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Abstract
For any set T' = {t1,t2,...,tn} C N, a basis A is said to have a T-order s if every
sufficiently large integer is the sum of s —¢; or s — ¢ or ... or s — t,, elements

taken from A (allowing repetitions), where s is the least integer with this property.
We write ord(™)(A) = s. In this paper, we characterize those bases A which have a
T-order.

1. Introduction

A set A of nonnegative integers is said to be an asymptotic basis of order r if every
sufficiently large integer can be expressed as a sum of at most r elements taken
from A (allowing repetitions) and r is the least integer with this property. We write
ord(A) = r. A basis A is said to have an exact order r’ if every sufficiently large
integer is the sum of exactly 7’ elements taken from A (again, allowing repetitions)
and 7’ is the least integer with this property. In this case we write ord*(A) = r’.
In [6], Erdés and Graham characterized those bases A which have an exact order.
They proved the following result: a basis A = {a1, as, ...} has an exact order if and
only if ged{agy1 —ax : k = 1,2,...} = 1. For related research, one may refer to
[1-5].

In this note, we introduce the concept of T-order as follows and generalize the
result by Erdds and Graham][6].

Definition 1. For any set T' = {t1,t2,...,t,} C N, a basis A is said to have a
T-order if there exists an integer s such that every sufficiently large integer is the
sum of s —t; or s — g or ... or s —t,, integers taken from A (allowing repetitions).
We indicate the least such s by ord(™)(A) = s.
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Definition 2. For any set T = {t1,t2,...,t,} C N, a basis A is said to have an
exact T-order if A has a T-order, and A does not have a T"-order for any set T/ C T.

By the definition, it’s obvious that ord*(A) = ord™(A4) when T' = {0}. It is
easy to find examples of bases A which do not have a T-order. For example, if
A={r>0:2=1 (mod 3)} and T = {0,1}, then A doesn’t have a T-order. By
the definition, we know that a basis A has a T-order for any set T" when it has an
exact order. Meanwhile, if 0 € T', then ord(A) < ord ™) (A) < ord*(A). It is clear
that if 0 € T, 0 € A and ord(A) = r, then ord™)(A) = ord*(A) = r. However, it is
not difficult to construct examples of bases A such that

ord™(A) > ord(A) or ord*(A) > ord ) (A).

For example, if

T=1{0,1}

and -

Ay = (J{z 3% + 1 <o <370,

k=0

then

ord(4;) =3 and ord™(4,) = 4.
If

T={0,1} and Ay ={x>0:2=2 (mod 6) or z =3 (mod 6)},

then

ord™(A) =3 and ord*(A4y) = 5.

In this paper, we characterize those bases A which have a T-order.

2. Bases with a T-order

For A = {a1,as,...}, let D(A) = ged{ar41 —ar : k = 1,2,...}. It is easy to see
that D(A) does not depend on the order of A.

Lemma 3. If A = {aj1,a9,...} is a basis, then (ay, D(A)) = 1 for all positive
integers k.

Proof. If there exists ko such that (ag,, D(A)) = d > 1, then d|a; for all k.
Therefore any sum of elements taken from A is a multiple of d, which contradicts
the condition that A is a basis. This completes the proof of Lemma 3. a

For A ={ay,as,...} and a positive integer h, define hA as the h-fold sum set of
A:
hA:{ail —|—ai2 —l——l—alh Zil S Slh}
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Lemma 4. If A = {aj,as,...} is a basis, then there exists a positive integer n such
that nAN (n+ D(A))A # 0.

Proof. Since D(A) = ged{ag+1 —ax : k =1,2,...}, there is a positive integer ¢ such
that
ged{ag+1 —ag 1 1 <k <t} = D(A).

Thus, there exist integers ci,ca, ..., ¢ such that
t
> er(aksr — ax) = D(A). (1)
k=1

We define py, and g by

. ap+1 if ¢ 20, . ag if ¢ >0,
Pr = ag if ¢ <O, &% = Ak+1 if ¢, <0.

Then (1) can be rewritten as

S lewl(pr — ax) = D(A),
k=1

ie.,
¢ t
> leklpr = D(A) + > lexlan:
k=1 k=1
Let
t
K=Y |exlprar-
k=1
Since
t lexlpr t
K=Y ar € (Y lexlpr) A
k=1 i=1 k=1
and

lek gk t

Dk € (Z lexlar) A,
k=1 j=1 k=1
we have K € nAN (n+ D(A))A, where n = 2221 |ek |gr. This completes the proof
of Lemma 4. O

Theorem 5. For any set T = {t1,t2,...,t,} C N, abasis A = {a1,as,...} hasa T-
order if and only if ¢1,to, ..., t, contains a complete system of incongruent residues
modulo D(A).
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Proof. (Necessity). Suppose that ord(")(A) = s. Since D(A) = ged{agi1 — ax :
kE=1,2,...}, we have ax41 = ax (mod D(A)) for all k. Therefore, any sum of
s — t; elements of A is congruent to (s — ¢;)a; modulo D(A) for i = 1,2,--- ,n.
If t1,to,...,t, does not contain a complete system of incongruent residues modulo
D(A), then (s —t1)a1, (s —t2)a,...,(s—t,)a; does not contain a complete system
of incongruent residues modulo D(A) either. It contradicts ord(™)(A) = s.

(Sufficiency). Suppose that ord(A) = r. By Lemma 4, there exist two positive
integers K and n such that

K enAn(n+ D(A))A.

Then, for any integer w > 1 we have

wK € () (wn+ kD(A))A. (2)

k=0
Let s = (([r/D(A)]—1)n+[r/D(A)] D(A))+t,. Now we prove that every sufficiently
large integer x can be represented as the sum of s —¢; or --- or s — t,, elements

taken from A. Let 21 =z — ([r/D(A4)] — 1)K.
Case 1: D(A) | ;. By Lemma 3, we have (ag, D(A)) = 1 and a; = a;(mod
D(A)) for any integer k > 1. Thus

xr1 € U 1A.

D(A)i, i<r

Setting w = [r/D(A)] — 1 in (2), we obtain
z=a1+ ([r/D(A)] = DK € (([r/D(A)] = V)n + [r/D(A)] D(A))A = (s — tn)A.

Case 2: D(A) { x;. By Lemma 3, we have (a1, D(A)) = 1. Since t1,ta,...,1t,
contains a complete system of incongruent residues modulo D(A), we have that (t,,—
tp)ai, (tn —tn—1)ai, ..., (t, —t1)a; also contains a complete system of incongruent
residues modulo D(A). Thus, there exists an integer ¢ such that 1 <4 < n and

(tn — ti)al =T (HlOdD(A))
By Case 1, we have
w1 — (tn — ti)ar + ([r/D(A)] = 1)K € (([r/D(A)] = D)n + [r/D(A)] D(A))A.

Hence for any sufficiently large integer x, there exists an integer ¢ (1 < ¢ < n) such
that

z =z1+([r/D(A)]-1)K € (([r/D(A)]—1)n+[r/D(A)] D(A)+(t,—t:))A = (s—t;)A.

This completes the proof of Theorem 5. O
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Remark. By the proof Theorem 5, we have

ord™ A < (([r/D(A)] — n + [r/D(A)] D(A)) + tn.

Corollary 6. For any set T' = {t1,t2,...,t,} C N, a basis A = {aj,az,...} has
an exact T-order if and only if D(A) = n and t1,ta,...,t, is a complete system of
incongruent residues modulo D(A).

Proof. A has an exact T-order if and only if A has a T-order and A does not
have a T"-order for any set 7" C T. By Theorem 5, T' contains a complete system
of incongruent residues modulo D(A) and T’ does not contain a complete system
of incongruent residues modulo D(A). Namely D(A) = n and tq,ta,...,t, is a
complete system of incongruent residues modulo D(A). O

Remark. Let T = {0}, by Corollary 6, we can get the result by Erdés and Graham.
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