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Abstract
We study a relation between factorials and their additive analog, the triangular
numbers. We show that there is a positive integer k such that n! = 2kT where T is
a product of triangular numbers. We discuss the primality of T±1 and the primality
of |T − p| where p is either the smallest prime greater than T or the greatest prime
less than T .

1. Introduction

There is a natural relation between triangular numbers and factorials. Triangular
numbers are the additive analogs of factorials. We show that there is a positive
integer k such that n! = 2kT where T is a product of triangular numbers. The
number of factors of T depends on the parity of n.

There are many open questions about the relationship between prime numbers
and factorials. For example, are there infinitely many primes of the form n! ± 1?
Erdös [4] asked if there are infinitely many primes p for which p − k! is composite
for each k such that 1 ≤ k! ≤ p. Fortune’s conjecture [5] asks whether the product
of the first n consecutive prime numbers plus or minus one is a prime. Since T is a
product of triangular numbers, it is natural to ask whether T ± 1 is a prime. It is
also natural to ask whether |T −p| is a prime number, where p is either the smallest
prime greater than T or the greatest prime less than T .

In this paper we prove that there are infinitely many cases for which T ±1 is not
a prime. We also give both numerical and theoretical evidence for the primality of
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|T − p| where p #= T ± 1.
We now formally state the question. We denote by tn the nth triangular number

where n ≥ 0 with t0 = 0 and tn = tn−1 + n. We define T (k) =
∏k

i=1 t2i−1 and
T ′(k) = t5

∏k
i=3 t2i for k > 2 an integer. If there is no ambiguity, we use T to mean

either T (k) or T ′(k).

Question 1. If T is either T (k) or T ′(k), and p is either the smallest prime greater
than T + 1 or the greatest prime less than T − 1, then

(1) are there infinitely many primes of the form T ± 1?

(2) Is |T − p| a prime number?

2. Preliminaries

In this section we introduce some notation. Throughout the paper we use k to
represent a positive integer. We prove that n! = 2k

∏k−1
i=0 (tk − ti) if n = 2k and

n! = 2k
∏k−1

i=0 (tk+1 − ti) if n = 2k + 1. Proposition 2, part (2) is in [2, 3]. Propo-
sition 2, part (1) is a natural relation. Therefore, we believe that it is known, but
unfortunately we have not found this property in the mathematics literature.

Proposition 2. If n is a positive integer, then

(1) n! =
{

2kT (k) if n = 2k
2k+1T ′(k) if n = 2k + 1.

(2) T (k) =
∏k−1

i=0 (tk − ti).

(3) 2T ′(k) =
∏k−1

i=0 (tk+1 − ti).

Proof. We prove part (1) for n = 2k, the other case is similar.

2kT (k) = 2k · t1 · t3 . . . t2k−1

= 2k · 1 · 2
2

· 3 · 4
2

. . .
(2k − 1) · 2k

2
= (2k)! = n! .

We now prove part (2). We suppose that n = 2k. From part (1) we know that
n! = 2kT (k). So,

2kT (k) = 1 · 2 · 3 · 4 . . . k · (k + 1) . . . (2k − 3) · (2k − 2) · (2k − 1) · 2k
= [1 · 2k] · [2 · (2k − 1)] · [3 · (2k − 2)] . . . [k · (k + 1)]
= [k · (k + 1)] . . . [3 · (2k − 2)] · [2 · (2k − 1)] · [1 · (2k)]

=
k−1∏

i=0

(k − i) · (k + i + 1)
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=
k−1∏

i=0

(k2 + k − i2 − i)

=
k−1∏

i=0

(k(k + 1)− i(i + 1)) .

Therefore,

T (k) =
1
2k

k−1∏

i=0

(k(k + 1)− i(i + 1))

=
k−1∏

i=0

(
k(k + 1)

2
− i(i + 1)

2

)

=
k−1∏

i=0

(tk − ti).

We prove part (3). We suppose that n = 2k + 1. It is easy to see that

2T ′(k) =
T (k + 1)
(k + 1)

. Thus,

2T ′(k) =
T (k + 1)

k + 1
=

1
k + 1

k∏

i=0

(tk+1 − ti) =
k−1∏

i=0

(tk+1 − ti).

Notice that 2T ′(k) =
∏k

i=1 t2i. Therefore, we can ask Question 1 replacing T ′(k)
by 2T ′(k). Numerical calculations show that Question 1, part (2) is true for 2T ′(k)
with k ≤ 1000. We have found that there are only 9 prime numbers of the form
2T ′(k)− 1 for k ≤ 1000 and 12 prime numbers of the form 2T ′(k) + 1 for k ≤ 1000.

Since tk =
(k+1

2

)
, Proposition 2, part (1) can be restated as

n! = 2k
k∏

i=1

(
2i
2

)
= 2k

k−1∏

i=0

((
k + 1

2

)
−

(
i + 1

2

))
if n = 2k

and

n! = 2k
k∏

i=1

(
2i + 1

2

)
= 2k

k−1∏

i=0

((
k + 2

2

)
−

(
i + 1

2

))
if n = 2k + 1.

We use Theorem 3 to prove Propositions 6 and 7. These propositions give upper
bounds for the number of primes in an interval.
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Let f be a real function and g be a positive function. We use f % g to mean
that there is a constant c > 0 such that |f(x)| ≤ cg(x) for all x in the domain of
f . This is also denoted by f = O(g). For the following two theorems q is a prime.
If N is a positive even integer, we write πN (x) to denote the number of primes b
up to x such that N + b is also prime, and, we write r(N) to denote the number of
representations of N as the sum of two primes.

Theorem 3. [6, Theorems 7.2 and 7.3] If N is a positive even integer, then

(1) πN (x)% x

(lnx)2
∏

q|N

(
1 +

1
q

)
.

(2) r(N)% N

(lnN)2
∏

q|N

(
1 +

1
q

)
.

3. Evidences for Primality of |T − p|

In this section we provide strong evidence that Question 1, part (2) is probably
true. We use the prime number theorem to give a first approach for the validity
of this question, and construct several examples that show that |T − l| is a prime
where l is a prime number. We found that if l is in a specific interval, then |T − l|
is a prime (we give a detailed description of this interval below.) We give an upper
bound for the number of primes in this interval.

Propositions 4 and 6 give a theoretical support to believe that the facts shown
in the following examples may be true in general. In Section 5 there are 2 tables
that show some primes of the form Q−T and T − q, where Q is the smallest prime
greater than T and q greatest prime less than T . We have observed that Q is in the
interval (T, T +p2) where p is either the smallest prime greater than 2k if T = T (k)
or is the smallest prime greater than 2k+1 if T = T ′(k). From Table 4 we can verify
that either p ≤ Q− T < p2 or Q− T = 1. From Table 1 we can verify that either
T − p2 < q ≤ T − p or T − q = 1. Using a computer program the authors verified
that this fact is also true for all k ≤ 103. Since every number in (T + 1, T + p)
is composite, we are going to analyze the behavior of Q in [T + p, T + p2) and
Q = T + 1. In Proposition 4 we show that if T + p ≤ Q < T + p2, then it proves
Question 1, part (2).

We first give a heuristic argument to show that if Q #= T + 1, then T + p ≤ Q <
T + p2. It is known from prime number theorem that if q is the next prime greater
than a number m + 1, then q is near m + lnm. So, Q is near T + lnT . If p is the
next prime greater than n, then

ln(T ) = ln
(

n!
2k

)
∼ n lnn− n− k ln 2 + 1 < p2.
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Therefore, if Q #= T + 1 and Q < T + lnT , then T + p ≤ Q < T + p2.
We now give some examples that show that there are several primes l that satisfy

T +p ≤ l < T +p2. Proposition 6 gives a general upper bound for the total number
of primes of the form T + b in [T + p, T + p2) where b is a prime.

If k = 3, then T (3) = 90, 2k = 6 and p = 7. So, p2 = 49. These give rise
to the interval [T + p, T + p2) = [97, 139). In this interval there are 9 primes.
Thus, Q−T (3) is prime where Q is a prime with 97 ≤ Q < 139. Indeed, all possible
outcomes for Q−T (3) are: 97−90 = 7; 101−90 = 11; 103−90 = 13; 107−90 = 17;
109− 90 = 19; 113− 90 = 23; 127− 90 = 37; 131− 90 = 41; 137− 90 = 47. Note
that 139 is a prime, but 139− 90 = 49 = 72.

For the next example we need k > 3. If we take k = 4, then T ′(4) = 11340,
2k + 1 = 9 and p = 11. So, these give rise to the interval [T + p, T + p2) =
[11351, 11461). For every prime Q in [11351, 11461), it holds that Q − T ′(4) is a
prime. That is, 11351 − 11340 = 11; 11353 − 11340 = 13; 11369 − 11340 = 29;
11383− 11340 = 43; 11393− 11340 = 53; 11399− 11340 = 59; 11411− 11340 = 71;
11423−11340 = 83; 11437−11340 = 97; 11443−11340 = 103; 11447−11340 = 107.

We have observed that Q − T is also a prime for some primes Q greater than
T + p2. That is, if there is no prime number between T and T + p2, this does not
automatically mean that Question 1, part (2) will fail. For example, if k = 5, then
T (5) = 113400, 2k = 10 and p = 11 > 2k. So, p2 = 121. These give rise to the
interval [T +p, T +p2) = [113411, 113521). The number T (5)+121 = 113400+121 =
113521 = 61 · 1861. We analyze the behavior of Q − T (5), for consecutive primes
Q beyond of T (5) + 112. The outcomes for Q − T (5) are: 113537 − 113400 =
137; 113539 − 113400 = 139; 113557 − 113400 = 157; 113567 − 113400 = 167;
113591− 113400 = 191.

This example shows that if we take a prime Q beyond T + p2, then Q− T is not
automatically composite. Thus, even if there is no prime number between T and
T +p2, we can expect that Q−T may be a prime. Notice, if the next prime greater
than T is Q = T + p2, then the question fails.

The following example shows that there are several primes q such that T (k)− q
is either one or a prime with T (k)− p2 < q < T (k).

If k = 3, then T (3) = 90, 2k = 6 and p = 7. So, p2 = 49. These give rise to the
interval (T −p2, T −p] = (41, 83]. In this interval there are 10 primes q. All possible
outcomes for T (3)− q are: 90− 83 = 7; 90− 79 = 11; 90− 73 = 17; 90− 71 = 19;
90− 67 = 23; 90− 61 = 29; 90− 59 = 31; 90− 53 = 47; 90− 47 = 43; 90− 43 = 47.
In this example, 41 is prime, but 90 − 41 = 49 = 72. Note that T (3) − 1 = 89 is
prime. In Table 3 there are some k values for which T (k)− 1 is prime.

We now give some notation needed for Propositions 4 and 6. We use pr to mean
the smallest prime greater than n when n is either 2k if T = T (k) or 2k + 1 if
T = T ′(k). The subscript r takes a special role: r− 1 counts the number of primes
less than or equal to n.
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Propositions 6 and 7 are a direct application of Theorem 3. We obtain an upper
bound for the number of primes in the intervals [T +pr, T +p2

r) and (T −p2
r, T +pr].

If there is a prime in the intervals [T + pr, T + p2
r) then it gives a positive answer

for Question 1, part (2). If Cramer’s Conjecture [1] is true, then there is a prime in
[T + pr, T + p2

r).

Proposition 4. Let l be a prime and k > 3.

(1) If T + pr ≤ l < T + p2
r, then l − T is prime.

(2) If T − p2
r < l ≤ T − pr, then T − l is prime.

Proof. We prove part (1) for T = T (k), the other case and part (2) are similar.

Suppose that T + pr ≤ l < T + p2
r. Since T (k) =

(2k)!
2k

, every prime t < 2k divides
T (k). Thus, if t < 2k is a prime, then t does not divide l − T (k). We know that
pr ≤ l − T (k) < p2

r. Since p2
r is the smallest composite number that satisfies that

T (k) and p2
r are relatively prime, l − T is a prime number.

Corollary 5. If p is a prime and k > 3, then

(1) if p ∈ [T + pr, T + p2
r), then p has the form T + b where b is a prime.

(2) If p ∈ (T − p2
r, T − pr], then p has the form T − b where b is a prime.

Proof. We prove part (1); part (2) is similar. Suppose that p ∈ [T + pr, T + p2
r), by

Proposition 4, p− T is prime. Therefore, p = T + (p− T ).

Proposition 6. The number of primes in [T + pr, T + p2
r) is O((n + 1)r2).

Proof. We prove the case n = 2k, the other case is similar. By Corollary 5 the
number of primes in [T + pr, T + p2

r) is πT (p2
r) as in Theorem 3, part (1). Thus,

πT (p2
r)%

p2
r

(ln p2
r)2

∏

p|T

(
1 +

1
p

)
.

πT (p2
r)%

p2
r

4(ln pr)2

n∏

t=1

t + 1
t

=
(

pr

ln pr

)2 n + 1
4

.

If r tends to infinity, then by the Prime Number Theorem r ∼ pr

ln pr
. This implies

that πT (p2
r) = O(r2(n + 1)).

Proposition 7. The number of primes in (T − p2
r, T − pr] is O

(
T

(log T )2 (n + 1)
)

.



INTEGERS: 11 (2011) 7

Proof. Let ST (pr) be the number of primes of the form T − l where l < p2
r is prime.

By Corollary 5 the number of primes in (T −p2
r, T −pr] is ST (pr). If T − l is a prime

where l < p2
r is a prime, then T can be written as a sum of two primes. Indeed,

T = (T − l) + l. This and Theorem 3, part (2), imply that

ST (pr) ≤ r(T )% T

(log T )2
∏

q|T

(
1 +

1
q

)
≤ T

(log T )2

n∏

t=1

(
t + 1

t

)
=

T

(log T )2
(n + 1).

This proves that ST (pr) is O

(
T

(log T )2
(n + 1)

)
.

4. Primality of T ± 1

We are going to discuss whether a number of the form T ± 1 is not a prime. From
Tables 4 and 1 we observe that there are few primes of the form T ±1. For example,
in our search we have found only 6 primes of the form T (k)− 1, for 2 ≤ k ≤ 2000
(see Table 2). Table 3 shows all k values for which T ± 1 is prime, for k ≤ 2000.
Note that T (2000) ∼ 1.59× 1012072.

Propositions 8, 9 and 10 prove that there are infinitely many k such that T ±1 is
not a prime. These results give rise to another question. Are there infinitely many
primes of the form T ± 1? We now formally state the propositions.

Proposition 8. If p > 7 is a prime number with p equal to either 2k +1 or 2k +3,
then

(1) p ≡ ±1 mod 8 if and only if p is a proper divisor of T (k) + 1.

(2) p ≡ ±3 mod 8 if and only if p is a proper divisor of T (k)− 1.

Proof. We suppose that p ≡ ±1 mod 8 and prove that p divides T (k) + 1. If

k =
p− 1

2
, then

(2k)! =
(

2
p− 1

2

)
! = (p− 1)!

Therefore, by Wilson’s theorem (2k)! ≡ −1 mod p. Since p ≡ ±1 mod 8, by the law
of quadratic reciprocity 2 is a quadratic residue modulo p. Therefore, by Euler’s
criterion 2k = 2

p−1
2 ≡ 1 mod p. This and Proposition 2 imply that

T (k) =
(2k)!
2k

=
(p− 1)!
2

p−1
2

≡ −1 mod p.

Thus, p divides T (k) + 1.
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We suppose that p = T (k) + 1. That is,

p = T (k) + 1 =
(p− 1)!
2

p−1
2

+ 1.

Therefore, (p− 1)! = (p− 1)2
p−1
2 . This implies that (p− 2)! = 2

p−1
2 . That is a con-

tradiction. This proves that p is a proper divisor of T (k) + 1.

We now suppose that k =
p− 3

2
. Since

T (k) =
(p− 3)!
2

p−3
2

=
(p− 3)!(−2)(−1)

2
p−1
2 (2−1)(2)

,

(p− 3)!
2

p−3
2

≡ (p− 3)!(p− 2)(p− 1)
2

p−1
2

≡ −1 mod p.

Thus, p divides T (k) + 1. If p = T (k) + 1, then

p− 1 =
(p− 3)!
2

p−3
2

. (1)

Since p > 7, p− 3 = 2t for some t ≥ 4. Thus,

(p− 3)! = (2t)! = 2 · 4 . . . (2t) · 1 · 3 . . . (2t− 1)
= 2t(1 · 2 . . . t) · (1 · 3 . . . (2t− 1))
= 2t · t! · (1 · 3 . . . (2t− 1)).

Therefore, (p − 3)!/2t = t! · (1 · 3 . . . (2t − 1)). This, (1) and p − 3 = 2t imply
that 2(t + 1) = t! · (1 · 3 . . . (2t− 1)). That is a contradiction, since 2(t + 1) < t! for
t ≥ 4. This proves that p is a proper divisor of T (k) + 1.

Conversely, we assume that p is a proper divisor of T (k) + 1 and prove that

p ≡ ±1 mod 8. We suppose that k =
p− 1

2
. Since p is a proper divisor of T (k) + 1,

T (k) ≡ −1 mod p. So, (2k)! ≡ −2k mod p. Therefore, (p− 1)! ≡ −2
p−1
2 mod p.

This and the Wilson’s theorem imply that 2
p−1
2 ≡ 1 mod p. By the law of quadratic

reciprocity 2 is a quadratic residue modulo p. This implies that p ≡ ±1 mod 8.

We now suppose that k =
p− 3

2
. Since p divides T (k) + 1, T (k) ≡ −1 mod p.

So, (2k)! ≡ −2k mod p. Therefore,
(

2
(p− 3)

2

)
! ≡ −2

p−3
2 mod p. Thus,

(p− 3)!(p− 2)(p− 1) ≡ −2
p−3
2 (−2)(−1) mod p.

This implies that
(p− 1)! ≡ −2

p−1
2 (2−1)(−2)(−1) mod p.

Since (p− 1)! ≡ −1 mod p, 2
p−1
2 ≡ 1 mod p. This implies that p ≡ ±1 mod 8.
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Proof of part (2). We prove that p divides T (k)−1. Suppose that p ≡ ±3 mod 8.

Wilson’s theorem and k =
p− 1

2
imply that (2k)! ≡ −1 mod p. Since p ≡ ±3 mod 8,

by the quadratic reciprocity law, 2 is not a quadratic residue modulo p. Therefore,
by Euler’s criterion, 2k = 2

p−1
2 ≡ −1 mod p. This implies that T (k) ≡ 1 mod p.

So, p divides T (k) − 1. We suppose p = T (k) − 1. That is, p =
(p− 1)!
2

p−1
2

− 1. So,

(p− 1)! = (p + 1)2
p−1
2 . That is a contradiction.

If k =
p− 3

2
, then

T (k) =
(p− 3)!
2

p−3
2

≡ (p− 3)!(p− 2)(p− 1)
2

p−1
2

≡ 1 mod p.

So, the proof follows as above, proving that p is a proper divisor of T (k)− 1.

We prove that p ≡ ±3 mod 8. Suppose that k =
p− 1

2
. Since p divides T (k)− 1,

T (k) ≡ 1 mod p. So, (2k)! ≡ 2k mod p. Therefore, (p− 1)! ≡ 2
p−1
2 mod p. This and

Wilson’s theorem imply that 2
p−1
2 ≡ −1 mod p. By the law of quadratic reciprocity,

2 is not a quadratic residue modulo p. This implies that p ≡ ±3 mod 8.

We now suppose that k =
p− 3

2
. Since p divides T (k)− 1, T (k) ≡ 1 mod p. So,

(2k)! ≡ 2k mod p. Therefore,
(

2
(p− 3)

2

)
! ≡ 2

p−3
2 mod p. Thus,

(p− 3)!(p− 2)(p− 1) ≡ 2
p−3
2 (−2)(−1) mod p.

This implies that (p− 1)! ≡ 2
p−1
2 (2−1)(−2)(−1) mod p. This and Wilson’s theorem

imply that 2
p−1
2 ≡ −1 mod p. Thus, p ≡ ±3 mod 8.

Proposition 9. If p > 3 is a prime number with p = 2k + 3, then

(1) p ≡ ±1 mod 8 if and only if p is a proper divisor of T ′(k)− 1.

(2) p ≡ ±3 mod 8 if and only if p is a proper divisor of T ′(k) + 1.

Proof. The proofs of parts (1) and (2) are similar to the proofs of Proposition 8,
parts (1) and (2), respectively.

Proposition 10. Let p be a prime number such that p = 4k+1. Then p ≡ 5 mod 8
if and only if p is a proper divisor of either T (k) + 1 or T (k)− 1.

Proof. We first prove that
[(p−1

2

)
!
]2 ≡ −1 mod p. Obviously,

(p− 1)! = (1)(p− 1)(2)(p− 2) . . .

(
p− 1

2

)(
p− p− 1

2

)
.
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Therefore,

(p− 1)! ≡ (1)(−1)(2)(−2) . . .

(
p− 1

2

)(
−p− 1

2

)
mod p.

So,

(p− 1)! ≡
(

p− 1
2

)
!
(

p− 1
2

)
!(−1)

p−1
2 mod p.

Since p = 4k + 1, (−1)
p−1
2 = 1. These and Wilson’s theorem imply that

[(
p− 1

2

)
!
]2

≡ −1 mod p. (2)

We now prove that p ≡ 5 mod 8 if and only if p is a proper divisor of either
T (k)− 1 or T (k) + 1.

(T (k))2 ≡ 1 mod p if and only if
[
(2k)!
2k

]2

≡ 1 mod p if and only if
[(p−1

2

)
!
]2

2
p−1
2

≡ 1 mod p.

This and (2), imply that

(T (k))2 ≡ 1 mod p if and only if 2
p−1
2 ≡ −1 mod p if and only if p ≡ ±3 mod 8.

Since p = 4k + 1, (T (k))2 ≡ 1 mod p if and only if p ≡ 5 mod 8.
It is easy to see that if p is a divisor of either T (k) + 1 or T (k) − 1, then p is a

proper divisor of either T (k) + 1 or T (k)− 1, respectively.

5. Tables

k T (k)− q = prime or 1 T ′(k)− q = prime or 1

2 6− 5 = 1 15− 13 = 2
3 90− 89 = 1 315− 313 = 2
4 2520− 2503 = 17 11340− 11329 = 11
5 113400− 113383 = 17 623700− 623699 = 1
6 7484400− 7484383 = 17 48648600− 48648583 = 17
7 681080400− 681080383 = 17 5108103000− 5108102983 = 17
8 81729648000− 81729647983 = 17 694702008000− 694702007959 = 41
9 12504636144000− 12504636143963 118794043368000− 118794043367959

= 37 = 41

Table 1: Some primes of the form T − q.
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k Primes of the form T (k)− 1 for 1 < k ≤ 2000

2 5
3 89
56 274017871895886614355245021851226872507509096980847975994844266521420

299245431500324696494845549659356284618231033652966211387635562226647
0399999999999999999999999999

92 450018843569393882276227680596716006487089310681842539412514262048834
586837442952353379844205073472685159662546130153568890072873003795362
844451732581991505888011382020736335842085227184693441046947485669624
634485050019491730954221690926915254316208777513302761668607999999999
99999999999999999999999999999999999

162 391548904515671716051346787260500894329100804861599843863236605693157
753938515286639559527448080180307092749222111738171154934229102563766
290007325839516166193652888106370272813680446264582621040916668979828
580909916493415772072696168113862960117719779637815600306771585482508
107493783060331912640281361853801867542860886655307894329862579460676
242332750442838738797300511969290692778986492294540611691256473129914
302664438196211535426598076748503430292272338133961040599560472739917
745073510746720620786978825877351293154441445603700969180904816639999
999999999999999999999999999999999999999999999999999999999999999999999
99999

170 340835263800046398325677066929789037599272966910781694237134220511694
592407221674541257352326694161941173174852612734995048749948298785427
864201761896754518975857870525407100505502667584445509342421176972834
591260193220046550390720555465344872560673854426589683541035239901055
283433221132729908219748626265401668191417034808684514905620110985521
966631215768857310684931442273323569549523637187288201582664169777656
534508255699021660672565431211046992785044507318407554205409308573862
694583409249597473614199749407605708422218605584741173228268059043735
766736030844019883753959587839999999999999999999999999999999999999999
9999999999999999999999999999999999999999999

Table 2: Some primes of the form T (k)− 1.

Form k values for which T ± 1 is prime Search limit

T (k) + 1 2, 4, 6, 70, 146, 448, 978 2000
T (k)− 1 2, 3, 56, 92, 162, 170 2900
T ′(k) + 1 7, 16, 18, 24, 38, 44, 194, 286, 382, 895 1000
T ′(k)− 1 5, 12, 16, 24, 41, 46, 75, 337, 904, 2485 3200

Table 3: Some k values for which T ± 1 is prime.
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k Q− T (k) = prime or 1 Q− T ′(k) = prime or 1

2 7− 6 = 1 17− 15 = 2
3 97− 90 = 7 317− 315 = 2
4 2521− 2520 = 1 11351− 11340 = 11
5 113417− 113400 = 17 623717− 623700 = 17
6 7484401− 7484400 = 1 48648617− 48648600 = 17
7 681080429− 681080400 = 29 5108103001− 5108103000 = 1
8 81729648019− 81729648000 = 19 694702008041− 694702008000 = 41
9 12504636144029− 12504636144000 118794043368047− 118794043368000

= 29 = 47

Table 4: Some primes of the form Q− T .
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