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Abstract
Winquist’s identity plays a vital role in the proof of Ramanujan’s congruence p(11n+
6) =0 (mod 11). In this paper, we give a new proof of Winquist’s identity.

1. Introduction

In 1969, L. Winquist [15] found an elementary proof of the congruence p(11n+6) =0
(mod 11), which was first stated by Ramanujan in [12], where p(n) is the number
of partitions of the positive integer n. A certain identity, later named Winquist’s
identity, played an essential role in his proof.

Later, L. Carlitz and M. V. Subbarao [4] and M. D. Hirschhorn [8] discovered
four-parameter generalizations of Winquist’s identity. By multiplying two pairs of
quintuple product identities and adding them, S.-Y. Kang [9] gave another proof
of Winquist’s identity. Recently, new proofs have been given by P. Hammond, R.
Lewis and Z.-G. Liu [7], H. H. Chan, Z.-G. Liu and S. T. Ng [5], and S. Kongsiriwong
and Z.-G. Liu [10]. Winquist’s identity was generalized to affine root systems by I.
Macdonald in [11], and a proof of Macdonald’s identities for infinite families of root
systems was given by D. Stanton [13].

In this paper, we give a new proof of Winquist’s identity. In [14], K. Venkat-
achaliengar gave a proof of the quintuple product identity using a similar method.
Venkatachaliengar’s work is included in S. Cooper’s comprehensive survey [6].

We use the standard notation for g-products, defining

oo

(@)oo = [J(1 —ad®), gl <1.

k=0

The Jacobi triple product identity in its analytical form is given by [2, p. 10].
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Theorem 1. For z # 0, |q| < 1,

37 2™ = (—205 0200 (—0/2 0200 (6% 4% o (1)

n—=—oo

2. Proof of Winquist’s Identity
Theorem 2. (Winquist’s Identity) For any nonzero complex numbers a,b and for
lol <1,
Z Z(_l)m-i-an(m,n) (a—3mb—3n _ g 3mp3ntl _a—3n+1b—3m—1+a3n+2b—3m—l)
m=—00 n=—0o0
= (4 0)2 (3 D)oo (74 @)oo (55 0) o0 (07" € @)oo (b3 @) 0
(a7 g @)oo (ab™ 5 @)oo (a7 0G5 )ocs (2)

where f(m,n) = w

Proof. We begin with the left-hand side of (2) and denote it by L(a,b). By Jacobi’s
triple product identity (1),

L) = 3 (—1)mg™Famsm 37 (21 (p - )
> m243m >0 n2in
- %m;w(—l)mq%b*?»m nzz_oo(_l)nq% (a73n _ a3n+1)
3

q
= (0510°) (0% 6" (6% 0%) 0

2
g g
% | (555000 (0% 6) o0 (67 6) o= (353 6)oc (6% 67) oo 47 47) |

a,q’ b3 3. 3 3. 3
= 305300670 (07 0o
x [(Z—Z;q3)oo(a3q;q3)oo(q3;q3)oo— a(a%;q3)oo(a3q2;q3)oo(q3;q3)oo}-
(3)
We can write (3) as
L(a.b) = g(a)h(b) ~ 5 9(b)ha), (4)
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where
q3 3 3. .3 3. 3
9(2) = (530700 (27567) 0 (45 4" oo
q2 3 3.3 3. 3 q . 3 32, 3 3. .3
h(z) = (53307)00 (2700700 (034 )oo = 2(5347)o0 (270734700 (47547 ) oo
From the definition of L(a,b), it is easy to show that
L(a,b) ad’

Next we show that L(a,b) is zero when a, b, ab, or a/b is an integral power of q.
We consider the following cases.

Case 1. a = ¢q™ or b = ¢, where m is integer. For the case a = ¢, by the
functional equation (5), we only need to consider the case a = 1. Since g(1) =
h(1) = 0, we have L(1,b) = g(1)h(b) — $g(b)h(1) = 0. The proof is similar for the
case b= q™.

Case 2.ab = ¢, where m is integer. As above, we only need to consider the case
ab = 1. We have
gla) 4 h(a)

g9(1/a) " h(1/a)
So L(a,b) = L(a,1/a) = g(a)h(1/a) — a*g(1/a)h(a) = 0.
Case 3. a/b= ¢™, where m is integer. We only need to consider the case a/b = 1.
We have L(a,b) = L(a,a) = g(a)h(a) — g(a)h(a) = 0, so L(a,b) vanishes whenever
a, b, ab, or a/b is an integral power of ¢ (the zeros of L(a,b) are not necessarily

simple, and it is possible for L(a,b) to have other zeros).

We construct another function

R(a,b)=(a""4; @)oo (0 @)oo (™" ¢5 @)oo (ab; @)oo (@™ 07165 @)oo (ab™ 5 @)oo (a7 1143 @)oo

(6)
Tt is easy to see that R(a,b) is zero precisely when a, b, ab, or a/b is an integral
power of g, all the zeros of R(a,b) are simple, and

R(ag,b) 1
R(a,b) a3’
We denote the domain of both L(a,b) and R(a,b) by A, where
A={(a,b):a,beC,a#0,b+#0}

Let B = {(a,b) : (a,b) € A, where a or b is an integral power of g. Define, for
a,be A\ B,

Q(a,b) = (7)
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Note that Q(a,b) is analytic for 0 < |a] < oo for each fixed b and satisfies the
functional equation Q(ag,b) = Q(a,b). We denote the Laurent series for Q(a,b) by

oo

Q(a,b) = Z an(b)a" . (8)
Since Q(ag,b) = Q(a,b), (8) implies Y7 a,(b)(1—¢")a™ = 0. We have a,(b) =
0 for n # 0. Thus Q(a,b) = ap(b) is independent of a. From (4),

L(a,b) = (—a/b)L(b,a). 9)
From (6), it is easy to verify that
R(a,b) = (—a/b)R(b,a). (10)

By (7), (9), and (10), we have Q(a,b) = Q(b,a) . By the symmetry of Q(a,b) in a
and b, Q(a,b) is also independent of b. Thus Q(a,b) is a constant.

Let w =exp(27i/3). For any complex number z, (1—z)(1—zw)(1—rw?) = 1—23.
Let a and ¢ be complex number with |g| < 1. We have

(a3 9) oo (aw; @)oo (aw?; @) e = (a%;¢%) 0.

If b=w in L(a,b) and R(a,b), we find that

q3

L(a,w) = (1 —w)(g; q)oo(g;qg)oo(ag;q?’)oo(qg;qg)oo,
R(a,w) = (1- w)(Z_Z;qg)w(a3§qg)oo(q3§q3)oo/(Q;Q)oo~

Thus, Q(a,w) = (¢;q)%,. We conclude that Q(a,b) = (¢q; q)%, for arbitrary nonzero
complex numbers (a,b) € A\ B. We also have L(a,b) = R(a,b) =0 for (a,b) € B.
So L(a,b) = (¢;q9)* R(a,b) for any nonzero complex numbers a and b, and this

completes the proof. O

Certain other theta function identities can be derived by using the foregoing
analysis. For example, let a = ¢ and b = —1, then from (2) and (3), respectively,
we deduce a theta function identity due to Ramanujan [1, pp. 48—-49]:

¥(g) = f(d*,4%) + qv(q”).

We can also verify that the constant value of Q(a,b) is (¢;¢)%, by choosing (a,b) =
(q%, —1) in the proof of Winquist’s identity.

This method can also be applied to prove many theta function identities, for
example, an analogue of Winquist’s identity found by the author in [3].
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Theorem 3. For a,b nonzero and for |q| < 1,

(a3 0) 00 (745 @)oo (5 4) 00 (075 @) o0 (ab; @)oo (@™ 07 43 4) 0 (4 0) %

= (—ab™'¢;¢%)oo(—a g5 ¢*) 0 (0% %)
X [(=a®0° 45 4°) oo (a0 720% ¢%) oo (4% ¢°) oo
_ a/2b2(_a3b3q5;qﬁ)oo(_a_gb_gq;q6)oo(q6;q6)oo]
+ (—ab ' ¢% ¢%) oo (—a7 0 ¢ o (0% 0%) o
x [a®b(=a’b*q*; ¢%) oo (a0 7202 4%) 0 (4% ¢%)oo
— a(—a*b*¢*;¢%)oe (—a 30741 ¢%) 0 (0% ¢°) o ) (11)

The proof of Theorem 3 is similar to the proof of Winquist’s identity.
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