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Abstract
The purpose of this work is to extend the theory of finite operator calculus to
the multivariate setting, and apply it to the enumeration of certain lattice paths.
The lattice paths we consider are ballot paths. A ballot path is a path that stays
weakly above the diagonal y = x, starts at the origin, and takes steps from the
set {↑,→} = {u, r}. Given a string p from the set {u, r}∗, we want to count the
ballot paths with a given number of occurrences of p. In order to use finite operator
calculus, we must put some restrictions on the string p we wish to keep track of.
A ballot path ending on the diagonal can be viewed as a Dyck path, thus all of
our results also apply to the enumeration of Dyck paths with a given number of
occurrences of p. Finally, we give an example of counting ballot paths with a given
number of occurrences of two patterns.

1. Introduction

L. J. Guibas and A. M. Odlyzko [3] derived generating functions for the number
of strings over an alphabet that avoid given patterns. Their main tool is the “cor-
relation function” among patterns. This basically extracts the same information
from a pattern as the (multiple) bifixes introduced in Section 6. Our work differs
in that we consider ballot paths, i.e., a restricted alphabet of size two, where the
restriction observes how many symbols of one kind occur before the other kind. We
can generalize this to a larger alphabet (Motzkin path) and different restrictions,
but we are more interested in the approach itself, the finite operator calculus (Rota,
Kahaner, and Odlyzko [10]). The finite operator calculus produces explicit results
(polynomials), but in some cases, generating functions can also be obtained. So
we need another condition on patterns, the depth, to make sure the solutions are
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polynomials. We systematically discuss avoiding only one pattern, but in the last
section we finally give an example for avoiding two patterns.

A second aspect where our work differs from Guibas and Odlyzko is the enu-
meration of ballot paths with a given number of occurrences of some pattern. In
a paper by Sapounakis, Tasoulas, and Tsikouras [11], the authors do exactly this
for all patterns of length four, but only for ballot paths ending on the diagonal
(Dyck paths). We show that it is not the length of the pattern that matters, but
its “complexity”, its autocorrelation function in the sense of Guibas and Odlyzko.

A ballot path stays weakly above the diagonal y = x, starts at the origin, and
takes steps from the set {↑,→} = {u, r}. A pattern is a finite string made from the
same step set; it is also a path. Notice that a ballot path ending at a point along
the diagonal is a Dyck path.

Definition 1 Let d(p) be the number of u’s minus the number of r’s in the pattern
p. The depth of p is max{d(p′) | p = qp′, q ∈ {u, r}∗}.

The patterns we count can be any length, but the patterns we count in this paper
have zero depth. We call these patterns depth-zero. An intuitive interpretation of
a depth-zero pattern p, is that the reverse pattern p̃ is a ballot path. For example,
the reverse pattern of p = uururrr is p̃ = uuururr. Since uuururr is a ballot path,
uururrr is depth-zero.

Below is a table for the number of ballot paths with 0,1, and 2 occurrences of
the pattern rur. We use finite operator calculus to enumerate these paths. For
this, we need recursions describing the enumeration. We must consider only two
more properties of these patterns to develop the recursions, given in the following
definitions.

Definition 2 The bifix index of a pattern p is the number of distinct non-empty
patterns o $= p such that p that can be written in the form p = op′ and p = p′′o for
o, p′, p′′ ∈ {u, r}∗. If a pattern has bifix index 0, then we call it bifix-free.

Definition 3 If a is the number of r’s in p and c is the number of u’s, then we say
p has dimensions a× c.

If we denote the number of ballot paths reaching (n,m) containing the pattern
rur exactly k times by sn,k (m), then we will see that

sn,k(m) = sn−1,k(m) + sn,k(m− 1)− sn−1,k(m− 1) + sn−1,k(m− 2)
+sn−1,k−1(m− 1)− sn−1,k−1(m− 2).

We will prove a general recurrence counting any pattern (Theorem 14). If the
depth is zero, we see that each column consists of the values of a polynomial se-
quence, the objects of finite operator calculus. With these definitions and the re-
cursions we obtain from them, we can use Finite Operator Calculus to find formulas
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m 1 8 28 62 105 7 42 120 236 6 45 144 300
7 1 7 21 40 59 6 30 72 120 5 30 78 130
6 1 6 15 24 30 5 20 39 52 4 18 36 40
5 1 5 10 13 13 4 12 18 16 3 9 12 0
4 1 4 6 6 4 3 6 6 0 2 3 0
3 1 3 3 2 0 2 2 0 1 0
2 1 2 1 0 1 0 0
1 1 1 0 0
0 1 0

0 1 2 3 n 2 3 4 5 3 4 5 6
k = 0 k = 1 k = 2

Table 1: The number of ballot paths containing rur exactly k = 0, 1, 2 times.

that enumerate the ballot paths with a given number of occurrences of a depth-zero
pattern. In [7] and [8], we counted the case k = 0, the avoidance of a depth-zero
pattern. This can be done using ordinary finite operator calculus. For k > 0, we
need the bivariate extension of this theory. We first briefly introduce the concepts
of finite operator calculus.

2. Main Tools

In this section we will present the main tools from finite operator calculus [10] that
will be used to solve these enumeration problems. We say a sequence of polynomials
sn(x), where sn is degree n, is a Sheffer sequence if its generating function is of the
form

∑

n≥0

sn(x)tn = σ(t)exβ(t),

where σ(t) has a multiplicative inverse σ(t)−1and β(t) is of order 1, and thus has
a compositional inverse β−1(t). Every Sheffer sequence is associated to a basis
sequence, usually denoted bn(x), and its generating function is of the form

∑

n≥0

bn(x)tn = exβ(t).

The Sheffer operator B : sn → sn−1 and the shift operator Ea : p(x) → p(x + a)
can be written as power series in the derivative operator D := d

dx ,
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B = β−1(D), Ea = eaD =
∑

n≥0

(aD)n

n!
.

The second formula above for the shift operator is a restatement of Taylor’s
Theorem. We need not worry about convergence here since the operators act on
a polynomial ring, and thus only a finite number of the terms in the power series
are needed for a given polynomial. This is the reason for the name finite operator
calculus.

In our previous papers, we used the theorems in finite operator calculus to count
the number of ballot paths avoiding a given pattern. From the above example, we
see that we have a sequence of polynomial sequences, and so we will need a bivariate
form of finite operator calculus. Much of the definitions and theorems are similar,
and so we will only present the needed theorems in the bivariate finite operator
calculus.

3. Bivariate Operators and Polynomials

The objects in bivariate finite operator calculus are polynomials in k[u, v] and the
shift-invariant operators belong to k[[Du,Dv]], where Du and Dv are the partial
derivatives with respect to u and v, respectively. For a detailed study of multivariate
finite operator calculus, see [12].

Every univariate delta series has a compositional inverse, but how do we general-
ize the concept of a compositional inverse for bivariate formal power series? Given
a pair of formal bivariate power series (β1,β2) in k[[s, t]]2, we say (γ1, γ2) is the
inverse pair for (β1,β2) if (β1(γ1, γ2),β2(γ1, γ2)) = (s, t). We also use the notation
(β−1

1 ,β−1
2 ) for the inverse of the pair (β1,β2).

We will need to find the compositional inverse of a pair of bivariate power series.
The Lagrange-Good inversion formula tells us that a pair of power series has an
inverse pair if it is a delta pair, that is (β1,β2) = (sφ1, tφ2) is a delta pair where φ1

and φ2 have multiplicative inverses. We present a form of the bivariate Lagrange-
Good inversion formula [4].

Theorem 4 If (γ1, γ2) = (s/ε1, t/ε2) is a delta pair with inverse pair (β1,β2), then
[
β1(s, t)kβ2(s, t)l

]
m,n

=
[
ε1(s, t)m+1ε2(s, t)n+1J γ

]
m−k,n−l

,

where J γ stands for the Jacobian

J γ =
∣∣∣∣
∂(γ1, γ2)
∂(s, t)

∣∣∣∣ =
∣∣∣∣

∂γ1
∂s

∂γ2
∂s

∂γ1
∂t

∂γ2
∂t

∣∣∣∣ .



INTEGERS: 11 (2011) 5

Since (β1,β2) is also a delta pair, we could write (β1,β2) = (s/φ1, t/φ2), and
thus [

φ1(s, t)kφ2(s, t)l
]
m,n

=
[
ε1(s, t)m+1+kε2(s, t)n+1+lJ γ

]
m,n

.

As in the univariate finite operator calculus, we will associate linear operators
in k[[Du,Dv]] with the bivariate formal power series in k[[s, t]]. The operators
associated with delta pairs will also be associated with the Sheffer sequences in
bivariate finite operator calculus.

4. Bivariate Sheffer Sequences

We say a bivariate polynomial sequence sm,n(u, v) is a Sheffer sequence for a delta
pair (B1, B2) if B1 : sm,n(u, v) → sm−1,n(u, v) and B2 : sm,n(u, v) → sm,n−1(u, v).
Here sm,n has degree m as a polynomial in u and degree n as a polynomial in v.
The sequence bm,n(u, v) is the basic sequence for (B1, B2) if it is a Sheffer sequence
and satisfies the initial values bm,n(0, 0) = δm,0δn,0. We have the following theorem
that categorizes Sheffer sequences with their generating function. Clearly, this is
analogous to the univariate case.

Theorem 5 The following are equivalent:
(i) (sm,n) is a Sheffer sequence for the delta pair (B1, B2).
(ii) There exists a power series σ(s, t) and a delta pair (β1(s, t),β2(s, t)) such that
the generating function for the polynomial sequence (sm,n) can be written

∑

m,n≥0

sm,n(u, v)smtn = σ(s, t)euβ1(s,t)+vβ2(s,t),

where σ(0, 0) $= 0 and (B1, B2) = (β−1
1 (Du,Dv),β−1

2 (Du,Dv)).

(iii) sm,n(u + x, v + y) =
m∑

l=0

n∑
k=0

sl,k(u, v)bm−l,n−k(x, y), where (bm,n) is the basic

sequence for (B1, B2) with generating function

∑

m,n≥0

bm,n(u, v)smtn = euβ1(s,t)+vβ2(s,t).

From the binomial theorem for Sheffer sequences (Theorem 5 (iii)), we have an
important corollary that will help in our later applications.

Corollary 6 We have

bm,n(u, v) =
m∑

i=0

n∑

j=0

bi,j(u, 0)bm−i,n−j(0, v).
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We call the polynomial sequences bm,n(u, 0) and bm,n(0, v) partial basic se-
quences. In the general multivariate setting we get a similar result and the partial
sequences are obtained by setting all but one of the variables equal to 0. Notice
that the basic sequence can be recovered from these partial sequences.

We will see that the objects that count ballot paths with a given number of
occurrences of a pattern are these partial sequences. Also, the transfer formulae
become much more usable when dealing with partial sequences. We now turn to
the transfer formulae for the bivariate basic sequences.

5. Bivariate Transfer Formulae

For the transfer formulae, we must define umbral shifts for multivariate basic se-
quences and the Pincherle derivative for the corresponding operators.

We define the umbral shifts φ and ψ as the multiplication by u and v respectively,
so the partial Pincherle derivatives are

∂T

∂Du
= Tφ− φT and

∂T

∂Dv
= Tψ − ψT.

In the univariate case, we use the Pincherle derivative on a delta operator in order
to find an expression for its basic sequence. It would seem natural to define the
bivariate Pincherle derivative as the Jacobian of a pair of operators:

J (T1, T2) =
∣∣∣∣

∂(T1, T2)
∂(Du,Dv)

∣∣∣∣ ,

which can be written in terms of the partial Pincherle derivatives.
We would also like an expression for the umbral shift associated to the delta

pair (B1, B2), that is the operators, θB1 and θB2 such that θB1bm,n(u, v) = (m +
1)bm+1,n(u, v) and θB2bm,n(u, v) = (n + 1)bm,n+1(u, v). We have the following
lemma concerning these umbral shifts.

Lemma 7 If θBρ are the umbral shifts associated to the delta pair (B1, B2) with
basic sequence (bm,n), then, for ρ = 1, 2, we have

θBρ = φ
dDu

dBρ
+ ψ

dDv

dBρ
.

Proof. We prove these in a way similar to the univariate case. We know that∑
n≥0

bm,n(u, v)smtn = euβ1(s,t)+vβ2(s,t), where (β1,β2) is a delta pair,
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B1 = β−1
1 (Du,Dv), and B2 = β−1

2 (Du,Dv). Then

θB1

∑

m,n≥0

bm,n(u, v)smtn =
∑

m,n≥0

(m + 1)bm+1,n(u, v)smtn

= Ds

∑

m,n≥0

bm,n(u, v)smtn

=
(

u
∂

∂s
β1(s, t) + v

∂

∂s
β2(s, t)

)
euβ1(s,t)+vβ2(s,t).

We also know that f(B1, B2)euβ1(s,t)+vβ2(s,t) = f(s, t)euβ1(s,t)+vβ2(s,t) for any power
series f . Thus,

θB1 = u
∂

∂B1
β1(B1, B2) + v

∂

∂B1
β2(B1, B2) = φ

∂Du

∂B1
+ ψ

∂Dv

∂B1
,

since Du = β1(B1, B2) and Dv = β2(B1, B2). A similar argument shows θB2 =
ψ ∂Dv

∂B2
+ φ∂Du

∂B2
. !

This is very similar to the univariate case. For the Pincherle derivative we get
∣∣∣∣
∂(T1, T2)
∂(B1, B2)

∣∣∣∣ =
∣∣∣∣

T1θB1 − θB1T1 T2θB1 − θB1T2

T1θB2 − θB2T1 T2θB2 − θB2T2

∣∣∣∣ .

Because each expansion is similar, we show the top left:

T1θB1 − θB1T1 = T1

(
φ

∂Du

∂B1
+ ψ

∂Dv

∂B1

)
−

(
φ

∂Du

∂B1
+ ψ

∂Dv

∂B1

)
T1

= (T1φ− φT1)
∂Du

∂B1
+ (T1ψ − ψT1)

∂Dv

∂B1

=
∂T1

∂B1

by the chain rule for partial derivatives. We are now ready to present the bivariate
transfer formula. (Equation (1) is shown in [12, Theorem 1.3.6].)

Theorem 8 Suppose (B1, B2) = (DuP−1
1 ,DvP

−1
2 ) is a delta pair, then

bm,n(u, v) = Pm+1
1 Pn+1

2 J (B1, B2)
umvn

m!n!
(1)

= (uPm
1 vPn

2 + vPn
2 uPm

1 − uvPm
1 Pn

2 )
um−1vn−1

m!n!
(2)

is the associated basic sequence.

Proof. We begin by showing the equivalence of the two forms. We have a similar
simplification as in the univariate transfer formula;

Pm+1
1 Pn+1

2 J (B1, B2)
umvn

m!n!
=

∣∣∣∣∣
Pm

1 − Du
m

∂P m
1

∂Du
−Du

m
∂P m

1
∂Dv

−Dv
n

∂P n
2

∂Du
Pn

2 − Dv
n

∂P n
2

∂Dv

∣∣∣∣∣
umvn

m!n!
. (3)
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When we expand the determinant, we apply Du and Dv to umvn

m!n! , giving us the
following operator on um−1vn−1

m!n! , where, for elegance, we will denote Pm
1 by Q1 and

Pn
2 by Q2.

Q1Q2uv −Q1
∂Q2

∂Dv
u−Q2

∂Q1

∂Du
v + J (Q1, Q2).

To simplify, we expand the Jacobian as follows:

J (Q1, Q2) =
∂Q1

∂Du

∂Q2

∂Dv
− ∂Q1

∂Dv

∂Q2

∂Du

=
∂Q1

∂Du
(Q2v − vQ2)− (Q1v − vQ1)

∂Q2

∂Du

= Q2
∂Q1

∂Du
v − ∂Q1

∂Du
vQ2 −Q1v

∂Q2

∂Du
+ v

∂Q2

∂Du
Q1.

We expand the remaining derivatives and, upon cancellation, we get

uQ1vQ2 + vQ2uQ1 − uvQ1Q2.

Because of the lack of commutativity, there are many forms for the transfer formula.
This one has the least amount of terms while retaining symmetry. We need to show
that this is the basic sequence for the delta pair (B1, B2). In the first form we can
show that

B1bm,n(u, v) = Pm
1 Pn+1

2 J (B1, B2)
um−1vn

(m− 1)!n!
= bm−1,n(u, v),

and a similar result for B2. What remains is to show bm,n(0, 0) = δm,0δn,0. The
second form only holds for positive values of m and n. The following forms show
that bm,n(0, 0) = 0 when (m,n) $= (0, 0);

bm,n(u, v) =
(

u
∂B2

∂Dv
− v

∂B2

∂Du

)
Pm

1 Pn+1
2

um−1vn

m!n!

=
(

v
∂B1

∂Du
− u

∂B1

∂Dv

)
Pm+1

1 Pn
2

umvn−1

m!n!
.

We prove the first one; again we denote Pm
1 by Q1 and Pn

2 by Q2. Expanding
the partial derivatives as

∂B2

∂Dv
= P−1

2

(
1− P−1

2 Dv
∂P2

∂Dv

)
and

∂B2

∂Du
= −P−2

2 Dv
∂P2

∂Du
,
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we get the following operator on um−1vn−1

m!n! :

uQ1Q2v − uQ1
∂Q2

∂Dv
+ vQ1

∂Q2

∂Du

= uQ1Q2v − uQ1(Q2v − vQ2) + v
∂Q2

∂Du
Q1

= uQ1vQ2 + v(Q2u− uQ2)Q1

= uQ1vQ2 + vQ2uQ1 − uvQ1Q2.

Finally, evaluating (3) at m = n = 0 shows us that b0,0(u, v) = 1, which completes
the proof. !

Corollary 9 If (A1, A2) and (B1, B2) are delta pairs with basic sequences (am,n)
and (bm,n) respectively, then

bm,n(u, v) = V m+1
1 V n+1

2

∣∣∣∣
∂(B1, B2)
∂(A1, A2)

∣∣∣∣ am,n(u, v)

or

bm,n(u, v) =
1

mn
(θA1V

m
1 θA2V

n
2 + θA2V

n
2 θA1V

m
1 − θA1θA2V

m
1 V n

2 ) am−1,n−1(u, v),

where Ai = ViBi and
∣∣∣∣
∂(B1, B2)
∂(A1, A2)

∣∣∣∣ is the Jacobian with respect to A1 and A2.

The proof of the corollary is analogous to that of the theorem. We present an
important special case to this corollary by letting A2 = B2.

Corollary 10 If (A1, A2) and (B1, B2) are delta pairs with basic sequences (am,n)
and (bm,n) respectively, and A2 = B2, then

bm,n(u, v) =
1
m

θA1V
m
1 am−1,n(u, v).

In order to use these transfer formulae, we need to expand the Vi in terms of the
Ai. For this we use the Lagrange-Good Inversion to get the following corollary.

Corollary 11 If (A1, A2) and (B1, B2) are delta pairs with basic sequences (am,n)
and (bm,n) respectively, then

V m
1 V n

2 =
∑

i≥0

∑

j≥0

[
τm−1−i
1 τn−1−j

2

∣∣∣∣
∂(τ1, τ2)
∂(s, t)

∣∣∣∣

]

m−1,n−1

Ai
1A

j
2

=
∑

i≥0

∑

j≥0

[
εi+1−m
1 εj+1−n

2

∣∣∣∣
∂(τ1, τ2)
∂(s, t)

∣∣∣∣

]

i,j

Ai
1A

j
2,

where Ai = ViBi = τi(B1, B2) = Bi/εi(B1, B2) for i = 1, 2.
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Note that the bivariate series τi in this corollary may contain linear operators as
coefficients. The following is a technical lemma that will be used in our applications.

Lemma 12 Suppose bm,n(u, v) is a bivariate basic sequence for the delta pair
(B1, B2). Then

θB1bm,n(u + c, v)|v=0 = (m + 1)
u

u + c
bm+1,n(u + c, 0).

Proof. We first recall that θB1 = φdDu
dB1

+ ψ dDv
dB1

. We have

θB1E
c
u = Ec

uθB1 −
∂Ec

u

∂B1

= Ec
uθB1 −

(
∂Ec

u

∂Du

∂Du

∂B1
+

∂Ec
u

∂Dv

∂Dv

∂B1

)

= Ec
uθB1 − cEc

u
∂Du

∂B1

= Ec
uθB1 − cEc

uφ−
(

θB1 − ψ
∂Dv

∂B1

)

= Ec
u

(
I − cφ−

)
θB1 + cEc

uφ−ψ
∂Dv

∂B1
,

where φ− is the left inverse of φ. The second term vanishes when v = 0. So we have

θB1E
c
ubm,n(u, v)|v=0 = Ec

u

(
I − cφ−

)
θB1bm,n(u, v)

∣∣
v=0

.

Expanding the right-hand side simplifies to the right-hand side of the lemma. !

The last transfer formula is a special case when Ai = τi(B1, B2) and τi ∈ k[[s, t]],
that is, τi does not contain operator coefficients. If (am,n) is basic for (A1, A2) and
(bm,n) is basic for (B1, B2), then

∑

m,n≥0

bm,n(u, v)smtn = euβ1(s,t)+vβ2(s,t) = euα1(τ1,τ2)+vα2(τ1,τ2) (4)

=
∑

m,n≥0

am,n(u, v)τm
1 τn

2 ,

where Ai = α−1
i (Du,Dv) and bi = β−1

i (Du,Dv), for i = 1, 2. We have proven the
following theorem.

Theorem 13 If Ai = τi(B1, B2) where τi ∈ k[[s, t]], (am,n) is basic for (A1, A2),
and (bm,n) is basic for (B1, B2), then

bm,n(u, v) =
m∑

i=0

n∑

j=0

[
τ i
1τ

j
2

]

m,n
ai,j(u, v).

Now that we have all the tools, we need the recurrence for counting strings in
ballot paths.
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6. General Recurrence

Let sn,k(m) be the number of ballot paths ending at the point (n,m) with k occur-
rences of the given string p and let sn,k(m; p) be those paths counted by sn,k(m)
that end with p. For all m ≥ n we have

sn,k(m) = sn−1,k(m) + sn,k(m− 1)− sn,k+1(m; p) + sn,k(m; p). (5)

The first two terms are simply noticing that each path could end with an up step
or a right step. Consider each path counted by the first two terms. If we attach
the corresponding step to the end of each path, we may be completing the pattern
p. The third term takes care of this possibility. Finally, the last term takes into
account the paths with k occurrences of p that end in p.

We count a pattern twice if it overlaps with itself. We call the overlaps oi bifixes
because they appear at the beginning and end of the pattern. We write the pattern
p with bifix oi as p′′i oi = p = oip′i, where the “right end” p′i and “left end” p′′i have
dimensions bi×di, and p has dimensions a× c. As an example consider the pattern
rurrur, which has bifixes o1 = r, p′′1 = rurru, p′1 = urrur, and o2 = rur, p′′2 = rur,
p′2 = rur. So, the path uuururrururrur has two occurrences of p overlapping in
o1.

Now we consider the term sn,k+1(m; p), and let us order the bifixes of p by size,
i.e. |o1| > |o2| > · · · > |ol|. The pattern at the end can either overlap with o1, or
not. Thus

sn,k+1(m; p) = sn−b1,k(m− d1; p) + sn−b1,k(m− d1; (¬p′′1)o1), (6)

where ¬p means any pattern except p.
At this point the proof splits into two cases. We say a pattern p is periodic if

there is some subpattern q such that p = q0qk = (q′)kq0 for some k > 1 and possibly
empty pattern q0. For example, p = r(ur)k is periodic with q = ur, q′ = ru, and
q0 = r. We will assume q is the smallest subpattern of p where p = q0qk. We
continue the proof for the case where p is not periodic.

Choosing the longest overlap o1, i.e., removing the shortest “left end” p′1 guar-
antees that only one occurrence of p is deleted from the end of the path. Now,
each bifix is contained in every larger one, i.e. oi = ojxj for every i > j and some
nonempty string xj . In particular, o1 = o2x2, and so the last term either contains
paths ending in px2, or not. Thus

sn,k+1(m; p) = sn−b1,k(m− d1; p) + sn−b2,k(m− d2; p)
+sn−b2,k(m− d2;¬(p′′1 ∨ p′′2)o2),

where p ∨ q means p or q. Continuing, all of the bifixes will be exhausted, ending
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with the last bifix ol. Hence,

sn,k+1(m; p) =
l∑

i=1

sn−bi,k(m− di; p) + sn−bl,k(m− dl;¬
(

l∨

i=1

p′′i

)
ol)

=
∑

i

sn−bi,k(m− di; p) + sn−a,k(m− c;¬
∨

i

p′′i )

=
∑

i

sn−bi,k(m− di; p) + sn−a,k (m− c)− sn−a,k(m− c;
∨

i

p′′i )

=
∑

i

sn−bi,k(m− di; p) + sn−a,k (m− c)−
∑

i

sn−a,k (m− c; p′′i )

=
∑

i

sn−bi,k(m− di; p)+sn−a,k (m− c)−
∑

i

sn−bi,k+1 (m− di; p′′i oi) .

Finally,

sn,k+1(m; p) =
∑

i

(sn−bi,k(m− di; p)− sn−bi,k+1 (m− di; p)) + sn−a,k (m− c) . (7)

The paths ending in
∨

i p′′i become a disjoint union because for each such path,
there is a unique bifix that will add exactly one more occurrence of the pattern p.

Next, we show that (7) holds when p is periodic. The last term of (6) counts
paths that end in (¬p′′1)o1. This term cannot split if p is periodic using the next
bifix. In this case we have

sn,k+1(m; p) = sn−b1,k(m− d1; p) + sn−a,k(m− c;¬q′).

Next, similar to the non-periodic case, we have

sn,k+1(m; p) = sn−b1,k(m− d1; p) + sn−a,k(m− c)− sn−a,k(m− c; q′).

Now, to the last term, we append q0 and as many q’s necessary to create exactly
one more occurrence of the pattern p. Again, due the periodic nature, the ending
pattern cannot have a q′ before it with the exception of appending only q0 (or one
q if q0 is empty). All of this gives

sn,k+1(m; p) = sn−b1,k(m− d1; p) + sn−a,k(m− c)− sn−bl,k+1(m− dl; p) (8)

−
l−1∑

i=1

sn−bi,k+1(m− di; (¬q′)p)

= sn−b1,k(m− d1; p) + sn−a,k(m− c)− sn−bl,k+1(m− dl; p)

−
l−1∑

i=1

(sn−bi,k+1(m− di; p)− sn−bi+1,k(m− di+1; p)),

which is equivalent to (7).
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Next, rewrite each difference in (7) using (5), giving

sn,k+1(m; p) =
∑

i

[sn−bi,k(m− di)− sn−bi−1,k(m− di)− sn−bi,k(m− di − 1)]

+sn−a,k(m− c).

Finally, use this to replace the last two terms of (5). This proves the following
rheorem.

Theorem 14 Let sn,k(m) be the number of {↑,→} lattice paths from the origin to
the point (n,m) with k occurrences of the pattern p. Then

sn,k(m) = sn−1,k(m) + sn,k(m− 1)− sn−a,k(m− c) + sn−a,k−1(m− c)
−

∑
i

[sn−bi,k(m− di)− sn−bi−1,k(m− di)− sn−bi,k(m− di − 1)]

+
∑
i

[sn−bi,k−1(m− di)− sn−bi−1,k−1(m− di)− sn−bi,k−1(m− di − 1)] ,

where p has dimensions a× c.

7. Counting Strings in Ballot Paths

We return to our pattern rur as our guiding example. We have seen a table of
values for k = 0, 1, 2 in the Introduction. With this pattern, the general recurrence
simplifies, giving us

sn,k(m) = sn−1,k(m) + sn,k(m− 1)− sn−1,k(m− 1) + sn−1,k(m− 2)
+sn−1,k−1(m− 1)− sn−1,k−1(m− 2).

The first question we answer is about the first nonzero column for each k > 0. The
following lemma gives a complete description.

Lemma 15 Let the depth of a pattern p be zero. Given p, for k > 0 we have,

sn,k(m) =
{

0 if n < a + b(k − 1)
m + 1− a− b(k − 1) if n = a + b(k − 1),

where a is the number of r’s in p and b = min{bi} corresponding to the largest bifix
in p, or b = a if p is bifix free. In particular, the first nonzero column is a linear
polynomial in m.

Proof. Given k > 0, the smallest p can appear k times is overlapping itself (k − 1)
times using its largest bifix, or concatenating with itself k times if p is bifix free. Let
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pk be the resulting pattern obtained by this construction. The earliest pk can appear
is if it starts on the y-axis, and thus the first nonzero column is at n = a+ b(k− 1).
Clearly, when this column meets the diagonal y = x, there can be only one path
containing pk. Moving up this column, a paths containing pk reaching the point
(n,m) can be appended with an up step so they reach (n,m+1), and also one path
coming from the left contains pk. Thus, there is exactly one more path containing
pk reaching (n,m + 1) than (n,m), and the proof is complete by induction. !

For each k > 0, we have a difference recursion that implies (sn,k) is a polynomial
sequence [5]. Thus, deg sn,k = n− a− b(k − 1) + 1 for k > 0 and n ≥ a + b(k − 1),
and we have already seen that sn,0 is a polynomial of degree n [7].

Before we can start using the bivariate theory, we need to do two things. First, we
must modify our polynomials a little so that they are like basic sequences. Second,
(sn,k) is not a bivariate polynomial sequence. We can make it into one by choosing
our favorite univariate basic sequence, and do a construction similar to Corollary 6.

8. Creating a Bivariate Basic Sequence

For all n and k notice that sn,k(m+n−1) = 0 at m = 0 except when n = k = 0, in
which case s0,0 is a constant, we get 1. This is still true for bn,k(m) := sn+kb,k(m+
n + kb− 1). We define bn,k this way for more elegance in the later equations. With
Corollary 6 in mind, we want to use bn,k as one of the partial bivariate sequences,
so we pick a univariate basic sequence (an) to be the other. Notice that given two
univariate basic sequences (pn) and (qn), the product am,n(u, v) := pm(u)qn(v) is a
basic sequence. We say that the bivariate sequence factors if it can be written this
way. The partial bivariate sequences are am,n(u, 0) = pm(u)δn,0 and am,n(0, v) =
qn(v)δm,0. With this in mind, we define

b(a)
m,n(u, v) =

m∑

i=0

n∑

j=0

bi,j(u)an−j(v)δm−i,0 =
n∑

j=0

bm,j(u)an−j(v).

Notice that

b(a)
m,n(0, 0) =

n∑

j=0

bm,j(0)an−j(0) = bm,n(0) = δn,0δm,0,

and b0,0(u, v) = b0,0(u)a0(v) = 1, so it meets some of the requirements for a ba-
sic sequence. Suppose B : sn,k → sn−1,k and K : sn,k → sn,k−1, then B1 :=
BE−1

u : bm,n(u) → bm−1,n(u) and B2 := K(BE−1
u )b : bm,n(u) → bm,n−1(u). Since

b(a)
m,n(u, v) is a linear combination of the bm,n(u), it will have the same recursion.

Transforming the general recurrence (Theorem 14) for sn,k(u) into operators, we
get
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∇u = B − (1−K)BaE−c
u

1 + (1−K)
∑
i

BbiE−di
u

,

where ∇u = 1 − E−1
u . Notice that when K = 0, we get the univariate operator

equation in [7] for ballot paths avoiding a pattern. Substituting the operators B1

and B2 gives

∇u = B1Eu −
Ba

1Ea−c
u −B2B

a−b
1 Ea−c

u

1 +
∑
i

Bbi
1 Ebi−di

u −
∑
i

B2B
bi−b
1 Ebi−di

u

= B1Eu −
(Bb

1 −B2)Ba−b
1 Ea−c

u

1 + (Bb
1 −B2)

∑
i

Bbi−b
1 Ebi−di

u

.

Solving this in general would be quite messy, and not very enlightening.

8.1. Counting rur in Ballot Paths

We will now show how the finite operator theory applies to our guiding example
rur. This example is very basic, and we will solve it in three ways. The pattern rur
has just one bifix r, and so we have a = 2 and b1 = c = d1 = 1. The corresponding
operator equation becomes

∇u = B1Eu −
(B1 −B2)B1Eu

1 + (B1 −B2)
=

B1Eu

1 + B1 −B2
.

Since B2 = A : an → an−1, we can use Corollary 10 to find the solution. Using
Corollary 11,

V m
1 =

∑

i≥0

∑

j≥0

[
εi+1−m
1

∂τ1

∂s

]

i,j

Ai
1A

j
2,

where τ1(s, t) =
sEu

1 + s− t
and ε1(s, t) = E−1

u (1 + s− t). We get

V m
1 =

∑

i≥0

∑

j≥0

(−1)i m

m− i

(
m + j − 1

i, j

)
Em−iAi

1A
j
2.

Thus, by Corollary 10,

b(a)
m,n(u, v) = θA1

∑

i≥0

∑

j≥0

(
m + j − 1

i, j

)
(−1)i

m− i
am−1−i,n−j(u + m− i, v).

Using Lemma 12,

b(a)
m,n(u, 0) =

∑

i≥0

∑

j≥0

(−1)i

(
m + j − 1

i, j

)
u

u + m− i
am−i,n−j(u + m− i, 0).
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We know that b(a)
m,n(u, 0) = bm,n(u) and (am,n) is a bivariate basic sequence for

the delta pair (∇u, A). Since A is a univariate operator, (am,n) factors, that is,

am,n(u, v) =
(

u + m− 1
m

)
an(v). Thus, am,n(u, 0) =

(
u + m− 1

m

)
δn,0, which im-

plies

bm,n(u) =
∑

i≥0

∑

j≥0

(−1)i

(
m + j − 1

i, j

)
u

u + m− i

(
u + 2m− 2i− 1

m− i

)
δn−j,0

=
∑

i≥0

(−1)i

(
m + n− 1

i, n

)
u

u + m− i

(
u + 2m− 2i− 1

m− i

)
.

Finally, since sn,k(m) = bn−k,k(m− n + 1), we have

sn,k(m) =
∑

i≥0

(−1)i

(
n− 1
i, k

)
m− n + 1

m + 1− k − i

(
m + n− 2k − 2i

n− k − i

)
. (9)

Notice that we could also write

∇uE−1
u =

B1

1 + B1 −B2

for the operator equation. The right-hand side is a power series in B1 and B2 with
no operator coefficients, which means we can use Theorem 13 to find the solution. In

this case, we have A1 = ∇uE−1
u , which has u

u+m

(
u + 2m− 1

m

)
as its basic sequence,

τ1(s, t) = s
1+s−t , and ai,j(u, v) = u

u+i

(
u + 2i− 1

i

)
aj(v). Using the theorem with

τ2(s, t) = t, we get b(a)
m,n(u, v) =

m∑

i=0

n∑

j=0

[
τ i
1

]
m,n−j

u

u + i

(
u + 2i− 1

i

)
aj(v)

=
m∑

i=0

n∑

j=0




∑

k≥0

(
−i

k

)
(s− t)k





m−i,n−j

u

u + i

(
u + 2i− 1

i

)
aj(v)

=
m∑

i=0

n∑

j=0

(−1)i

(
m + n− j − 1

i, n− j

)
u

u + m− i

(
u + 2(m− i)− 1

m− i

)
aj(v).

When we let v = 0, then the nonzero terms occur when j = 0; hence,

bm,n(u) =
m∑

i=0

(−1)i

(
m + n− 1

i, n

)
u

u + m− i

(
u + 2(m− i)− 1

m− i

)
,

and finally since sn,k(m) = bn−k,k(m− n + 1), we get (9).
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↑ m 1 9 29 49 78 131 171 204 210 154
8 1 8 22 32 50 76 87 90 66 0

7 1 7 16 20 31 40 39 29 0

6 1 6 11 12 18 18 13 0

5 1 5 7 7 9 6 0

4 1 4 4 4 3 0

3 1 3 2 2 0

2 1 2→ 1 0

1 1→ 1↑ 1

0 1 0

0 1 2 3 4 5 6 7 8 → n

Table 2: Number of ballot paths to (n,m) avoiding rur and urru

Finally, because

E−1
u −E−2

u =
B1

1 + B1 −B2
,

we can solve for Eu in terms of B1 and B2, Eu = 1 + τ1 (B1, B2), say (see (4)). Let
b (s, t;u) =

∑
m,n≥0 bm,n (u) smtn, and thus

b (s, t;u) = (1 + τ1 (s, t))u =



1 + s− t−
√

(1− t− s)2 − 4s2

2s





u

.

We find
∑

n,k≥0

sn+k,k (m + n + k) sntk = b (s, st;m + 1)

=



1 + s− st−
√

(1− st− s)2 − 4s2

2s





m+1

.

9. Outlook: Ballot Paths Avoiding Two Patterns

We are interested in the number of ballot paths containing several patterns at the
same time. Here is an example of a ballot path avoiding the patterns urru and
rur (note that urru has depth 1). In addition to avoiding each pattern, urru and
rur, we also have to avoid overlaps like rurru. Without the benefit of the general
recurrence formula (Theorem 14), we have to show the following lemma. Let sn(m)
be the number of paths from (0, 0) to (n,m) avoiding both patterns.
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Lemma 16 We have

sn (m) = sn (m− 1) + sn−1 (m)− sn−2 (m− 2) + sn−3 (m− 2)
−sn−1 (m− 1) + sn−1 (m− 2) .

We will first show a technical result, using the same notation as in Section 6.

Lemma 17 We have sn (m; ru) + sn−2 (m− 2;ur) = sn (m− 1)− sn (m− 2) .

Proof.

sn (m; ru) = sn (m; rrru) + sn (m;uuru) (avoiding urru and rur)
= sn (m− 1; rrr) + sn (m− 1;uur) (deleting last up-step)
= sn (m− 1)− sn (m− 1;urr)− sn (m− 1;u) (complement)
= sn (m− 1)− sn−2 (m− 2;¬r)− sn (m− 2;¬urr) (av. and del.)
= sn (m− 1)− sn (m− 2)− sn−2 (m− 2;u) + sn (m− 2;urr) (comp.)
= sn (m− 1)− sn (m− 2)− sn−2 (m− 2;u) + sn−2 (m− 2;uu)
= sn (m− 1)− sn (m− 2)− sn−2 (m− 2;ur) .

!

Now we can prove Lemma 16.
Proof of Lemma 16. Various steps of pattern avoiding and complement-taking
show that

sn (m) = sn (m− 1;¬urr) + sn−1 (m;¬ru)
= sn (m− 1)− sn (m− 1;urr) + sn−1 (m)− sn−1 (m; ru)
= sn (m− 1) + sn−1 (m)− sn (m− 1;urr)− sn−1 (m; ru)
= sn (m− 1) + sn−1 (m)− sn−2 (m− 2;¬r)− sn−1 (m; ru)
= sn (m− 1) + sn−1 (m)− sn−2 (m− 2) + sn−2 (m− 2; r)− sn−1 (m; ru)
= sn (m− 1) + sn−1 (m)− sn−2 (m− 2) + sn−3 (m− 2)

−sn−3 (m− 2; ru)− sn−1 (m; ru) .

It remains to show that sn−2 (m− 2; ru) + sn (m; ru) = sn (m− 1) − sn (m− 2) ,
which follows from Lemma 17. !

If we denote by B the operator mapping sn (n + m) into sn−1 (n− 1 + m), then

∇ = B
(
E + E−1 − 1

)
−B2 + EB3, (10)
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and thusτ (t) = (E −∇) t − t2 + Et3. It follows from the transfer theorem of the
univariate finite operator calculus [6] that bn (x) =

x
n∑

i=1

[
τ (t)i

]

n

1
x

(
i + x− 1

i

)

= x
n∑

i=1

i∑

j=0

(
i

i− j, n− i− j

)
(E −∇)i−j En−i−j (−1)n−i 1

x

(
i + x− 1

i

)

= x
n∑

i=1

(−1)n−i

i

i∑

j=0

(
i

j, n− 2i + j

) ∞∑

k=0

(
j

k

)(
n− i + k + x− 1

i− 1− k

)

is the corresponding basic sequence. Because

E =
(
1 + B2 + B −

√
1−B (1 + B) (3B2 −B + 2)

)
/
(
2B + 2B3

)

in (10), we find

∑

n≥0

bn (x) tn =

(
1 + t2 + t−

√
1− t (1 + t) (3t2 − t + 2)
2 (t + t3)

)x

.

To determine (sn) we need initial values. Because both patterns can only occur
when n ≥ 2, we need separate initial values for the beginning of the recursion; we
see from the table that s0 (−1) = 1, s1 (0) = 0, s2 (1) = 1, and s3 (2) = 0. By
Lemma 16, sn (n) =

sn (n− 1) + sn−1 (n)− sn−2 (n− 2) + sn−3 (n− 2)− sn−1 (n− 1) + sn−1 (n− 2) ,

and hence sn (n− 1) + sn−1 (n− 2) = 0, and thus sn (n− 1) = 0 for n ≥ 4. The
binomial theorem for Sheffer sequences shows that

sn (n + x) =
n∑

l=0

sl (l − 1) bn−l (x + 1) = bn (x + 1) + bn−2 (x + 1)

and

∑

n≥0

sn (n + m) tn =
(
1 + t2

)
(

1 + t2 + t−
√

1− t (1 + t) (3t2 − t + 2)
2 (t + t3)

)m+1

.

Especially the number of Dyck paths avoiding uddu and dud has the generating
function

∑

n≥0

sn (n) tn =
1 + t2 + t−

√
1− t (1 + t) (3t2 − t + 2)

2t
.
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