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Abstract
Recently, Andrews, Hirschhorn and Sellers have proven congruences modulo 3 for
four types of partitions using elementary series manipulations. In this paper, we
generalize their congruences using arithmetic properties of certain quadratic forms.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence whose sum is n.
An overpartition of n is a partition of n where we may overline the first occurrence
of a part. Let p(n) denote the number of overpartitions of n, p,(n) the number of
overpartitions of n into odd parts, ped(n) the number of partitions of n without
repeated even parts and pod(n) the number of partitions of n without repeated odd
parts. The generating functions for these partitions are
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where as usual
(a;q)n == (1—a)(1—ag)---(1—aq"").

The infinite products in (1)—(4) are essentially the four different ways one can spe-
cialize the product (—aq;q)so/(bg;¢)oo to obtain a modular form whose level is
relatively prime to 3.

A series of four recent papers examined congruence properties for these partition
functions modulo 3 [1, 5, 6, 7]. Among the main theorems in these papers are the
following congruences (see Theorem 1.3 in [6], Corollary 3.3 and Theorem 3.5 in [1],
Theorem 1.1 in [5] and Theorem 3.2 in [7], respectively). For all n > 0 and a > 0
we have

Po(3**(An+ B)) =0 (mod 3), (5)
where An+ B =9n 46 or 27Tn + 9,

17-3%+2 1 19 3%+l 1
2a+3 — 2a+2 —
ped(3 n+ —5 ) = ped(3 n+ B — ) =0 (mod 3), (6)
p(3**(2Tn +18)) =0 (mod 3) (7)
and
23 . 2a4-2 1
pod (32(1-‘1‘3 _|_ 33%) = 0 (mod 3) (8)

We note that congruences modulo 3 for (n), p,(n) and ped(n) are typically valid
modulo 6 or 12. The powers of 2 enter trivially (or nearly so), however, so we do
not mention them here.

The congruences in (5)—(8) are proven in [1, 5, 6, 7] using elementary series
manipulations. If we allow ourselves some elementary number theory, we find that
much more is true.

With our first result we exhibit formulas for p,(3n) and ped(3n + 1) modulo 3
for all n > 0. These formulas depend on the factorization of n, which we write as

n=23"T[p" [] ", 9)
i=1 j=1

where p; =1, 5, 7 or 11 (mod 24) and ¢; = 13, 17, 19 or 23 (mod 24). Further, let
t denote the number of prime factors of n (counting multiplicity) that are congruent
to 5 or 11 (mod 24). Let R(n,Q) denote the number of representations of n by the
quadratic form Q.
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Theorem 1. For all n > 0 we have
Po(3n) = f(n)R(n,2* + 6y*) (mod 3)
and
ped(3n+1) = (—=1)" ™' R(8n + 3,227 + 3y?) (mod 3),
where f(n) is defined by

-1, n=1,6,9,10 (mod 12),
fn) = | ( )
1, otherwise.

Moreover, we have

5,(3n) = Fm)(1 + (-1 T +u) [ (%) (mod 3)  (10)

i=1 =1

and
(—1)"ped(3n + 1) =p,(48n + 18) (mod 3). (11)

There are many ways to deduce congruences from Theorem 1. For example,
calculating the possible residues of 2 + 632 modulo 9 we see that

R(3n + 2,27 + 6y°) = R(9n + 3,27 + 6y%) = 0,

and then (10) implies that p,(27n) = p,(3n) (mod 3). This gives (5). The congru-
ences in (6) follow from those in (5) after replacing 48n + 18 by 32%(48(3n +2) + 18)
and 32%(48(9n +6) + 18) in (11). We record two more corollaries, which also follow
readily from Theorem 1.

Corollary 2. For alln >0 and a > 0 we have
70(2**(An+ B)) =0 (mod 3),
where An + B = 24n + 9 or 24n + 15.

Corollary 3. If ¢ = 1,5,7 or 11 (mod 24) is prime, then for all n with £t n we
have
p,(3¢(*>n) =0 (mod 3). (12)

For the functions p(3n) and pod(3n+2) we have relations not to binary quadratic
forms but to r5(n), the number of representations of n as the sum of five squares.
Our second result is the following.



INTEGERS: 11 (2011) 4

Theorem 4. For all n > 0 we have
p(3n) = (=1)"rs5(n) (mod 3)

and
pod(3n+2) = (—1)"r5(8n+5) (mod 3).

Moreover, for all odd primes £ and n > 0, we have

B(30%n) = (z ) (%) + 1) B(3n) — 65(3n/¢%) (mod 3) (13)
and
(=1)"pod(3n + 2) = p(24n + 15)  (mod 3), (14)

where (2) denotes the Legendre symbol.

Here we have taken p(3n/¢?) to be 0 unless ¢? | 3n. Again there are many ways
to deduce congruences. For example, (7) follows readily upon combining (13) in the
case ¢ = 3 with the fact that

r5(9n+6) =0 (mod 3),

which is a consequence of the fact that R(9n + 6,22 + 3% +322) = 0. One can check
that (8) follows similarly. For another example, we may apply (13) with n replaced
by nf for £ =2 (mod 3) to obtain

Corollary 5. If £ =2 (mod 3) is prime and £ {n, then

p(3¢3n) =0 (mod 3).

2. Proofs of Theorems 1 and 4
Proof of Theorem 1. On page 364 of [6] we find the identity

D(¢*)D(¢°)
D(q)?

i

> Po(3n)g" =

n>0

where

Reducing modulo 3, this implies that
> PeBn)g" = 3 (1" (mod 3)
n>0 T,yEZL

Z f(n)R(n,z* + 6y*)¢" (mod 3).
n>0
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Now it is known (see Corollary 4.2 of [3], for example) that if n has the factorization
in (9), then

R(n, .732 —|—6y2) — (1 + (_1)a+b+t) ﬁ(l +Ui) - (ﬂ) (15)

, 2
=1 j=1
This gives (10). Next, from [1] we find the identity

D(¢*)yp(—¢*)

Zped(3n + 1" = DT

n>0

where

Uq) = Y ",

n>0

Reducing modulo 3, replacing ¢ by —¢® and multiplying by ¢ gives

> (=)™ ped(3n + 1)¢*" T = > " R(8n + 3,22 + 3y*)¢*"*  (mod 3).
n>0 n>0

It is known (see Corollary 4.3 of [3], for example) that if n has the factorization
given in (9), then

R(n,22% +3y%) = (1— (=)™ [ +u) [] (ﬂ)

i=1 j=1
Comparing with (15) finishes the proof of (11). O

Proof of Theorem 4. On page 3 of [5] we find the identity

Zﬁ(?m)q" Die’)* (mod 3).

n>0

Reducing modulo 3 and replacing ¢ by —q yields
Z(_l)”p(gn)qn = Z rs(n)g”  (mod 3).
n>0 n>0

It is known (see Lemma 1 in [4], for example) that for any odd prime ¢ we have
n

rs(n) = (£~ ¢ (z) +1) ra(n) = Cra(n/E2).

Here r5(n/¢?) = 0 unless £2 | n. Replacing r5(n) by (—1)"p(3n) throughout gives
(13). Now equation (1) of [7] reads

Tg}(—l)”pod@n +2)¢" = o
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Reducing modulo 3 we have

> (=1)"pod(3n +2)¢" = (g)® (mod 3)

n>0

Z r5(8n 4+ 5)¢"  (mod 3)
n>0

- Zﬁ(%n +15)¢"  (mod 3),
n>0

where the second congruence follows from Theorem 1.1 in [2]. This implies (14) and
thus the proof of Theorem 4 is complete. O
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