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Abstract

We establish two binomial coefficient—generalized harmonic sum identities using the
partial fraction decomposition method. These identities are a key ingredient in the
proofs of numerous supercongruences. In particular, in other works of the author,
they are used to establish modulo p* (k > 1) congruences between truncated gener-
alized hypergeometric series, and a function which extends Greene’s hypergeometric
function over finite fields to the p-adic setting. A specialization of one of these con-
gruences is used to prove an outstanding conjecture of Rodriguez-Villegas which
relates a truncated generalized hypergeometric series to the p-th Fourier coefficient
of a particular modular form.

1. Introduction and Statement of Results
For non-negative integers ¢ and n, we define the generalized harmonic sum, Hr(f),

by
HW Z —

and Héi) := 0. In [3] Chu proves the following binomial coefficient-generalized
harmonic sum identity using the partial fraction decomposition method. If n is a
positive integer, then

n 2
3 (” * k) ( > {1 +2kHY, +2kHY, —4kH | = 0. (1)
k=1

This identity had previously been established using the WZ method [1] and was
used by Ahlgren and Ono in proving the Apéry number supercongruence [2].
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In [4], [5] the author establishes various supercongruences between truncated
generalized hypergeometric series, and a function which extends Greene’s hyperge-
ometric function over finite fields to the p-adic setting. Specifically, let p be an odd
prime and let n € Z*. For 1 <i <n+1, let 22 € QN Z, such that 0 < 2% < 1.
Let 'y (-) denote Morita’s p-adic gamma functlon Then define

n+1G ( d1 ) dg Yttty Zl:rll)p
T ‘ o \nt+1 2t F,,((Zli" - Lﬁ) R S
= (CUnG) =y e

Note that when p = 1 (mod d;) this function recovers Greene’s hypergeometric
function over finite fields. For a complex number a and a non-negative integer n let
(a),, denote the rising factorial defined by

(a)y:=1 and (a),:=ala+1)(a+2)---(a+n—1) for n>0.

Then, for complex numbers a;, b; and z, with none of the b; being negative integers
or zero, we define the truncated generalized hypergeometric series

ay, az, as, ..., dap

F,
P b, by, ..., b,

= ()(ba), - (by), b
An example of one the supercongruence results from [5] is the following theorem.
Theorem 1. (Theorem 2.6 in [5] ) Let r,d € Z such that 2 < r < d —2 and
ged(r,d) = 1. Let p be an odd prime such that p = +1 (mod d) or p = £r (mod d)
with r> = £1 (mod d). If s(p) == Tp(3)Tp (%) (S50, (52), then

1 r T 1
4G<a e *avlfa)

P

=453

.
@

) +s(p)p (mod p®).
p—1

A specialization of this congruence is used to prove an outstanding supercongruence
conjecture of Rodriguez-Villegas, which relates a truncated generalized hypergeo-
metric series to the p-th Fourier coefficient of a particular modular form [4],[6].
Similar results to Theorem 1 exist for 4G with other parameters, and also oG and
3G.

The main results of the current paper, Theorems 2 and 3 below, are two binomial
coefficient—generalized harmonic sum identities which factor heavily into the proofs
of all the 4G congruences. Taking particular values for n,m,l,¢; and ¢y in these
identities allows the vanishing of certain terms in the proofs. Note that letting
m = n in Theorem 2 recovers (1).
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Theorem 2. Let m,n be positive integers with m > n. Then

é(m; k) (Z) <n—kkk) (Z) [1+k (H0, + B+ Y, + B, 4ng1))]
+k§”+1(_1)k_n<m;—:k) <7;Z> (nzk>/<k;1> _ Ly

Theorem 3. Let I, m,n be positive integers with [ > m > n > % and c1,co € Q
some constants. Then

“ImA4k\[/m\/n+k\/n (1) (1) (1) (1) (1)
Z( ! >(k>< ' )(k){{lﬁ—k(H Lt B+ B, e 1D, —amD)

k=0

(1) (1) (1) (1) (2) (2)
’ [ (Hk—i-n Hy 1) +C2<Hk+m —H . 1)} k{cl (Hk+7z —H

)
R LT S G [ [ T

k=n+1

1 1 1 1
e (1 - ) e (10, - B, )| =0

The remainder of this paper is spent proving Theorems 2 and 3.

2. Proofs

We first develop two algebraic identities of which the binomial coefficient—harmonic
sum identities are limiting cases.

Theorem 4. Let x be an indeterminate and let m,n positive integers with m > n.
Then

SO0

e vk (G Y 1Y, - am D) }

'{(x+k)2+ T4k

—&-k_zt:rl — (m;—k) < K > (n—l:k>/<k;1> _ w(i(lx—)ni)ln(%;z)m @)
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Proof. Using partial fraction decomposition we can write

Ca(l-w),1-2), A T By, Ck N Dy
f(z) = —;+Z{(x+k)2+x+k}+kz r+k

(@)1 (@) k=1 =n+1

for some A, By, Cy and Dy, € Q. We now isolate these coefficients by taking various
limits of f(x) as follows.

A= lim zf(z) = lim (1=2),(1 =)y, =1.
For 1 <k <n,
By = limk(x + k)2 f(x)

. (1 —x),(1—x)

m

_ —k(k+1), (k+1),,
<_k)i<1)n7k(1)mfk

_ —k(k+1),(k+1),
T (D220 — k) (m — k)!

("))

and, using L’Hospital’s rule,

(z +k)?f(z) — By,

Cr = lim

r——k T+ k
= lim 4 (z+ k)2 f(x)
o z——k dx

—_— l r(l-x), (1-x),
2
e——kdz | ()i (z+k+1), (z+k+1), ,
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X (1*‘77)n(171‘)m —x 3 —Tr+ S -1
N o e e | P

m n—=k m—k k—1
Y (z+s) D (k)T + Y (@tkts +2Z(ax+s)1>”
s=1 s=1 s=1 s=0

(1+k),(1+k),,
(ke (oD

mfk k—1

+ Z —k+s)” >]
_(m+E\(m\(n+k\ n (1) 1) (1) ) (1)
( . )(kx . )(leJrk(H LA HY +mD, D 4Hk).

Similarly, for n +1 < k < m,
Dy = 1imk(x +k)f(x)

= lim 21 = x)n(l — x)m
rz——k (x)n+1(x)k)(x +k+ 1)m7k

_ —k(k+1),(k+1),,
- (7k)n+1(7k)k(1)m—k

o (L)

Theorem 5. Let x be an indeterminate and let I, m,n be positive integers with
I>m>n> % and c1,co € Q some constants. Then

SO fo - )

1 1 1 1 1 1 1
o (G~ B0 ) [t (S B 4 10, D, — a0

O

el (32 = ) e (2 )|
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£ STt

1 1 1 1
e [o (B0~ ) e (3D~ )|

n m

c1 Z( r+s) e Z —x+8)”

s=l—-n s=l—-m

(@)1 ()i

Proof. Using partial fraction decomposition we can write

f(x)::x(l—a:)( [CIZ —r4s) +CQZ —rts)”
( )n+1( )m+1 s=l—n s=l-m

AL By, Ch Dy
o +Z{(w+k)2+x+k}+k=§rlx+k

for some A, B,Cy and Dy € Q. As in the proof of Theorem 4, we isolate the
coefficients A, By, Cy and Dy by taking various limits of f(z). For brevity, we first
let

T = ¢ Z (a+s)""+co Z (a+s)™"
s=l—-n s=l—m

and
. () () (r) (r)
U i=c (Hk+n Hygin 1) (Hk+m B Hk+l m— 1)

Then we have

A lim xf(ac)

1fx 1fx)m 1fx (1f:c)m

n m
c1 E s_1+02 E st

s=l—-n s=l—-m

=0 (H( ) — Hz(l)n 1) te2 (Hv(yp Hl(l)m 1)
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For 1 <k <n,

By, = xliﬂ_lk(x + k) f(x)
— lim i z(l—x),(1-2),, ng
_ ke + D), (k4 1) 2
= 5 X
(7k)k(1)n—k(1)m—k'
_ m+k m n+k n )
== (")) e
and
Cr = lim 2 k)2
o=, G | R )

z(l—2),(1-2), 7@
sk dr | (@)p(@+k+ 1), p(e+rk+1),_,

I
g
|

(1 - w)n(l — x)m
==k | @@ +E+1),_(a+k+1),,_,

n m n—k
. (Z(—x +8)7 ¢ Z(—x +8)7 ¢ Z(gc +k+s)7!

s=1 s=1 s=1

+ Tg) - Tﬁl)

x

x T(Q)

—x

I
g

m—k

— k—1
ST ) |
s=0

s=1

n m

—kT + T (1 +k (Z(k +8) Y (k47!

s=1 s=1

(1 +k), (1 +k),,
(_k)i(l)n—k(l)m—k

n—=k m—k k—1
+Y ()T ()7 2 (—k+s)—1>>]
1 0

s= s=1 s=!

(")) G

: {k U@ 4 (1 + k(Hﬁlk +HY , +HY, +HY, — 4H,51))>U(1)} .
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Forn+1<k<m,
. : z(1—x),(1— ) (1)
Dy = lim (z+k)f(x) = lim z 1 /A
r—— o——k (1), () (x+k+1), . °F
(7k)n+1(7k)k(1)m—k g
_ (_1yk=n (D) m+k\/m\/n+k k—1
e (M )/
U
Proofs of Theorems 2 and 3. Multiply both sides of (2) and (3) respectively by «
and take the limit as © — oco. O
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