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Abstract
We investigate the number of sets of words that can be formed from a finite alphabet,
counted by the total length of the words in the set. An explicit expression for the
counting sequence is derived from the generating function, and asymptotics for
large alphabet size and large total word length are discussed. Moreover, we derive
a Gaussian limit law for the number of words in a random finite language.

1. Introduction and Basic Properties

The results of Chomsky and Schützenberger [1] on generating functions of formal
languages are classical in combinatorics. This theory, and much of the related liter-
ature, is mainly concerned with problems of the kind: How many words of length n
are there in an infinite formal language, which is defined by some specification?

On the other hand, the following questions have received little attention: If the
size of a finite language is fixed, in terms of the total length of all the words it con-
tains, then how many words are there, on average? How many such finite languages
are there? The answers are not immediate even without any restrictions on the
words of the language (forbidden patterns etc.), so we focus on the unconstrained
case in the present note. The analysis of these problems nicely illustrates the inter-
play between symbolic specifications and complex analytic properties of generating
functions.

Not surprisingly, languages that consist of just one very long word dominate the
count, in the sense that they contribute an exponential factor mn. (Here and in what
follows, we write m for the size of the underlying alphabet, and n for the total word
length.) The subexponential factors can be found, in a rather straightforward way,
from the behavior of the pertinent generating function at its dominating singularity.
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Two noteworthy, and maybe surprising, features emerge: First, the asymptotic
count is uniform in alphabet size m and total word length n. Second, the average
number of words in a finite language is concentrated around

√
n, independently of

the alphabet size.
To fix notation, let fn = fn(m) denote the number of formal languages (i.e., sets

of words) with total word length n over an alphabet with m ≥ 2 symbols [3, I.37].
For instance, f2(2) = 5 and f3(2) = 16, as seen from the listings

{a, b}, {aa}, {ab}, {ba}, {bb}

respectively

{a, aa}, {a, ab}, {a, ba}, {a, bb}, {b, aa}, {b, ab}, {b, ba}, {b, bb}, {aaa},
{aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb}.

Another value is f2(3) = 12, illustrated by

{aa}, {ab}, {ac}, {ba}, {bb}, {bc}, {ca}, {cb}, {cc}, {a, b}, {a, c}, {b, c}.

The sequence fn(2) is number A102866 of Sloane’s On-Line Encyclopedia of Integer
Sequences.2 The ordinary generating function (ogf) [3, I.37]

F (z) :=
∞∑

n=0

fnzn = exp

( ∞∑

k=1

(−1)k−1

k

mzk

1−mzk

)
(1)

can be obtained by a standard procedure (the “power set construction” [3, I.2];
finite languages are sets of sequences built from alphabet elements). Its first terms
are

F (z) = 1 + mz + 1
2m(3m− 1)z2 + m(13

6 m2 − 1
2m + 1

3 ) + O(z4). (2)

Note that
F (z) = exp

(
mz

1−mz

)
φ(z),

where

φ(z;m) = φ(z) := exp

( ∞∑

k=2

(−1)k−1

k

mzk

1−mzk

)
(3)

is analytic for |z| < 1/
√

m. (Indeed, for 0 < ε < 1/
√

m, |z| ≤ 1/
√

m− ε, and k ≥ 2,
we have

m|z|k ≤ m|z|2 ≤ m(m−1/2 − ε)2 = 1− ε
√

m(2− ε
√

m) =: 1− ε′,

whence ∣∣∣∣
mzk

1−mzk

∣∣∣∣ ≤
m|z|k

ε′
.)

2http://www.research.att.com/∼njas/sequences/
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The dominating singularity of F (z) is thus located at z = 1/m, leading to the rough
approximation fn(m) ≈ mn. Clearly, we have fn(m) > mn for m,n ≥ 2 (consider
languages consisting only of one word). We will see in Theorem 3 below that the
ratio fn(m)/mn is e2

√
n+O(log n).

Our first result is an explicit expression for fn(m), which can be obtained from (1).
To state it, we write i &n, if the vector i = (i1, . . . , in) ∈ Zn

≥0 represents a partition
of n, in the sense that i1 + 2i2 + · · ·+ nin = n.

Theorem 1. For m ≥ 2 and n ≥ 1, we have

fn(m) =
∑

i&n

A1(m)i1 . . . An(m)in

i1! . . . in!
, (4)

where
Aj(m) :=

∑

d|j

(−1)d−1mj/d/d, j ≥ 1.

Proof. We expand the Lambert series [6] in the exponent of F (z), using the geo-
metric series formula, and then collect terms:

F (z) = exp




∞∑

k=1

(−1)k−1

k

∞∑

j=1

mjzkj





= exp

( ∞∑

n=1

An(m)zn

)

=
∞∏

n=1

exp (An(m)zn)

=
∞∏

n=1

∞∑

in=0

An(m)inznin

in!

=
∞∑

n=0

zn
∑

i&n

A1(m)i1 . . . An(m)in

i1! . . . in!
.

2. Asymptotics for Large Alphabet Size

Next we derive the asymptotics of fn(m) as m, the cardinality of the alphabet,
tends to infinity. Define κn and µn = µn(m) by

∞∑

n=0

κnzn = exp
(

z

1− z

)
and

∞∑

n=0

µnzn = φ(z).
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Note that n!κn is Sloane’s A000262 (several combinatorial interpretations are given
on that web page), and that κn has the representation

κn =
∑

i&n

1
i1! . . . in!

, n ≥ 1. (5)

Then we can write

fn/mn = [zn] exp
(

z

1− z

)
φ(z/m)

= κn + κn−1µ1/m + · · ·+ κ0µn/mn.

If the dependence of µn on m is not too strong, the first term on the right-hand
side should dominate when m→∞. This is indeed the case:

Theorem 2. If n ≥ 1 is fixed and m→∞, we have

fn(m) ∼ κnmn. (6)

Proof. Since, as m→∞,

Aj(m) = mj + O(mj/2), j ≥ 1,

we have
Aj(m)ij = mjij (1 + O(m−j/2)),

whence, for i & n,

A1(m)i1 . . . An(m)in = mn(1 + O(m−1/2)).

The result thus follows from (4) and (5).

Note that κ1 = 1, κ2 = 3
2 , and κ3 = 13

6 , in line with (2).

3. Asymptotics for Large Total Word Length

Theorem 3. For large total word length n, the sequence fn = fn(m) has the
asymptotics

fn ∼
φ(1/m)
2
√

eπ
× mne2

√
n

n3/4
, n→∞, (7)

where φ is defined in (3). More precisely, there is a full asymptotic expansion of
the form

fn ∼
φ(1/m)
2
√

eπ
× mne2

√
n

n3/4



1 +
∑

j≥1

cjn
−j/2



 , n→∞. (8)
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The expansion (8) is a special case of a result by Wright [7], who studied Taylor
coefficients of functions of the form “analytic factor times exponential of a pole” (he
also allowed for a logarithmic factor). Alternatively, the first order asymptotics (7)
can be also be obtained from the Hayman-admissibility [3, 4] of the ogf F (z).

Nevertheless, we sketch the proof of (7) and (8), because we will revisit it in
Sections 4 and 5. The steps are very similar to the saddle point analysis [3, Exam-
ple VIII.7] of exp(z/(1 − z)), the ogf of κn, slightly perturbed by the presence of
the analytic factor φ(z). Let us shift the dominating singularity from z = 1/m to
z = 1. Then the integrand in Cauchy’s formula

fn = fn(m) =
mn

2iπ

∮
F (z/m)

zn+1
dz (9)

has an approximate saddle point at z = ẑ := 1 − 1/
√

n. We write z = ẑeiθ, where
θ = arg(z) is constrained by

|θ| < n−α, 2
3 < α < 3

4 , (10)

so that z lies in a small arc around the saddle point. In this range we have the
uniform expansions

z−n−1 = exp
(√

n + 1
2 − inθ + O(n−1/2)

)
, n→∞, (11)

and
1

1− z
=
√

n + iθn− n3/2θ2 + O(n1/2−α). (12)

Recall that φ(z/m) is analytic at z = 1. Therefore, by (11) and (12), the local
expansion of the integrand in (9) at the saddle point ẑ is

F (z/m)
zn+1

= φ(1/m) exp
(
−1

2 + 2
√

n− n3/2θ2
)
×

(
1 + O(n1/2−α)

)
, (13)

valid as n→∞, uniformly w.r.t. θ in the range (10). Note that
∫ n−α

−n−α

e−n3/2θ2
dθ ∼

√
πn−3/4,

so that integrating (13) from −n−α to n−α yields the right-hand side of (7). To
prove (7), it remains to show that the integral from n−α to π grows slower (the
other half of the tail is handled by symmetry). There is a C > 0 such that

∣∣∣∣
F (z/m)

zn+1

∣∣∣∣ ≤ C|z|−n exp,
(

1
1− z

)
, |z| < 1. (14)

If z = ẑeiθ lies on the integration contour, then the factor |z|−n in (14) is O(e
√

n).
The remaining factor exp,(1/(1− z)) decreases if |θ| = | arg(z)| increases, hence

∫ π

n−α

exp,
(

1
1− ẑeiθ

)
dθ ≤ π exp,

(
1

1− ẑeiθ

)∣∣∣∣
θ=n−α

= exp
(√

n− n3/2−2α + O(1)
)
.
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(The last line is obtained by recapitulating the derivation of (13), with θ = n−α.)
Hence ∣∣∣∣∣

∮

n−α<|θ|<π

F (z/m)
zn+1

dz

∣∣∣∣∣ ≤ exp
(
2
√

n− n3/2−2α + O(1)
)
. (15)

This indeed grows slower than e2
√

n/n3/4, so that the proof of (7) is complete.
The availability of a full asymptotic expansion is a typical feature of the saddle

point method [3, Example VIII.4]. To justify (8), first note that it suffices to check
that the central part

∫ n−α

−n−α dθ of the Cauchy integral has such an expansion, as the
tail estimate (15) lies asymptotically below (8). This expansion is found by tedious,
but straightforward calculations: Take more terms in (11), (12), and the Taylor
series of φ(z/m) at the saddle point, and integrate from θ = −n−α to n−α.

4. Joint Asymptotics

Note that the limits m → ∞ and n → ∞ commute in the following sense: Since
we have κn ∼ 1/(2

√
eπ)e2

√
n/n3/4 [3, Prop. 8.4], the right-hand side of (6) has,

as n → ∞, the same asymptotics as the right-hand side of (7) for m → ∞. We
will now show that letting m and n tend to infinity simultaneously yields the same
result, regardless of their respective speeds.

Theorem 4. If both the word length and the alphabet size tend to infinity, we have

fn(m) ∼ 1
2
√

eπ
× mne2

√
n

n3/4
, m, n→∞.

Proof. The result can be obtained by an adaption of the proof of Theorem 3. Again
we use Cauchy’s formula, with the same saddle point contour as before:

fn(m) =
mn

2π
ẑ−n

∫ π

−π
F (ẑeiθ/m)e−i(n+1)θdθ

=
mn

2π
ẑ−n

∫ π

−π
exp

(
ẑeiθ

1− ẑeiθ

)
φ
( ẑeiθ

m
;m

)
e−i(n+1)θdθ. (16)

We will show that

φ
( ẑeiθ

m
;m

)
→ 1, m, n→∞, uniformly w.r.t. θ ∈ [−π,π]. (17)

Assuming this we are done. Indeed, assertion (17) shows at the same time the
validity of the local expansion (13), with φ(1/m) replaced by 1, and the persistence
of the tail estimate (15).
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To prove (17), notice that

φ
( ẑeiθ

m
;m

)
= exp

( ∞∑

k=2

(−1)k−1

k

m1−kẑkekiθ

1−m1−kẑkekiθ

)
. (18)

We have |m1−kẑkekiθ| < 1
2 for m ≥ 2, and hence

∣∣∣∣∣

∞∑

k=2

(−1)k−1

k

m1−kẑkekiθ

1−m1−kẑkekiθ

∣∣∣∣∣ ≤
∞∑

k=2

m1−kẑk

=
∞∑

k=2

m1−k

(
1− 1√

n

)k

=
(1− 1/

√
n)2

m(1− 1/m + 1/(m
√

n))
.

Thus the exponent in (18) is uniformly o(1), which establishes (17).

5. The Distribution of the Number of Words

A natural parameter to consider is the number Wn of words in a random finite
language of total word length n. (The alphabet size m ≥ 2 is fixed throughout this
section.) The appropriate bivariate ogf, with z marking total word length and u
marking number of words, is given by

F (z, u) := exp

( ∞∑

k=1

(−1)k−1

k

mzkuk

1−mzk

)
.

The expected number of words is then

E[Wn] = f−1
n [zn]∂uF (z, u)|u=1. (19)

Notice that

∂uF (z, u)|u=1 = F (z)
∞∑

k=1

(−1)k−1mzk

1−mzk
, (20)

so that the asymptotic analysis of [zn]∂uF (z, u)|u=1 is an easy extension of the one
of fn = [zn]F (z) in Section 3: Close to the saddle point, the new factor resulting
from the right-hand side of (20) is

1
1− z

=
√

n(1 + o(1)).

Hence [zn]∂uF (z, u)|u=1 ∼
√

nfn, so that, by (19), the expectation of Wn satisfies

E[Wn] ∼
√

n, n→∞.



INTEGERS: 11 (2011) 8

Similarly, one can obtain the asymptotics σ(Wn) ∼ n1/4/
√

2 for the standard devi-
ation.

Finally, we show that the law of the normalized number of words is asymptotically
normal. To do so, we appeal to a result by Sačkov [3, 5]; alternatively, Drmota
et al.’s concept of extended Hayman-admissibility [2] could have been used.

Theorem 5. The number of words Wn in a random finite language admits a Gaus-
sian limit law:

Wn − an

bn
→ N (0, 1), n→∞,

in distribution, where the scaling constants satisfy an ∼
√

n and bn ∼ n1/4/
√

2.

Proof. As is well known, combinatorial limit laws can often be obtained by an
asymptotic analysis of the probability generating function

E[uWn ] = f−1
n [zn]F (z, u). (21)

Again, we adapt the proof of Theorem 3. If u ranges in a fixed small neighborhood
of u = 1, the expansion (13) generalizes to the uniform local expansion

F (z/m, u)
zn+1

= φ(1/m, u;m) exp
(
−1

2u + 2
√

un− u−1/2n3/2θ2
)
×

(
1 + O(n1/2−α)

)
,

where

φ(z, u;m) := exp

( ∞∑

k=2

(−1)k−1

k

mzkuk

1−mzk

)
.

Integrating from θ = −n−α to n−α, and taking into account (7), we infer that (21)
has the uniform asymptotics

E[uWn ] ∼ exp(hn(u)), n→∞,

with
hn(u) := 2(

√
u− 1)

√
n + 1

4 log u + log
φ(1/m, u;m)
φ(1/m;m)

.

Note that, for n→∞,

h′n(1) =
√

n + O(1),
h′′n(1) = −1

2

√
n + O(1),

h′′′n (1) = 3
4

√
n + O(1),

so that the function hn(u) satisfies the conditions of Theorem 9.13 in Flajolet and
Sedgewick’s monograph [3], itself taken from Sačkov [5]. We conclude that

Wn − h′n(1)
(h′n(1) + h′′n(1))1/2

converges in distribution to a standard normal random variable.
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6. Possible Extensions

Let L be some (infinite) formal language containing bn words of length n, with ogf

B(z) = b1z + b2z
2 + . . .

Then

FL(z) =
∞∑

k=0

fL,nzn = exp

( ∞∑

k=1

(−1)k−1

k
B(zk)

)
(22)

is the ogf of finite languages built from words of L. (So far, we had L =
⋃

n≥1 An,
the language of all words over a finite alphabet A = {a1, . . . , am}, and bn = mn.)

A large class of languages admits rational generating functions [1, 3]. The explicit
expression from Theorem 1 can be adapted, mutatis mutandis, to any L featuring
a rational ogf B(z). Moreover, the ogf (22) is amenable to Hayman’s method for
any rational B(z). The dominating factor of fL,n follows from the location of the
dominating pole of B(z), while the order of the pole determines the subexponential
factor. On the other hand, the results in Sections 4 and 5 require uniformity prop-
erties that are not immediately obvious for general B(z). As a natural question for
future research, we ask for conditions on L that ensure uniform asymptotics and/or
a Gaussian limit law for fL,n.

Acknowledgement. I thank anonymous referees for making the proof of Theo-
rem 1 more elegant, and for additional helpful comments.
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