s=1

(−x + s)−1

+
m�

s=1

(−x + s)−1 +
n−k�

s=1

(x + k + s)−1 +
m−k�

s=1

(x + k + s)−1 + 2
k−1�

s=0

(x + s)−1

���

=

�
(1 + k)n(1 + k)m

(−k)2k(1)n−k(1)m−k

��
1 + k

�
n�

s=1

(k + s)−1 +
m�

s=1

(k + s)−1 +
n−k�

s=1

(s)−1

+
m−k�

s=1

(s)−1 + 2
k−1�

s=0

(−k + s)−1

��

=
�

m + k

k

��
m

k

��
n + k

k

��
n

k

��
1 + k

�
H

(1)
m+k + H

(1)
m−k + H

(1)
n+k + H

(1)
n−k − 4H(1)

k

��
.

Similarly, for n + 1 ≤ k ≤ m,

Dk = lim
x→−k

(x + k)f(x)

= lim
x→−k

x(1− x)n(1− x)m

(x)n+1(x)k(x + k + 1)m−k

=
−k(k + 1)n(k + 1)m

(−k)n+1(−k)k(1)m−k

= (−1)k−n

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�
.

Theorem 5. Let x be an indeterminate and let l,m, n be positive integers with
l > m ≥ n ≥ l

2 and c1, c2 ∈ Q some constants. Then

n�

k=0

1
x + k

�
m + k

k

��
m

k

��
n + k

k

��
n

k

���
c1

�
H

(1)
k+n −H

(1)
k+l−n−1

�

+c2

�
H

(1)
k+m −H

(1)
k+l−m−1

��
·
�

x

x + k
+k

�
H

(1)
m+k + H

(1)
m−k + H

(1)
n+k + H

(1)
n−k − 4H(1)

k

��

− k

�
c1

�
H

(2)
k+n −H

(2)
k+l−n−1

�
+ c2

�
H

(2)
k+m −H

(2)
k+l−m−1

���
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+
m�

k=n+1

(−1)k−n

x + k

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�

×
�
c1

�
H

(1)
k+n −H

(1)
k+l−n−1

�
+ c2

�
H

(1)
k+m −H

(1)
k+l−m−1

��

=
x(1− x)n(1− x)m

(x)n+1(x)m+1

�
c1

n�

s=l−n

(−x + s)−1 + c2

m�

s=l−m

(−x + s)−1

�
. (3)

Proof. Using partial fraction decomposition we can write

f(x) : =
x(1− x)n(1− x)m

(x)n+1(x)m+1

�
c1

n�

s=l−n

(−x + s)−1 + c2

m�

s=l−m

(−x + s)−1

�

=
A

x
+

n�

k=1

�
Bk

(x + k)2
+

Ck

x + k

�
+

m�

k=n+1

Dk

x + k

for some A,Bk, Ck and Dk ∈ Q. As in the proof of Theorem 4, we isolate the
coefficients A,Bk, Ck and Dk by taking various limits of f(x). For brevity, we first
let

T
(r)
a := c1

n�

s=l−n

(a + s)−r + c2

m�

s=l−m

(a + s)−r

and

U
(r) := c1

�
H

(r)
k+n −H

(r)
k+l−n−1

�
+ c2

�
H

(r)
k+m −H

(r)
k+l−m−1

�
.

Then we have

A = lim
x→0

xf(x)

= c1 lim
x→0

n�

s=l−n

(1− x)n(1− x)m

(1 + x)n(1 + x)m(s− x)
+ c2 lim

x→0

m�

s=l−m

(1− x)n(1− x)m

(1 + x)n(1 + x)m(s− x)

= c1

n�

s=l−n

s
−1 + c2

m�

s=l−m

s
−1

= c1

�
H

(1)
n −H

(1)
l−n−1

�
+ c2

�
H

(1)
m −H

(1)
l−m−1

�
.
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For 1 ≤ k ≤ n,

Bk = lim
x→−k

(x + k)2f(x)

= lim
x→−k

x(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

T
(1)
−x

=
−k(k + 1)n(k + 1)m

(−k)2k(1)n−k(1)m−k

T
(1)
k

= −k

�
m + k

k

��
m

k

��
n + k

k

��
n

k

�
U

(1)

and

Ck = lim
x→−k

d

dx

�
(x + k)2f(x)

�

= lim
x→−k

d

dx

�
x(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

T
(1)
−x

�

= lim
x→−k

��
(1− x)n(1− x)m

(x)2k(x + k + 1)n−k(x + k + 1)m−k

��
x T

(2)
−x + T

(1)
−x − x T

(1)
−x

·
�

n�

s=1

(−x + s)−1 +
m�

s=1

(−x + s)−1 +
n−k�

s=1

(x + k + s)−1

+
m−k�

s=1

(x + k + s)−1 + 2
k−1�

s=0

(x + s)−1

���

=

�
(1 + k)n(1 + k)m

(−k)2k(1)n−k(1)m−k

��
−kT

(2)
k + T

(1)
k

�
1 + k

�
n�

s=1

(k + s)−1 +
m�

s=1

(k + s)−1

+
n−k�

s=1

(s)−1 +
m−k�

s=1

(s)−1 + 2
k−1�

s=0

(−k + s)−1

���

=
�

m + k

k

��
m

k

��
n + k

k

��
n

k

�

·
�
−k U

(2) +
�

1 + k

�
H

(1)
m+k + H

(1)
m−k + H

(1)
n+k + H

(1)
n−k − 4H(1)

k

��
U

(1)

�
.
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For n + 1 ≤ k ≤ m,

Dk = lim
x→−k

(x + k)f(x) = lim
x→−k

x(1− x)n(1− x)m

(x)n+1(x)k(x + k + 1)m−k

T
(1)
−x

=
−k(k + 1)n(k + 1)m

(−k)n+1(−k)k(1)m−k

T
(1)
k

= (−1)k−n
U

(1)

�
m + k

k

��
m

k

��
n + k

k

���
k − 1

n

�
.

Proofs of Theorems 2 and 3. Multiply both sides of (2) and (3) respectively by x

and take the limit as x →∞.
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