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Abstract
For any set T = {t1, t2, . . . , tn} ⊆ N, a basis A is said to have a T -order s if every
sufficiently large integer is the sum of s − t1 or s − t2 or . . . or s − tn elements
taken from A (allowing repetitions), where s is the least integer with this property.
We write ord(T )(A) = s. In this paper, we characterize those bases A which have a
T -order.

1. Introduction

A set A of nonnegative integers is said to be an asymptotic basis of order r if every
sufficiently large integer can be expressed as a sum of at most r elements taken
from A (allowing repetitions) and r is the least integer with this property. We write
ord(A) = r. A basis A is said to have an exact order r′ if every sufficiently large
integer is the sum of exactly r′ elements taken from A (again, allowing repetitions)
and r′ is the least integer with this property. In this case we write ord∗(A) = r′.
In [6], Erdős and Graham characterized those bases A which have an exact order.
They proved the following result: a basis A = {a1, a2, . . .} has an exact order if and
only if gcd{ak+1 − ak : k = 1, 2, . . .} = 1. For related research, one may refer to
[1-5].

In this note, we introduce the concept of T -order as follows and generalize the
result by Erdős and Graham[6].

Definition 1. For any set T = {t1, t2, . . . , tn} ⊆ N, a basis A is said to have a
T -order if there exists an integer s such that every sufficiently large integer is the
sum of s− t1 or s− t2 or . . . or s− tn integers taken from A (allowing repetitions).
We indicate the least such s by ord(T )(A) = s.
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Definition 2. For any set T = {t1, t2, . . . , tn} ⊆ N, a basis A is said to have an
exact T -order if A has a T -order, and A does not have a T ′-order for any set T ′ ! T .

By the definition, it’s obvious that ord∗(A) = ord(T )(A) when T = {0}. It is
easy to find examples of bases A which do not have a T -order. For example, if
A = {x > 0 : x ≡ 1 (mod 3)} and T = {0, 1}, then A doesn’t have a T -order. By
the definition, we know that a basis A has a T -order for any set T when it has an
exact order. Meanwhile, if 0 ∈ T , then ord(A) ! ord(T )(A) ! ord∗(A). It is clear
that if 0 ∈ T , 0 ∈ A and ord(A) = r, then ord(T )(A) = ord∗(A) = r. However, it is
not difficult to construct examples of bases A such that

ord(T )(A) > ord(A) or ord∗(A) > ord(T )(A).

For example, if
T = {0, 1}

and

A1 =
∞⋃

k=0

{x : 32k + 1 ! x ! 32k+1},

then
ord(A1) = 3 and ord(T )(A1) = 4.

If
T = {0, 1} and A2 = {x > 0 : x ≡ 2 (mod 6) or x ≡ 3 (mod 6)},

then
ord(T )(A2) = 3 and ord∗(A2) = 5.

In this paper, we characterize those bases A which have a T -order.

2. Bases with a T -order

For A = {a1, a2, . . .}, let D(A) = gcd{ak+1 − ak : k = 1, 2, . . .}. It is easy to see
that D(A) does not depend on the order of A.

Lemma 3. If A = {a1, a2, . . .} is a basis, then (ak,D(A)) = 1 for all positive
integers k.

Proof. If there exists k0 such that (ak0 ,D(A)) = d > 1, then d| ak for all k.
Therefore any sum of elements taken from A is a multiple of d, which contradicts
the condition that A is a basis. This completes the proof of Lemma 3. !

For A = {a1, a2, . . . } and a positive integer h, define hA as the h-fold sum set of
A:

hA = {ai1 + ai2 + · · · + aih : i1 ≤ · · · ≤ ih}.
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Lemma 4. If A = {a1, a2, . . .} is a basis, then there exists a positive integer n such
that nA ∩ (n + D(A))A '= ∅.

Proof. Since D(A) = gcd{ak+1−ak : k = 1, 2, . . .}, there is a positive integer t such
that

gcd{ak+1 − ak : 1 ! k ! t} = D(A).

Thus, there exist integers c1, c2, . . . , ct such that

t∑

k=1

ck(ak+1 − ak) = D(A). (1)

We define pk and qk by

pk =
{

ak+1 if ck " 0,
ak if ck < 0, qk =

{
ak if ck " 0,
ak+1 if ck < 0.

Then (1) can be rewritten as

t∑

k=1

|ck|(pk − qk) = D(A),

i.e.,
t∑

k=1

|ck|pk = D(A) +
t∑

k=1

|ck|qk.

Let

K =
t∑

k=1

|ck|pkqk.

Since

K =
t∑

k=1

|ck|pk∑

i=1

qk ∈ (
t∑

k=1

|ck|pk)A

and

K =
t∑

k=1

|ck|qk∑

j=1

pk ∈ (
t∑

k=1

|ck|qk)A,

we have K ∈ nA ∩ (n + D(A))A, where n =
∑t

k=1 |ck|qk. This completes the proof
of Lemma 4. !

Theorem 5. For any set T = {t1, t2, . . . , tn} ⊆ N, a basis A = {a1, a2, . . .} has a T -
order if and only if t1, t2, . . . , tn contains a complete system of incongruent residues
modulo D(A).
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Proof. (Necessity). Suppose that ord(T )(A) = s. Since D(A) = gcd{ak+1 − ak :
k = 1, 2, . . .}, we have ak+1 ≡ ak (mod D(A)) for all k. Therefore, any sum of
s − ti elements of A is congruent to (s − ti)a1 modulo D(A) for i = 1, 2, · · · , n.
If t1, t2, . . . , tn does not contain a complete system of incongruent residues modulo
D(A), then (s− t1)a1, (s− t2)a1, . . . , (s− tn)a1 does not contain a complete system
of incongruent residues modulo D(A) either. It contradicts ord(T )(A) = s.

(Sufficiency). Suppose that ord(A) = r. By Lemma 4, there exist two positive
integers K and n such that

K ∈ nA ∩ (n + D(A))A.

Then, for any integer w " 1 we have

wK ∈
w⋂

k=0

(wn + kD(A))A. (2)

Let s = (([r/D(A)]−1)n+[r/D(A)]D(A))+tn. Now we prove that every sufficiently
large integer x can be represented as the sum of s − t1 or · · · or s − tn elements
taken from A. Let x1 = x− ([r/D(A)]− 1)K.

Case 1: D(A) | x1. By Lemma 3, we have (ak,D(A)) = 1 and ak ≡ a1(mod
D(A)) for any integer k " 1. Thus

x1 ∈
⋃

D(A)|i, i!r

iA.

Setting w = [r/D(A)]− 1 in (2), we obtain

x = x1 + ([r/D(A)]− 1)K ∈ (([r/D(A)]− 1)n + [r/D(A)]D(A))A = (s− tn)A.

Case 2: D(A) " x1. By Lemma 3, we have (a1,D(A)) = 1. Since t1, t2, . . . , tn
contains a complete system of incongruent residues modulo D(A), we have that (tn−
tn)a1, (tn − tn−1)a1, . . . , (tn − t1)a1 also contains a complete system of incongruent
residues modulo D(A). Thus, there exists an integer i such that 1 ! i ! n and

(tn − ti)a1 ≡ x1 (modD(A)).

By Case 1, we have

x1 − (tn − ti)a1 + ([r/D(A)]− 1)K ∈ (([r/D(A)]− 1)n + [r/D(A)]D(A))A.

Hence for any sufficiently large integer x, there exists an integer i (1 ! i ! n) such
that

x = x1+([r/D(A)]−1)K ∈ (([r/D(A)]−1)n+[r/D(A)]D(A)+(tn−ti))A = (s−ti)A.

This completes the proof of Theorem 5. !
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Remark. By the proof Theorem 5, we have

ord(T )A ! (([r/D(A)]− 1)n + [r/D(A)]D(A)) + tn.

Corollary 6. For any set T = {t1, t2, . . . , tn} ⊆ N, a basis A = {a1, a2, . . .} has
an exact T -order if and only if D(A) = n and t1, t2, . . . , tn is a complete system of
incongruent residues modulo D(A).

Proof. A has an exact T -order if and only if A has a T -order and A does not
have a T ′-order for any set T ′ ! T . By Theorem 5, T contains a complete system
of incongruent residues modulo D(A) and T ′ does not contain a complete system
of incongruent residues modulo D(A). Namely D(A) = n and t1, t2, . . . , tn is a
complete system of incongruent residues modulo D(A). !

Remark. Let T = {0}, by Corollary 6, we can get the result by Erdős and Graham.
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