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Abstract
In this paper, we construct three binary linear codes C(SO+(2, q)), C(O+(2, q)),
and C(SO+(4, q)), respectively associated with the orthogonal groups SO+(2, q),
O+(2, q), and SO+(4, q), with q a power of two. Then we obtain recursive formulas
for the power moments of Kloosterman and 2-dimensional Kloosterman sums in
terms of the frequencies of weights in the codes. This is done via the Pless power
moment identity and by utilizing the explicit expressions of Gauss sums for the
orthogonal groups.

1. Introduction

Let ψ be a nontrivial additive character of the finite field Fq with q = pr elements
(p a prime), and let m be a positive integer. Then the m-dimensional Kloosterman
sum Km(ψ; a)[16] is defined by

Km(ψ; a) =
∑

α1,··· ,αm∈F∗q

ψ(α1 + · · · + αm + aα−1
1 · · ·α−1

m ) (a ∈ F∗q).

In particular, if m = 1, then K1(ψ; a) is simply denoted by K(ψ; a), and is called
the Kloosterman sum. The Kloosterman sum was introduced in 1926 to give an
estimate for the Fourier coefficients of modular forms (cf. [14], [5]). It has also been
studied to solve various problems in coding theory and cryptography over finite
fields of characteristic two (cf. [4], [6]).

For each nonnegative integer h, by MKm(ψ)h we will denote the h-th moment
1This work was supported by National Foundation of Korea Grant funded by the Korean

Government(2009-0072514).
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of the m-dimensional Kloosterman sum Km(ψ; a). Namely, it is given by

MKm(ψ)h =
∑

a∈F∗q

Km(ψ; a)h.

If ψ = λ is the canonical additive character of Fq, then MKm(λ)h will be simply
denoted by MKh

m. Further, for brevity MKh
1 will be indicated by MKh.

Explicit computations on power moments of Kloosterman sums were begun with
the paper [22] of Salié in 1931, where he showed, for any odd prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1(h ≥ 1).

Here M0 = 0, and for h ∈ Z>0,

Mh = |{(α1, · · · ,αh) ∈ (F∗q)h|
h∑

j=1

αj = 1 =
h∑

j=1

α−1
j }|.

For q = p odd prime, Salié obtained MK1, MK2, MK3, MK4 in [22] by de-
termining M1,M2,M3. MK5 can be expressed in terms of the p-th eigenvalue for
a weight 3 newform on Γ0(15) (cf. [17], [21]). MK6 can be expressed in terms
of the p-th eigenvalue for a weight 4 newform on Γ0(6) (cf. [9]). Also, based on
numerical evidence, in [7] Evans was led to propose a conjecture which expresses
MK7 in terms of Hecke eigenvalues for a weight 3 newform on Γ0(525) with quartic
nebentypus of conductor 105. For more details about this brief history of explicit
computations on power moments of Kloosterman sums, one is referred to Section
IV of [12].

From now on, let us assume that q = 2r. Carlitz [1] evaluated MKh, for h ≤ 4.
Recently, Moisio was able to find explicit expressions of MKh, for the other values
of h with h ≤ 10 (cf. [19]). This was done, via the Pless power moment identity,
by connecting moments of Kloosterman sums and the frequencies of weights in the
binary Zetterberg code of length q + 1, which were known by the work of Schoof
and Vlugt in [23]. In [12], the binary linear codes C(SL(n, q)) associated with finite
special linear groups SL(n, q) were constructed when n, q are both powers of two.
Then a recursive formula for the power moments of multi-dimensional Kloosterman
sums in terms of the frequencies of weights in C(SL(n, q)) was obtained. This was
done via the Pless power moment identity and by utilizing our previous result on
the explicit expression of the Gauss sum for SL(n, q). In particular, when n = 2,
this gives a recursive formula for the power moments of Kloosterman sums.

In this paper, we will show the following theorem giving recursive formulas for the
power moments of Kloosterman and 2-dimensional Kloosterman sums. To do that,
we construct three binary linear codes C(SO+(2, q)), C(O+(2, q)), C(SO+(4, q)), re-
spectively associated with SO+(2, q), O+(2, q), SO+(4, q), and express those power
moments in terms of the frequencies of weights in each code. Then, thanks to
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our previous results on the explicit expressions of “Gauss sums” for the orthogonal
group O+(2n, q) and the special orthogonal group SO+(2n, q) [13], we can express
the weight of each codeword in the duals of the codes in terms of Kloosterman or
2-dimensional Kloosterman sums. Then our formulas will follow immediately from
the Pless power moment identity.

Theorem 1 in the following is the main result of this paper. Henceforth, we agree
that the binomial coefficient

(b
a

)
= 0, if a > b or a < 0.

Theorem 1. Let q = 2r. Then we have the following.
(a) For r ≥ 3, and h = 1, 2, . . . ,

MKh =
h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q − 1)h−lMKl

+ q

min{N1,h}∑

j=0

(−1)h+jC1,j

h∑

t=j

t!S(h, t)2h−t

(
N1 − j

N1 − t

)
,

(1)

where N1 =| SO+(2, q) |= q − 1, and {C1,j}N1
j=0 is the weight distribution of

C(SO+(2, q)) given by

C1,j =
∑(

1
ν0

) ∏

tr(β−1)=0

(
2
νβ

)
(j = 0, . . . , N1). (2)

Here the sum is over all the sets of nonnegative integers {ν0}
⋃

{νβ}tr(β−1)=0 sat-
isfying ν0 +

∑
tr(β−1)=0 νβ = j and

∑
tr(β−1)=0 νββ = 0. In addition, S(h, t) is the

Stirling number of the second kind defined by

S(h, t) =
1
t!

t∑

j=0

(−1)t−j

(
t

j

)
jh. (3)

(b) For r ≥ 3, and h = 1, 2, . . . ,

MKh =
h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q − 1)h−lMKl

+ q

min{N2,h}∑

j=0

(−1)h+jC2,j

h∑

t=j

t!S(h, t)2h−t

(
N2 − j

N2 − t

)
, (4)

where N2 =| O+(2, q) |= 2(q − 1), and {C2,j}N2
j=0 is the weight distribution of

C(O+(2, q) given by

C2,j =
∑(

q

ν0

) ∏

tr(β−1)=0

(
2
νβ

)
(j = 0, . . . , N2). (5)
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Here the sum is over all the sets of nonnegative integers {ν0}
⋃

{νβ}tr(β−1)=0 satis-
fying ν0 +

∑
tr(β−1)=0 νβ = j and

∑
tr(β−1)=0 νββ = 0.

(c) For r ≥ 2, and h = 1, 2, . . . ,

MKh
2 =

h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q4 − q3 − 2q2 + 1)h−lMKl

2

+ q1−2h
min{N3,h}∑

j=0

(−1)h+jC3,j

h∑

t=j

t!S(h, t)2h−t

(
N3 − j

N3 − t

)
, (6)

MK2h =
h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q4 − q3 − 2q2 + q + 1)h−lMK2l

+ q1−2h
min{N3,h}∑

j=0

(−1)h+jC3,j

h∑

t=j

t!S(h, t)2h−t

(
N3 − j

N3 − t

)
, (7)

where N3 =| SO+(4, q) |= q2(q2 − 1)2, and {C3,j}N3
j=0 is the weight distribution of

C(SO+(4, q)) given by

C3,j =
∑(

m0

ν0

) ∏

|t|<2
√

q
t≡−1(4)

∏

K(λ;β−1)=t

(
mt

νβ

)
(j = 0, . . . , N3). (8)

Here the sum is over all sets of nonnegative integers {νβ}β∈Fq satisfying
∑

β∈Fq
νβ =

j and
∑

β∈Fq
νββ = 0, m0 = q3(2q2 − q − 2), and mt = q2(q3 − q2 − 2q + t), for all

integers t satisfying |t| < 2√q, and t ≡ −1 (mod 4).

2. O+(2n, q)

For more details about the results of this section, one is referred to the paper [13].
In addition, [24] is an excellent reference for matrix groups over finite fields.

Throughout this paper, the following notations will be used:

q = 2r (r ∈ Z>0),

Fq = the finite field with q elements,

TrA = the trace of A for a square matrix A,

tB = the transpose of B for any matrix B.
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Let θ+ be the nondegenerate quadratic form on the vector space F2n×1
q of all

2n× 1 column vectors over Fq, given by

θ+(
2n∑

i=1

xie
i) =

n∑

i=1

xixn+i,

where {e1 =t [10 . . . 0], e2 =t [01 . . . 0], . . . , e2n =t [0 . . . 01]} is the standard basis of
F2n×1

q .
The group O+(2n, q) of all isometries of (F2n×1

q , θ+) is given by:

O+(2n, q) =
{[

A B
C D

]
∈ GL(2n, q)

∣∣∣
tAC,tBD are alternating

tAD+tCB=1n

}

=
{[

A B
C D

]
∈ GL(2n, q)

∣∣∣
tAB,tCD are alternating

AtD+BtC=1n

}
,

where A,B,C,D are of size n.
An n× n matrix A = (aij) over Fq is called alternating if

{
aii = 0, for 1 ≤ i ≤ n,
aij = −aji = aji, for 1 ≤ i < j ≤ n.

P+ = P+(2n, q) is the maximal parabolic subgroup of O+(2n, q) defined by:

P+(2n, q) =
{[

A 0
0 tA−1

] [
1n B
0 1n

] ∣∣∣ A∈GL(n,q)
B alternating

}
.

Then, with respect to P+ = P+(2n, q), the Bruhat decomposition of O+(2n, q) is
given by:

O+(2n, q) =
n∐

r=0

P+σ+
r P+, (9)

where

σ+
r =





0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r



 ∈ O+(2n, q).

For 0 ≤ r ≤ n, let A+
r = {w ∈ P+(2n, q) | σ+

r w(σ+
r )−1 ∈ P+(2n, q)}. Express-

ing O+(2n, q) as a disjoint union of right cosets of P+ = P+(2n, q), the Bruhat
decomposition in (9) can be written as

O+(2n, q) =
n∐

r=0

P+σ+
r (A+

r \P+). (10)



INTEGERS: 11 (2011) 6

The order of the general linear group GL(n, q) is given by

gn =
n−1∏

j=0

(qn − qj) = q(
n
2)

n∏

j=1

(qj − 1).

For integers n, r with 0 ≤ r ≤ n , the q-binomial coefficients are defined as:

[nr]q =
r−1∏

j=0

(qn−j − 1)/(qr−j − 1). (11)

Then, for integers n, r with 0 ≤ r ≤ n, we have

gn

gn−rgr
= qr(n−r) [nr]q . (12)

As it is shown in [13],

| A+
r |= grgn−rq(

n
2)qr(2n−3r+1)/2. (13)

Also, it is immediate to see that

| P+(2n, q) |= q(
n
2)gn. (14)

Thus we get, from (12)-(14), | A+
r \P+(2n, q) |= [nr]q q(

r
2), and

| P+(2n, q) |2| A+
r |−1= q(

n
2)gn [nr]q q(

r
2). (15)

So, from (10), (15), we get:

| O+(2n, q) | =
n∑

r=0

| P+(2n, q) |2| A+
r |−1

= 2qn2−n(qn − 1)
n−1∏

j=1

(q2j − 1),
(16)

where one can apply the following q-binomial theorem with x = −1.
n∑

r=0

[nr]q (−1)rq(
r
2)xr = (x; q)n.

There is an epimorphism of groups δ+ : O+(2n, q)→ F+
2 (F+

2 denoting the additive
group of F2), which is related to the Clifford algebra C(F2n×1

q , θ+) of the quadratic
space (F2n×1

q , θ+), and is given by δ+(w) = Tr(B tC), where

w =
[

A B
C D

]
∈ O+(2n, q).



INTEGERS: 11 (2011) 7

Then SO+(2n, q) := Ker δ+ is given by

SO+(2n, q) =
∐

0≤r≤n, r even

P+σ+
r (A+

r \P+), (17)

and

| SO+(2n, q) | = qn2−n(qn − 1)
n−1∏

j=1

(q2j − 1)(cf. (16)).

3. Gauss Sums for O+(2n, q)

The following notations will be used throughout this paper:

tr(x) = x + x2 + · · · + x2r−1
the trace function Fq → F2,

λ(x) = (−1)tr(x) the canonical additive character of Fq.

Then any nontrivial additive character ψ of Fq is given by ψ(x) = λ(ax) , for a
unique a ∈ F∗q .

For any nontrivial additive character ψ of Fq and a ∈ F∗q , the Kloosterman sum
KGL(t,q)(ψ; a) for GL(t, q) is defined as

KGL(t,q)(ψ; a) =
∑

w∈GL(t,q)

ψ(Trw + a Trw−1). (18)

Observe that, for t = 1, KGL(1,q)(ψ; a) denotes the Kloosterman sum K(ψ; a).
For the Kloosterman sum K(ψ; a), we have the Weil bound (cf. [16])

| K(ψ; a) |≤ 2
√

q. (19)

In [11], it is shown that KGL(t,q)(ψ; a) satisfies the following recursive relation:
for integers t ≥ 2, a ∈ F∗q ,

KGL(t,q)(ψ; a) = qt−1KGL(t−1,q)(ψ; a)K(ψ; a)
+ q2t−2(qt−1 − 1)KGL(t−2,q)(ψ; a), (20)

where we understand that KGL(0,q)(ψ; a) = 1 . From (20), in [11] an explicit
expression of the Kloosterman sum for GL(t, q) was derived.

Theorem 2. ( [11]) For integers t ≥ 1, and a ∈ F∗q, the Kloosterman sum KGL(t,q)(ψ; a)
is given by

KGL(t,q)(ψ; a) = q(t−2)(t+1)/2
[(t+2)/2]∑

l=1

qlK(ψ; a)t+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1), (21)
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where K(ψ; a) is the Kloosterman sum and the inner sum is over all integers
j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ · · · ≤ j1 ≤ t + 1. Here we agree
that the inner sum is 1 for l = 1.

In Section 6 of [13], it is shown that the Gauss sums for O+(2n, q) and SO+(2n, q)
are respectively given by:

∑

w∈O+(2n,q)

ψ(Trw) =
n∑

r=0

|A+
r \P+|

∑

w∈P+

ψ(Tr wσ+
r )

= q(
n
2)

n∑

r=0

[nr]q q(2rn−r2−r)/2sr

×KGL(n−r,q)(ψ; 1),

(22)

∑

w∈SO+(2n,q)

ψ(Trw) =
∑

0≤r≤n,
r even

|A+
r \P+|

∑

w∈P+

ψ(Tr wσ+
r )

= q(
n
2)

∑

0≤r≤n,
r even

[nr]q q(2rn−r2−r)/2sr

×KGL(n−r,q)(ψ; 1)

(23)

(cf. (10), (17)). Here ψ is any nontrivial additive character of Fq, s0 = 1, and, for
r ∈ Z>0, sr denotes the number of all r × r nonsingular symmetric matrices over
Fq , which is given by (cf. Proposition 4.3 in [13])

sr =

{
qr(r+2)/4

∏r/2
j=1(q

2j−1 − 1), for r even,
q(r2−1)/4

∏(r+1)/2
j=1 (q2j−1 − 1), for r odd.

(24)

For our purposes, we only need the following three expressions of the Gauss sums
for SO+(2, q), O+(2, q), and SO+(4, q). So we state them separately as a theorem
(cf. (11), (21)–(24)). Also, for the ease of notations, we introduce

G1(q) = SO+(2, q), G2(q) = O+(2, q), G3(q) = SO+(4, q). (25)

Theorem 3. Let ψ be any nontrivial additive character of Fq. Then we have
∑

w∈G1(q)

ψ(Trw) = K(ψ; 1),

∑

w∈G2(q)

ψ(Trw) = K(ψ; 1) + q − 1,

∑

w∈G3(q)

ψ(Trw) = q2(K(ψ; 1)2 + q3 − q).
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For the following lemma, one notes that (n, q − 1) = 1.

Lemma 4. With n = 2s(s ∈ Z≥0), the map a )→ an : F∗q → F∗q is a bijection.

A result analogous to the following corollary is also mentioned in [20].

Corollary 5. For n = 2s(s ∈ Z≥0), and λ the canonical additive character of Fq,

K(λ; an) = K(λ; a).

Proof.

K(λ; an) =
∑

α∈F∗q

λ(α + anα−1) =
∑

α∈F∗q

λ(αn + anα−n) (by Lemma 4)

=
∑

α∈F∗q

λ((α + aα−1)n)

=
∑

α∈F∗q

λ(α + aα−1) ([15],Theorem 2.23(v))

= K(λ; a).

For the next corollary, we need a result of Carlitz.

Theorem 6. ([2]) For the canonical additive character λ of Fq, and a ∈ F∗q,

K2(λ; a) = K(λ; a)2 − q. (26)

The next corollary follows from Theorems 3 and 6, Corollary 5, and by simple
change of variables.

Corollary 7. Let λ be the canonical additive character of Fq, and let a ∈ F∗q. Then
we have

∑

w∈G1(q)

λ(aTrw) = K(λ; a), (27)

∑

w∈G2(q)

λ(aTrw) = K(λ; a) + q − 1, (28)

∑

w∈G3(q)

λ(aTrw) = q2(K(λ; a)2 + q3 − q) (29)

= q2(K2(λ; a) + q3). (30)
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Proposition 8. Let λ be the canonical additive character of Fq, m ∈ Z>0, β ∈ Fq.
Then

∑

a∈F∗q

λ(−aβ)Km(λ; a) =

{
qKm−1(λ;β−1) + (−1)m+1, if β *= 0,

(−1)m+1, if β = 0,
(31)

with the convention K0(λ;β−1) = λ(β−1).

Proof. Equation (31) is equal to
∑

α1,...,αm∈F∗q

λ(α1 + · · · + αm)
∑

a∈F∗q

λ(a(α−1
1 · · ·α−1

m − β))

=
∑

α1,...,αm∈F∗q

λ(α1 + · · · + αm)
∑

a∈Fq

λ(a(α−1
1 · · ·α−1

m − β))

−
∑

α1,...,αm∈F∗q

λ(α1 + · · · + αm)

= q
∑

λ(α1 + · · · + αm) + (−1)m+1.

Here the sum runs over all α1, . . . ,αm ∈ F∗q satisfying α−1
1 · · ·α−1

m = β, so that it is
given by 





0, if β = 0,
Km−1(λ;β−1), if β *= 0, and m > 1,
λ(β−1), if β *= 0, and m = 1.

Let G(q) be one of finite classical groups over Fq. Then we put, for each β ∈ Fq,

NG(q)(β) =| {w ∈ G(q) | Tr(w) = β} | .

Then it is easy to see that

qNG(q)(β) =| G(q) | +
∑

a∈F∗q

λ(−aβ)
∑

w∈G(q)

λ(a Trw). (32)

For brevity, we write

n1(β) = NG1(q)(β), n2(β) = NG2(q)(β), n3(β) = NG3(q)(β). (33)

Using (27), (28), (30)–(32), and (37), one derives the following.
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Proposition 9. With n1(β), n2(β), n3(β) as in (33), we have

n1(β) =






1, if β = 0,
2, if β *= 0 with tr(β−1) = 0,
0, if β *= 0 with tr(β−1) = 1,

(34)

n2(β) =






q, if β = 0,
2, if β *= 0 with tr(β−1) = 0,
0, if β *= 0 with tr(β−1) = 1,

(35)

n3(β) =
{

q3(2q2 − q − 2), if β = 0,
q2{q(q + 1)(q − 2) + K(λ;β−1)}, if β *= 0. (36)

4. Construction of Codes

Let

N1 = |G1(q)| = q − 1, N2 = |G2(q)| = 2(q − 1),
N3 = |G3(q)| = q2(q2 − 1)2.

(37)

Here we will construct three binary linear codes C(G1(q)) of length N1, C(G2(q)) of
length N2, and C(G3(q)) of length N3, respectively associated with the orthogonal
groups G1(q),G2(q) , and G3(q).

By abuse of notations, for i = 1, 2, 3, let g1, g2, . . . , gNi be a fixed ordering of the
elements in the group Gi(q). Also, for i = 1, 2, 3, we put

vi = (Trg1, T rg2, . . . , T rgNi) ∈ FNi
q .

Then, for i = 1, 2, 3, the binary linear code C(Gi(q)) is defined as

C(Gi(q)) = {u ∈ FNi
2 | u · vi = 0}, (38)

where the dot denotes the usual inner product in FNi
q .

The following Delsarte’s theorem is well-known.

Theorem 10. ([18]) Let B be a linear code over Fq. Then (B|F2)⊥ = tr(B⊥).

In view of this theorem, the dual C(Gi(q))⊥(i = 1, 2, 3) is given by

C(Gi(q))⊥ = {c(a) = (tr(aTrg1), . . . , tr(aTrgNi))|a ∈ Fq}. (39)

Let F+
2 , F+

q denote the additive groups of the fields F2, Fq, respectively. Then,
with Θ(x) = x2 + x denoting the Artin-Schreier operator in characteristic two, we
have the following exact sequence of groups:

0→ F+
2 → F+

q → Θ(Fq)→ 0. (40)
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Here the first map is the inclusion and the second one is given by x )→ Θ(x) = x2+x.
So

Θ(Fq) = {α2 + α | α ∈ Fq}, and [F+
q : Θ(Fq)] = 2. (41)

Theorem 11. Let λ be the canonical additive character of Fq, and let β ∈ F∗q.
Then

(a)
∑

α∈Fq−{0,1}

λ(
β

α2 + α
) = K(λ;β)− 1, (42)

(b)
∑

α∈Fq
λ( β

α2+α+a ) = −K(λ;β)− 1, if x2 + x + a(a ∈ Fq) is irreducible over Fq,
or equivalently if a ∈ Fq \ Θ(Fq) (cf.(41)).

Proof. (a) We compute the following sum in two different ways:
∑

a∈F∗q

λ(−β−1a)K(λ; a)2. (43)

On the one hand, using (26) we see that (43) is equal to
∑

a∈F∗q

λ(−β−1a)(q + K2(λ; a)) = −q +
∑

a∈F∗q

λ(−β−1a)K2(λ; a)

= −q − 1 + qK(λ;β) (cf. (31)).
(44)

On the other hand, we see that (43) equals
∑

α1,α2∈F∗q

λ(α1 + α2)
∑

a∈F∗q

λ(a(α−1
1 + α−1

2 − β−1)) = q
∑

λ(α1 + α2)− 1

(with the sum running over all α1,α2 ∈ F∗q , satisfying α−1
1 + α−1

2 = β−1)

= q
∑

α1∈Fq−{0,β}

λ(α1 + (α−1
1 + β−1)−1)− 1

= q
∑

α1∈Fq−{0,β−1}

λ(α−1
1 + (α1 + β−1)−1)− 1(α1 → α−1

1 )

= q
∑

α1∈Fq−{0,1}

λ(
β

α1(α1 + 1)
)− 1(α1 → β−1α1).

(45)

Equating (44) and (45), result (a) follows.

(b) We have
∑

α∈Fq−{0,1}

λ(
β

α2 + α
) = 2

∑

γ∈Θ(Fq)−{0}

λ(
β

γ
), (46)
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∑

γ∈Θ(Fq)−{0}

λ(
β

γ
) +

∑

γ∈Θ(Fq)

λ(
β

γ + a
) =

∑

γ∈F∗q

λ(
β

γ
) = −1. (47)

So
∑

α∈Fq

λ(
β

α2 + α + a
) = 2

∑

γ∈Θ(Fq)

λ(
β

γ + a
) (cf.(41))

= −2− 2
∑

γ∈Θ(Fq)−{0}

λ(
β

γ
) (cf.(47))

= −2−
∑

α∈Fq−{0,1}

λ(
β

α2 + α
) (cf.(46))

= −2− (K(λ;β)− 1) (cf.(42))
= −1−K(λ;β).

Theorem 12. (a) For q = 2r, with r ≥ 3, the map Fq → C(Gi(q))⊥(a )→ c(a)),
for i = 1, 2, is an F2-linear isomorphism. (b) For any q = 2r, the map Fq →
C(G3(q))⊥(a )→ c(a)) is an F2-linear isomorphism.

Proof. (a) As G2(q) = O+(2, q) case can be shown in exactly the same manner, we
will treat only G1(q) = SO+(2, q) case. The map is clearly F2-linear and surjective.
Let a be in the kernel of the map. Then tr(aTrg) = 0, for all g ∈ SO+(2, q). Since
n1(β) = |{g ∈ SO+(2, q) | Tr(g) = β}| = 2, for all β ∈ F∗q with tr(β−1) = 0(cf.
(34)), tr(aβ) = 0 , for all β ∈ F∗q with tr(β−1) = 0. Hilbert’s theorem 90 says that,
for γ ∈ Fq,tr(γ) = 0 ⇔ γ = α2 + α , for some α ∈ Fq. Thus tr( a

α2+α ) = 0, for all
α ∈ Fq\{0, 1}. So

∑
α∈Fq−{0,1} λ( a

α2+α ) = q − 2. Assume now that a *= 0. Then,
from (42), (19), q− 2 = K(λ; a)− 1 ≤ 2√q− 1. This implies that q ≤ 2√q + 1. But
this is impossible, since x > 2

√
x + 1, for x ≥ 8.

(b) Again, the map is F2-linear and surjective. From (36) and using the Weil bound
in (19), it is elementary to see that n3(β) = |{g ∈ SO+(4, q) | Tr(g) = β)}| > 0,
for all β ∈ Fq. Let a be in the kernel. Then tr(aTrg) = 0, for all g ∈ SO+(4, q),
and hence tr(aβ) = 0, for all β ∈ Fq. This implies that a = 0, since otherwise
tr : Fq → F2 would be the trivial map.

Remark 13. It is easy to check that, for i = 1, 2, and q = 2r with r = 1, 2, the
kernel of the map Fq → C(Gi(q))⊥(a )→ c(a)) is F2.

5. Power Moments of Kloosterman Sums

In this section, we will be able to find, via the Pless power moment identity, a
recursive formula for the power moments of Kloosterman sums in terms of the
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frequencies of weights in C(Gi(q)), for each i = 1, 2, 3.

Theorem 14 ([8]). Let B be a q-ary [n, k] code, and let Bi (resp. B⊥i ) denote the
number of codewords of weight i in B(resp. in B⊥). Then, for h = 0, 1, 2, . . . ,

n∑

j=0

jhBj =
min{n,h}∑

j=0

(−1)jB⊥j

h∑

t=j

t!S(h, t)qk−t(q − 1)t−j

(
n− j

n− t

)
, (48)

where S(h, t) is the Stirling number of the second kind defined in (3).

From now on, we will assume that r ≥ 3, for i = 1, 2, and hence, for i = 1, 2, 3,
every codeword in C(Gi(q))⊥ can be written as c(a), for a unique a ∈ Fq (cf.
Theorem 12, (39)). Further, we will assume r ≥ 2, for i = 3, so that Theorem 18
can be used in (c) of Theorem 19.

Lemma 15. Let c(a) = (tr(aTrg1), · · · , tr(aTrgNi)) ∈ C(Gi(q))⊥, for a ∈ F∗q, and
i = 1, 2, 3. Then the Hamming weight w(c(a)) can be expressed as follows:

(a) For i = 1, 2, w(c(a)) =
1
2
(q − 1−K(λ; a)), (49)

(b) For i = 3,

w(c(a)) =
1
2
q2(q4 − q3 − 2q2 + q + 1−K(λ; a)2)

=
1
2
q2(q4 − q3 − 2q2 + 1−K2(λ; a)).

(50)

Proof. We have, for i = 1, 2, 3,

w(c(a)) =
1
2

Ni∑

j=1

(1− (−1)tr(aTrgj)) =
1
2
(Ni −

∑

w∈Gi(q)

λ(aTrw)).

Our results now follow from (37) and (27)-(30).

Fix i(i = 1, 2, 3), and let u = (u1, . . . , uNi) ∈ FNi
2 , with νβ 1’s in the coordinate

places where Tr(gj) = β, for each β ∈ Fq. Then we see from the definition of
the code C(Gi(q))(cf. (38)) that u is a codeword with weight j if and only if∑

β∈Fq
νβ = j and

∑
β∈Fq

νββ = 0 (an identity in Fq). As there are
∏

β∈Fq

(ni(β)
νβ

)

many such codewords with weight j, we obtain the following result.

Proposition 16. Let {Ci,j}Ni
j=0 be the weight distribution of C(Gi(q)), for each

i = 1, 2, 3, where Ci,j denotes the frequency of the codewords with weight j in
C(Gi(q)). Then

Ci,j =
∑ ∏

β∈Fq

(
ni(β)
νβ

)
, (51)
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where the sum runs over all the sets of integers {νβ}β∈Fq(0 ≤ νβ ≤ ni(β)), satisfying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0. (52)

Corollary 17. Let {Ci,j}Ni
j=0 be the weight distribution of C(Gi(q)), for i = 1, 2, 3.

Then, for i = 1, 2, 3, we have: Ci,j = Ci,Ni−j , for all j, with 0 ≤ j ≤ Ni.

Proof. Under the replacement νβ → ni(β)− νβ , for each β ∈ Fq, the first equation
in (52) is changed to Ni − j, while the second one in (52) and the summands
in (51) are left unchanged. Here the second sum in (52) is left unchanged, since∑

β∈Fq
ni(β)β = 0, as one can see by using the explicit expressions of ni(β) in

(34)–(36).

Theorem 18. ([15]) Let q = 2r, with r ≥ 2. Then the range R of K(λ; a), as a
varies over F∗q, is given by R = {t ∈ Z | |t| < 2√q, t ≡ −1 (mod 4)}. In addition,
each value t ∈ R is attained exactly H(t2 − q) times, where H(d) is the Kronecker
class number of d.

Now, we get the following formulas in (2), (5), and (8), by applying the formula
in (51) to each C(Gi(q)), using the explicit values of ni(β) in (34)-(36), and taking
Theorem 18 into consideration.

Theorem 19. Let {Ci,j}Ni
j=0 be the weight distribution of C(Gi(q)), for i = 1, 2, 3.

Then
(a) C1,j =

∑(
1
ν0

) ∏

tr(β−1)=0

(
2
νβ

)
(j = 0, . . . , N1),

where the sum is over all the sets of nonnegative integers {ν0} ∪ {νβ}tr(β−1)=0

satisfying ν0 +
∑

tr(β−1)=0 νβ = j and
∑

tr(β−1)=0 νββ = 0.

(b) C2,j =
∑(

q

ν0

) ∏

tr(β−1)=0

(
2
νβ

)
(j = 0, . . . , N2),

where the sum is over all the sets of nonnegative integers {ν0} ∪ {νβ}tr(β−1)=0

satisfying ν0 +
∑

tr(β−1)=0 νβ = j and
∑

tr(β−1)=0 νββ = 0.

(c) C3,j =
∑(

m0

ν0

) ∏

|t|<2
√

q
t≡−1(4)

∏

K(λ;β−1)=t

(
mt

νβ

)
(j = 0, . . . , N3),

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying
∑

β∈Fq
νβ =

j and
∑

β∈Fq
νββ = 0, m0 = q3(2q2 − q − 2), and mt = q2(q3 − q2 − 2q + t), for all

integers t satisfying |t| < 2√q and t ≡ −1 (mod 4).
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We now apply the Pless power moment identity in (48) to each C(Gi(q))⊥, for
i = 1, 2, 3, in order to obtain the results in Theorem 1 (cf. (1), (4), (6), (7)) about
recursive formulas.

Then the left-hand side of that identity in (48) is equal to
∑

a∈F∗q

w(c(a))h, (53)

with the w(c(a)) in each case given by (49), (50).
For i = 1, 2, (53) is

1
2h

∑

a∈F∗q

(q − 1−K(λ; a))h =
1
2h

∑

a∈F∗q

h∑

l=0

(−1)l

(
h

l

)
(q − 1)h−lK(λ; a)l

=
1
2h

h∑

l=0

(−1)l

(
h

l

)
(q − 1)h−lMKl.

(54)

Similarly, for i = 3, (53) equals

(
q2

2
)h

h∑

l=0

(−1)l

(
h

l

)
(q4 − q3 − 2q2 + q + 1)h−lMK2l (55)

= (
q2

2
)h

h∑

l=0

(−1)l

(
h

l

)
(q4 − q3 − 2q2 + 1)h−lMKl

2. (56)

Note here that, in view of (26), obtaining power moments of 2-dimensional Kloost-
erman sums is equivalent to getting even power moments of Kloosterman sums.
Also, one has to separate the term corresponding to l = h in (54)-(56), and notes
dimF2C(Gi) = r.

6. Remarks and Examples

The explicit computations about power moments of Kloosterman sums was begun
with the paper [22] of Salié in 1931, where he showed, for any odd prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1(h ≥ 1). (57)

However, this holds for any prime power q = pr(p a prime). Here M0 = 0, and for
h ∈ Z>0,

Mh =| {(α1, . . . ,αh) ∈ (F∗q)h |
h∑

j=1

αj = 1 =
h∑

j=1

α−1
j } | .
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For positive integers h, we let

Ah =| {(α1, . . . ,αh) ∈ (F∗q)h |
h∑

j=1

αj = 0 =
h∑

j=1

α−1
j } | .

Then (q − 1)Mh−1 = Ah, for any h ∈ Z>0. So (57) can be rewritten as

MKh =
q2

q − 1
Ah − (q − 1)h−1 + 2(−1)h−1. (58)

Iwaniec [10] showed the expression (58) for any prime q. However, the proof given
there works for any prime power q, without any restriction. Also, this is a special
case of Theorem 1 in [3], as mentioned in Remark 2 there.

For q = p any prime, MKh was determined for h ≤ 4(cf. [10], [22]).

MK1 = 1, MK2 = p2 − p− 1,

MK3 = (
−3
p

)p2 + 2p + 1

(with the understanding(
−3
2

) = −1, (
−3
3

) = 0),

MK4 =
{

2p3 − 3p2 − 3p− 1, p ≥ 3,
1, p = 2.

Except [1] for 1 ≤ h ≤ 4, not much progress had been made until Moisio suc-
ceeded in evaluating MKh, for the other values of h with h ≤ 10 over the finite
fields of characteristic two in [19]. So we have now closed form formulas for h ≤ 10.

In below, for small values of i, we compute, by using (1), (2), and MAGMA,
the frequencies Ci of weights in C(SO+(2, 24)) and C(SO+(2, 25)), and the power
moments MKi of Kloosterman sums over F24 and F25 . In particular, our results
confirm those of Moisio’s given in [19], when q = 24 and q = 25.

w frequency w frequency w frequency w frequency
0 1 4 77 8 403 12 31

1 1 5 181 9 323 13 7

2 7 6 323 10 181 14 1

3 31 7 403 11 77 15 1

Table 1: The weight distribution of C(SO+(2, 24))

Acknowledgment I would like to thank Professor Igor Shparlinski for reading the
manuscript of this paper and giving valuable suggestions.
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i MKi i MKi i MKi

0 15 10 604249199 20 159966016268924111

1 1 11 3760049569 21 1115184421375168321

2 239 12 28661262671 22 7829178965854277039

3 289 13 188901585601 23 54689811340914235489

4 7631 14 1380879340079 24 383400882469952537231

5 22081 15 9373110103009 25 2680945149821576426881

6 300719 16 67076384888591 26 18780921149940510987119

7 1343329 17 462209786722561 27 131394922435183254906529

8 13118351 18 3272087534565359 28 920122084792925568335951

9 72973441 19 22721501074479649 29 6439066453841188580322241

Table 2: The power moments of Kloosterman sums over F24

w frequency w frequency w frequency w frequency
0 1 8 246325 16 9392163 24 81895

1 1 9 630725 17 8285955 25 23159

2 15 10 1385867 18 6446125 26 5369

3 135 11 2644947 19 4410805 27 945

4 945 12 4410805 20 2644947 28 135

5 5369 13 6446125 21 1385867 29 15

6 23159 14 8285955 22 630725 30 1

7 81895 15 9392163 23 246325 31 1

Table 3: The weight distribution of C(SO+(2, 25))

i MKi i MKi i MKi

0 31 10 44833141471 20 733937760431358760351

1 1 11 138050637121 21 6855945343839827241601

2 991 12 4621008512671 22 86346164924243497892191

3 -959 13 22291740481921 23 851252336789971927746241

4 63391 14 497555476630111 24 10249523095374924648418591

5 -63359 15 3171377872090561 25 104764273348415132423811841

6 5102431 16 55381758830599711 26 1224170008071148563308433631

7 -678719 17 423220459165032961 27 12819574031043721011365916481

8 460435231 18 6318551635327312351 28 146828974390583504114568758431

9 613044481 19 54461730980167425601 29 1562774752282717527826758007681

Table 4: The power moments of Kloosterman sums over F25
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[17] R. Livné, “Motivic orthogonal two-dimensional representations of Gal(Q/Q),” Israel J. Math.
92 (1995), 149-156.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes. Amsterdam,
The Netherlands: North-Holland, 1998.

[19] M. Moisio, “The moments of a Kloosterman sum and the weight distribution of a Zetterberg-
type binary cyclic code,” IEEE Trans. Inform. Theory 53 (2007), 843-847.

[20] M. Moisio, “Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed
trace and norm,” Acta Arith., to appear.

[21] C. Peters, J. Top, and M. van der Vlugt, “The Hasse zeta function of a K3 surface related
to the number of words of weight 5 in the Melas codes,” J. Reine Angew. Math. 432 (1992),
151-176.
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