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Abstract
We give a combinatorial proof of Guo’s multi-generalization of Munarini’s identity,
answering a question of Guo.

1. Introduction

Simons [7] proved a binomial coefficient identity which is equivalent to
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Several different proofs of (1) were given in [1, 5, 8]. Using Cauchy’s integral formula
as in [5], Munarini [4] obtained the following generalization:
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(2)
where α,β, x and y are indeterminates. It is clear that (2) reduces to (1) when
α = β = n and y = 1. Shattuck [6] and Chen and Pang [2] provided two interesting
combinatorial proofs of (2).

Recently, Guo [3] obtained the following multinomial coefficient generalization of
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(2):
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where n = (n1, . . . , nm) ∈ Nm, |n| = n1 + · · · + nm, the multinomial coefficient
(x
n

)

is defined by

(
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
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x(x− 1) · · · (x− |n| + 1)
n1! · · ·nm!

, if n ∈ Nm,

0, otherwise,

and x + y = (x1+y1, x2+y2, . . . , xm+ym), xa = xa1
1 xa2

2 · · ·xam
m for x = (x1, x2, . . . ,

xm), y = (y1, y2, . . . , ym) ∈ Cm and a = (a1, a2, . . . , am) ∈ Nm.
In this paper we shall give an involutive proof of (3), answering a question of

Guo [3]. Our proof is motivated by Shattuck’s work [6].

2. The Involutive Proof

Notice that both sides of (3) are polynomials in α,β, x1, . . . , xm and y1, . . . , ym. We
may consider only the case of positive integers with β ≥ α. We first understand the
unsigned quantity in the sum of the left-hand side of (3). Let Γ = {a, b1, . . . , bm}
be an alphabet. We construct the weighted words w = w1 · · ·wβ+|n| on Γ as fol-
lows:

i) Choose k = (k1, . . . , km) ∈ Nm with 0 ≤ ki ≤ ni for i = 1, 2, . . . ,m;

ii) Let a subword of w1 · · ·wβ−α+|n| be a permutation of the multiset
{bn1−k1

1 , . . . , bnm−km
m }, with each bi weighted yi and also circled;

iii) Let all the other wi’s be a permutation of the multiset {aβ , bk1
1 , . . . , bkm

m }, with
each bi weighted xi or yi and each a weighted 1.

We call such a weighted word w a configuration, and define its weight as the
product of the weights of all the wi’s. Here is an example for β = 4,α = 2,n = (2, 2)
and k = (2, 1) (the configuration has weight x1x2y1y2):

a

1
b2 a

1
b1 b2 a

1
b1 a

1x2 y1 y2

!"#$
x1 .



INTEGERS: 11 (2011) 3

Notice that the circled letters can occur only in the first β − α + |n| positions,
but not in the last α positions. It is not hard to see that the sum of the weights of
the configurations defined above is equal to

(β−α+|n|
n−k

)(β+|k|
k

)
(x + y)kyn−k for any

k ∈ Nm.
Let S be the set of all configurations just defined and let ϕ : S → S be the

involution defined as follows. If the configuration w ∈ S contains at least one letter
wj with weight yi in the first β−α+|n| positions, then let ϕ(w) be the configuration
obtained from w by choosing the first letter wj with weight yi and circling it (if it
is not circled) or uncirling it (if it is circled). If the configuration w ∈ S does not
contain letters wj with weight yi in the first β−α+|n| positions, then let ϕ(w) = w.
For the above example, we have
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←→
ϕ
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.

Let Fix(ϕ) := {w|ϕ(w) = w, w ∈ S}. For each w ∈ Fix(ϕ), notice that every
letter wj with weight yi is in the right α positions. The total weight of the con-
figurations in Fix(ϕ) is equal to the right-hand side of (3). This is because if the
subwords with elements weighted yi in wβ−α+|n|+1 · · ·wβ+|n| is a permutation of
the multiset {bn1−k1

1 , . . . , bnm−km
m }, then there are

(β+|k|
k

)
possible ways to choose

the remaining subwords of w, where each bi is weighted xi. This proves (3).
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