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Abstract
We give a combinatorial proof of Guo’s multi-generalization of Munarini’s identity,
answering a question of Guo.

1. Introduction

Simons [7] proved a binomial coefficient identity which is equivalent to
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Several different proofs of (1) were given in [1, 5, 8]. Using Cauchy’s integral formula
as in [5], Munarini [4] obtained the following generalization:
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where «, 8,z and y are indeterminates. It is clear that (2) reduces to (1) when
a = =nand y = 1. Shattuck [6] and Chen and Pang [2] provided two interesting
combinatorial proofs of (2).

Recently, Guo [3] obtained the following multinomial coefficient generalization of
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where n = (n1,...,nm) € N, [n| = ny + - -+ + Ny, the multinomial coefficient ()
is defined by

z(x—1)---(z—|n|+1)
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n 0, otherwise,

and X +y = (21+Y1, T2 +Y2, - - -, Tin +Ym), X* = 271 25? - afe for x = (21,29, .. -,

xm)a y = (y17y2a .. ay’m) S (Cm a‘nd a= (a17a27' .. ;am) S Nm
In this paper we shall give an involutive proof of (3), answering a question of
Guo [3]. Our proof is motivated by Shattuck’s work [6].

2. The Involutive Proof

Notice that both sides of (3) are polynomials in a, 3, x1, ..., Z; and y1, ..., Ym. We
may consider only the case of positive integers with § > a. We first understand the
unsigned quantity in the sum of the left-hand side of (3). Let I' = {a,b1,...,bm}
be an alphabet. We construct the weighted words w = w1 -+ wgqn on I' as fol-
lows:

i) Choose k = (k1,...,ky,) € N with 0 < k; <n; fori=1,2,...,m;

ii) Let a subword of wj---wg_qtjn be a permutation of the multiset
{br=hr ek with each b; weighted y; and also circled;

iii) Let all the other w;’s be a permutation of the multiset {a”, b]fl, oo, bEm ) with
each b; weighted x; or y; and each a weighted 1.

We call such a weighted word w a configuration, and define its weight as the
product of the weights of all the w;’s. Here is an example for § =4, = 2,n = (2,2)
and k = (2,1) (the configuration has weight x122y192):

abgablabla
1

z2 1 vy Y2 1 21 1
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Notice that the circled letters can occur only in the first § — o + |n| positions,
but not in the last a positions. It is not hard to see that the sum of the weights of
the configurations defined above is equal to ('Bfno‘j(‘“l) ('Bilk‘) (x + y)ky™~k for any
k e N™.

Let S be the set of all configurations just defined and let ¢ : S — S be the
involution defined as follows. If the configuration w € S contains at least one letter
w; with weight y; in the first 8—a+|n| positions, then let ¢(w) be the configuration
obtained from w by choosing the first letter w; with weight y; and circling it (if it
is not circled) or uncirling it (if it is circled). If the configuration w € S does not
contain letters w; with weight y; in the first §—a+|n| positions, then let p(w) = w.
For the above example, we have

abgablab1a<—<p>ab2aab1a
1 Yy Y2 1

r2 1 y1 y2 1 x1 1 1 a2 1 Ty 1

Let Fix(p) := {w|p(w) = w, w € S}. For each w € Fix(y), notice that every
letter w; with weight y; is in the right a positions. The total weight of the con-
figurations in Fix(p) is equal to the right-hand side of (3). This is because if the
subwords with elements weighted y; in wg_q4|n|+1 " Wa4n| is a permutation of
the multiset {672 7% ... p%m—%m} then there are (ﬁ'ﬂkl) possible ways to choose
the remaining subwords of w, where each b; is weighted ;. This proves (3).
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