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Abstract
This article proves a conjecture by S.-C. Liu and J. C.-C. Yeh about Catalan num-
bers, which states that odd Catalan numbers can take exactly k− 1 distinct values
modulo 2k, namely the values C21−1, . . . , C2k−1−1.

0. Notation

In this article we denote by Cn := (2n)!/[(n + 1)!n!] the n-th Catalan number. We
also define (2n + 1)!! := 1× 3× · · ·× (2n + 1). Finally, we denote by o(n) := n/2a

the odd part of n, where a is the largest power of 2 dividing n.

1. Introduction

The main result of this article is Theorem 2, which proves a conjecture by S.-C. Liu
and J. C.-C. Yeh about odd Catalan numbers [4, Theorem 7.1]. To begin with, let
us recall the characterization of odd Catalan numbers [1]:

Proposition 1. A Catalan number Cn is odd if and only if n = 2a − 1 for some
integer a.

The main theorem we are going to prove is the following:

Theorem 2. For all k ≥ 2, the numbers C21−1, C22−1, . . . , C2k−1−1 all are distinct
modulo 2k, and modulo 2k the sequence (C2n−1)n≥1 is constant from k − 1 on.

Here are a few historical references about the values of the Cn modulo 2k.
Deutsch and Sagan [2] first computed the 2-adic valuations of the Catalan num-
bers. Next S.-P. Eu, S.-C. Liu and Y.-N. Yeh [3] determined the modulo 8 values
of the Cn. Then S.-C. Liu et J. C.-C. Yeh determined the modulo 64 values of
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the Cn by extending the method of Eu, Liu and Yeh in [3], in which they also
stated Theorem 2 as a conjecture.

Our proof of Theorem 2 will be divided into two parts. In Section 2 we will begin
with the case k = 2, and prove some lemmas which will be useful. In Section 3 we
will treat the general case k ≥ 3.

2. Odd Catalan Numbers Modulo 4

In this section we prove that any odd Catalan number is congruent to 1 modulo 4,
which is Theorem 2 for k = 2. Though this result can be found in [3], we give a
more “elementary” proof, in which we will also make some computations which will
be used again in the sequel.

We start with two identities:

Lemma 3. For any a ≥ 3, the following identities hold:

(2a − 3)!! ≡ −1 (mod 2a+1); (1)

(2a − 1)!! ≡ 1 (mod 2a). (2)

Proof. For the first identity, we reason by induction on a, the result being trivial
when a = 3. So, let a ≥ 4 and suppose the result holds for a− 1. First we have

(2a − 3)!! =
2a−2−1∏

k=1

(2k + 1) ·
2a−1−2∏

k=2a−2

(2k + 1).

Reversing the order of the indexes in the first product and translating the indexes
in the second one, we get

(2a − 3)!! =
2a−2−2∏

k=0

(2a−1 − (2k + 1)) ·
2a−2−2∏

k=0

(2a−1 + (2k + 1))

=
2a−2−2∏

k=0

[22(a−1) − (2k + 1)2]

≡
2a−2−2∏

k=0

[−(2k + 1)2] = −(2a−1 − 3)!!2 (mod 2a+1).

By the induction hypothesis, (2a−1−3)!! is equal to −1 or 2a−1 modulo 2a+1, and
in either case the result follows.

We deduce from the first equality that necessarily, (2a − 3)!! ≡ −1 (mod 2a), so
(2a − 1)!! ≡ (−1)× (2a − 1) ≡ 1 (mod 2a), whence the second equality.
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Lemma 4. For n = 2a − 1 with a ≥ 1, we have

o[(2n)!] = (2a+1 − 3)!!
a∏

i=1

(2i − 1)!!; (3)

o[(n + 1)!] = o(n!) =
a∏

i=1

(2i − 1)!!. (4)

Proof. First, we have

o[(2n)!] = o[2n(2n− 1)!!n!] = (2n− 1)!!o(n!)
= (2n− 1)!!n · o[(n− 1)!] = (2a+1 − 3)!!(2a − 1)o[(n− 1)!], (5)

the penultimate equality being true because n is odd.
Therefore, since n − 1 = 2(2a−1 − 1), we can iterate equation (5) until we get

equation (3).
Using (3), the second equality can be proved as follows:

o[(n + 1)!] = o(n!) = n · o[(n− 1)!] = n · o[(2(2a−1 − 1))!] =
a∏

i=1

(2i − 1)!!.

Now comes the main proposition of this section:

Proposition 5. For all a ≥ 1, C2a−1 ≡ 1 (mod 4).

Proof. Obviously this proposition is true for a = 1, 2; now we consider the case
a ≥ 3, to which we can apply Lemma 3. Since C2a−1 is odd, by Lemma 4 we have

C2a−1 =
o[(2n)!]

o[(n + 1)!]o(n!)
=

(2a+1 − 3)!!∏a
i=1(2i − 1)!!

=
(2a+1 − 3)!!

3×
∏a

i=3(2i − 1)!!
. (6)

We remark that the resulting quotient is an integer. Since the denominator is odd,
it is invertible modulo 4. Moreover the denominator and the numerator are all
congruent to −1 by Lemma 3, whence C2a−1 ≡ 1 (mod 4).

3. Proof of the General Case

To begin with, we prove that for all k ≥ 2, the numbers C21−1, . . . , C2k−1−1 are
distinct modulo 2k.

Proposition 6. Let l ≥ 2 be an integer. For all j ∈ {1, . . . , l − 1},

C2j−1 &≡ C2l−1 (mod 2l+1).
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Proof. We prove this proposition by contradiction. Suppose there exists a j ∈
{1, . . . , l − 1} such that C2j−1 ≡ C2l−1 (mod 2l+1). By equation (6), we have

(2j+1 − 3)!!
∏j

i=1(2i − 1)!!
≡ (2l+1 − 3)!!

∏l
i=1(2i − 1)!!

(mod 2l+1).

Since these two quotients are integers and their denominators are invertible mod-
ulo 4, we have by cross-multiplying

(2l+1 − 3)!! ≡ (2j+1 − 3)!!
l∏

i=j+1

(2i − 1)!! (mod 2l+1). (7)

By reducing equation (7) modulo 2j+2 and by Lemma 3, one would have

− 1 ≡ (2j+1 − 3)!!(2j+1 − 1)!! = (2j+1 − 3)!!2 · (2j+1 − 1)

≡ 2j+1 − 1 (mod 2j+2),

which is absurd.

Thanks to the previous proposition, we deduce easily the first claim of Theorem 2:

Corollary 7. For k ≥ 2, the numbers C21−1, C22−1, . . . , C2k−1−1 all are distinct
modulo 2k.

To complete the proof of Theorem 2, it remains to prove that the C2n−1 all are
equal modulo 2k for n ≥ k − 1.

Proposition 8. Let k ≥ 2, then for all n ≥ k − 1, C2n−1 ≡ C2k−1−1 (mod 2k).

Proof. By proposition 5, this proposition is true for k = 2; now we suppose k ≥ 3.
By equation (6), it suffices to show that for all n ≥ k − 1,

(2n+1 − 3)!!∏n
i=1(2i − 1)!!

≡ (2k − 3)!!
∏k−1

i=1 (2i − 1)!!
(mod 2k).

Since these two quotients are all integers and their denominators are invertible
modulo 4, it suffices to show that both

(2k − 3)!! ≡ (2n+1 − 3)!! (mod 2k)

and
k−1∏

i=1

(2i − 1)!! ≡
n∏

i=1

(2i − 1)!! (mod 2k).

Since n + 1 ≥ k ≥ 3, we get these two equalities by Lemma 3.
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4. Going Further

Given the nice behavior of the odd Catalan numbers modulo 2k, it is natural to
wonder whether the even ones have similar properties. One approach might be
to study the Cn having a given 2-adic valuation. More generally, one could con-
sider residues modulo a prime power for other primes. See the article of Alter and
Kubota [1] for results in that direction.
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