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Abstract
We use the notion of subprime factorization to establish recurrence relations for the
number of binomial coefficients in a given row of Pascal’s triangle that are divisible
by pj and not divisible by pj+1, where p is a prime. Using these relations to compute
this number can provide significant savings in the number of computational steps.

1. Introduction

Subprime factorization converts the prime divisibility of Pascal’s triangle of binomial
coefficients into a set of subprime-divisibility triangles. Each subprime-divisibility
triangle is a very simple regular tiling with two basic triangular tiles: one tile
containing only zeros and the other containing only ones. Two different subprime-
divisibility triangles for a prime p differ only in scale and resolution, and the relative
scale and resolution factor is a power of p. This set of regular tilings of Pascal’s tri-
angle provides the most detailed information about the prime divisibility of binomial
coefficients in a simple form that allows easily obtaining various general results.

Let n be a nonnegative integer and p be a prime. Let θj(n, p) denote the number
of binomial coefficients

(n
k

)
, 0 ≤ k ≤ n, such that pj ‖

(n
k

)
, i.e., pj |

(n
k

)
and

pj+1 !
(n

k

)
. We represent n in the base p: n = c0 +c1p+c2p2 + · · ·+crpr, 0 ≤ ci < p,

i = 0, 1, . . . , r, cr > 0 for n #= 0.
For j = 0 and p = 2, Glaisher, in 1899 [4], established the formula

θ0(n, 2) = 2
∑r

i=0 ci =
r∏

i=0

(ci + 1).

Fine generalized this result to any prime p in 1947 [3]: θ0(n, p) =
∏r

i=0(ci + 1). For
j = 1, Carlitz gave the specific formula

θ1(n, p) =
r−1∑

i=0

(c0 + 1) · · · (ci−1 + 1)(p− ci − 1)ci+1(ci+2 + 1) · · · (cr + 1)

in 1967 [1]. Howard gave formulas for θj(n, 2) and for θ2(n, p) in 1971 and 1973 [5, 6].
We recently gave the following general formula for θj(n, p) [2].
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We let W be the set of r-bit binary words, i.e.,

W =
{
w = w1w2 . . . wr : wi ∈ {0, 1}, 1 ≤ i ≤ r

}
,

and partition W into r+1 subsets Wj , 0 ≤ j ≤ r, where each subset consists of all
the words containing exactly j ones:

Wj =
{
w ∈ W :

r∑

i=1

wi = j

}
.

We sum over the words in the subset Wj to obtain θj(n, p):

θj(n, p) =
∑

w∈Wj

F (w)L(w)
r−1∏

i=1

M(w, i), (1)

where the functions F (w), L(w), and M(w, i) giving the r+1 factors in each sum-
mand are defined as

F (w) =

{
c0 + 1 if w1 = 0,
p− c0 − 1 if w1 = 1,

L(w) =






cr + 1 if r > 0 and wr = 0,
cr if r > 0 and wr = 1,
1 if r = 0,

M(w, i) =






ci + 1 if wi = 0 and wi+1 = 0,
p− ci − 1 if wi = 0 and wi+1 = 1,
ci if wi = 1 and wi+1 = 0,
p− ci if wi = 1 and wi+1 = 1.

We take
∏b

i=a(. . . ) = 1 if a > b. Oversights in formula (1) in [2] in the cases r = 0, 1
are corrected here.

The sum in (1) contains
(r

j

)
terms, which means that to compute the complete

set of θj(n, p), 0 ≤ j ≤ r, the number of computational steps as a function of r
(which, of course, depends on n and p) basically increases as

∑r
j=0

(r
j

)
= 2r. We

obtain recurrence relations that allow computing the set of θj(n, p) with the number
of steps basically increasing as r2.

To simplify obtaining values of θj(n, p) in practice, it is convenient to not calcu-
late the individual values separately but treat the sequence {θ0(n, p), θ1(n, p), . . . }
as an entity. We let capital letters denote sequences, for example, A = {a0, a1, . . . }
and B = {b0, b1, . . . }. We have the usual operations of a linear space over integers.
Obviously, k(A ± B) = kA ± kB. We also define a “shifted” sequence:

"A = {"a0 = 0,"a1 = a0,"a2 = a1, . . . }.

Obviously,
−→

(A±B) = "A ± "B and
−→

(kA) = k "A.
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Let Θ(n, p) = {θ0(n, p), θ1(n, p), . . . }. For the recursion base, we have two “lowest
value” cases: n < p (i.e., n = c0) or p ≤ n < 2p (i.e., n = co + p). For r = 0,

Θ(n, p) = {c0 + 1, 0, 0, . . . }, (2)

and for r = 1 and c1 = 1,

Θ(n, p) = {2(c0 + 1), p− c0 − 1, 0, 0, . . . }. (3)

In Section 4, we prove the following theorems.
Theorem 1 (General recurrence relations). For r > 1 and cr = 1,

Θ(n, p) = 2Θ(n− pr, p) + (p− cr−1)"Θ(n− pr − (cr−1 − 1)pr−1, p)

− (p− cr−1 + 1)"Θ(n− pr − cr−1p
r−1, p), (4)

and for r > 0 and cr > 1,

Θ(n, p) = crΘ
(
n− (cr − 1)pr, p

)
− (cr − 1)Θ(n− crp

r, p). (5)

Theorem 2 (Special recurrence relation). If n = pkm−1 (i.e., the k least significant
digits in the base-p representation of n are p− 1), then

Θ(n, p) = pkΘ(m− 1, p). (6)

Remark. If θj(n, p) is desired for only one value of j, then we can write the
recurrence relations in “component” form with the convention that θj(n, p) ≡ 0 for
j < 0. For (4) and (5), we have

θj(n, p) = 2θj(n− pr, p) + (p− cr−1)θj−1(n− pr − (cr−1 − 1)pr−1, p)
− (p− cr−1 + 1)θj−1(n− pr − cr−1p

r−1, p), r > 1, cr = 1,
θj(n, p) = crθj

(
n− (cr − 1)pr, p

)
− (cr − 1)θj(n− crp

r, p), r > 0, cr > 1.

The recurrence relation θ0(n, p) = 2θ0(n− pr, p) follows obviously from Fine’s for-
mula for j = 0 with cr = 1, but the recurrence relations in Theorem 1 are less
obvious for j > 0.

Remark. Our motivation for seeking the general recurrence relations presented
here was Shevelev’s notion of “binomial predictors,” which provides a recursive def-
inition of Θ(n, p) for a very special class of n [9]. Special recurrence relation (6)
generalizes Shevelev’s result and is applicable to 1/p of all n. The “binomial pre-
dictor” notion, in addition to strongly restricting the least significant digit(s) in
the base-p representation of n exactly as in the applicability condition for (6), also
restricts the more significant digit(s). As an example, we consider Example 3 in [9]:
p = 3, n = 23, θ0(23, 3) = 18, θ1(23, 3) = 6. Here n is the second member of
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the sequence 7, 23, 71, 215, . . . for which we have the corresponding sequences of θ0

6, 18, 54, 162, . . . and of θ1 2, 6, 18, 54, . . . . This, for instance, immediately suggests
considering the sequence 6, 20, 62, 188, . . . , for which we have the corresponding se-
quences of θ0 3, 9, 27, 81, . . . and of θ1 4, 12, 36, 108, . . . . The situation with the
sequence of binomial predictors (beginning with 7) is prettier than the situation
with the second sequence. With the binomial predictors, we can read the θ values
directly from the base-p representation of n + 1. In both cases, if we know the θ
values for the first member of the sequence, then we obtain the θ values for any
subsequent member by multiplying by the appropriate power of p. This suggested
the existence of a more general recurrence relation.

Remark. While we had supposed that Kummer’s theorem on carries [7] could be
used to obtain general formula (1) presented in [2] and the recurrence relations in
Theorem 1 in this paper, the notion of subprime factorization leads directly and
obviously to the general formula and the recurrence relations. After the first draft
of this paper was completed, we became aware of [8], where a general formula was
directly obtained using Kummer’s theorem. The formula for apα , the number of
nonzero entries modulo pα in row n of Pascal’s triangle, given in [8] is essentially∑α−1

j=0 θj(n, p) in our notation.

In Section 2, we explain the notion of subprime factorization and indicate how it
results in general formula (1). This notion simplifies the problem of finding a general
formula for the number of binomial coefficients exactly divided by a fixed power of
a prime and might be applicable or adaptable to similar problems. Moreover, it
is central in proving the recurrence relations. In Section 3, we give a few simple
numerical examples using the recurrence relations. In Section 4, we prove the
recurrence relations. In the conclusion, we briefly discuss the relative computational
efficiency of the methods for determining the number of binomial coefficients exactly
divided by a fixed power of a prime.

2. Subprime Factorization

We used the notion of subprime (subscripted prime symbol) factorization to obtain
general formula (1). The first few natural numbers can be represented with ordinary
prime factorization as 1, 2, 3, 22, 5, 2 · 3, 7, 23, 32. With subprime factorization,
we can represent these numbers as 1, 21, 31, 2122, 51, 2131, 71, 212223, 3132. We
emphasize that a subprime is not a number and we do not actually perform arith-
metic operations with subprimes. This notion seems unnecessary and useless when
looking at the sequence of natural numbers, but it is quite useful when consider-
ing the question of how many binomial coefficients are exactly divided by a given
power of a prime. The question reduces to considering which subprimes appear in
the subprime factorization of the binomial coefficients because there are no powers
of subprimes. And eliminating “powers” drastically simplifies the problem.
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The following facts are well known and easily established. These properties are
more often stated in terms of Pascal’s triangle modulo a prime. The statement
p |

(n
k

)
and

(n
k

) ∼= 0 mod p are obviously equivalent.

P1. If n < p, then p !
(n

k

)
for any k.

If p is a prime factor of n!, then p ≤ n. For n < p, p |
(n

k

)
would then imply the

contradiction p < p.

P2. For 0 < k < n + 1, if p |
( n
k−1

)
and p |

(n
k

)
, then p |

(n+1
k

)
, and if p !

( n
k−1

)
and

p !
(n

k

)
, then p !

(n+1
k

)
except if n + 1 is a multiple of p.

The first statement holds because multiplication is distributive over addition.
The second statement is equivalent to if

( n
k−1

)
" 0 mod p and

(n
k

)
" 0 mod p and(n+1

k

) ∼= 0 mod p, then n + 1 ∼= 0 mod p. Now,
( n
k−1

)
" 0 mod p and

(n
k

)
" 0 mod p

and
(n+1

k

) ∼= 0 mod p implies
( n
k−1

) ∼= a mod p and
(n

k

) ∼= p − a mod p for some
a, 0 < a < p. But such a pair of adjacent binomial coefficients occurs in Pascal’s
triangle modulo p only in a row n for which n ∼= p− 1 mod p.

P3. If n is a multiple of pi for i > 0, i.e., n = mpi, 0 < m ≤ p, then p |
(n

k

)
for all

0 < k < n such that k is not a multiple of pi except if n is a power of p, in
which case p |

(n
k

)
for all 0 < k < n.

This property can be established by direct calculation of the powers of p in the
prime factorization of n!, k!, and (n−k)! in the relevant cases for m < p and m = p.

We take corresponding statements to define the subprime factorization of the
binomial coefficients. The basic differences are that p is replaced with p1 . . . pi in
the condition of the first fact and that “divides” and “is a multiple” are replaced
with “appears in the subprime factorization of” and “the subprime factorization of
n contains.”

S1. If n < p1 . . . pi, then pi does not appear in the subprime factorization of
(n

k

)

for any k.

S2. For 0 < k < n + 1 and n + 1 not a multiple of p, pi appears in the subprime
factorization of

(n+1
k

)
if and only if pi appears in the subprime factorizations

of both
( n
k−1

)
and

(n
k

)
.

S3. If the subprime factorization of n contains p1 . . . pi, then pi appears in the
subprime factorization of

(n
k

)
for all 0 < k < n such that p1 . . . pi does not

appear in the subprime factorization of k with no exceptions.

The absence of exceptions in S2 and S3 simplifies things.
We consider representations of Pascal’s triangle. In the limit of an infinite number

of rows, Pascal’s triangle of binomial coefficients modulo a prime is self-similar; for
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p = 2, it has the fractal dimension log2 3 (see, e.g., [10]). The “prime divisibility”
function

fp

((
n

k

))
=

{
1 if

(n
k

)
= 0 mod p,

0 if
(n

k

)
#= 0 mod p,

maps the self-similar Pascal’s triangle modulo p into the corresponding self-similar
p-divisibility triangle. Passing from prime to subprime factorization converts the
self-similarity to self-congruency in a sense. The fractal object becomes a set of
regular tilings. Taking p = 2 as an example, the first few rows of the 2-divisibility
triangle are

Row

0 0

1 00

2 010

3 0000

4 01110

5 001100

6 0101010

7 00000000

8 011111110

9 0011111100

10 01011111010

11 000011110000

12 0111011101110

13 00110011001100

14 010101010101010

15 0000000000000000 .

Here, the rows 0 and 1 correspond to P1, even numbered rows correspond to P3, and
the other rows correspond to P2. The corresponding subprime-divisibility triangles
for 21, 22, and 23 are

Row 21

0 0
1 00
2 010
3 0000
4 01010
5 000000
6 0101010
7 00000000
8 010101010
9 0000000000

10 01010101010
11 000000000000
12 0101010101010
13 00000000000000
14 010101010101010
15 0000000000000000

22

0
00
000
0000
01110
001100
0001000
00000000
011101110
0011001100
00010001000
000000000000
0111011101110
00110011001100
000100010001000
0000000000000000

23

0
00
000
0000
00000
000000
0000000
00000000
011111110
0011111100
00011111000
000011110000
0000011100000
00000011000000
000000010000000
0000000000000000 .
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In these subprime-divisibility triangles, the rows numbered 0 through 2i − 1 follow
from S1, rows that are multiples of 2i follow from S3, and all other rows follow from
S2.

We give a simple example of observations that can follow from the subprime
factorization of Pascal’s triangle. If we replace pi → p1p2 . . . pi for all primes in
the factorization of the natural numbers, then 21 divides every second number
exactly once, 22 divides every fourth number exactly once, 23 divides every eighth
number exactly once (here and hereafter, we use terms like “divide” as shorthand for
“appears in the subprime factorization of”). This does not seem to gain us much
beyond eliminating the need to keep track of the powers in the ordinary prime
factorization. But if we define the triangular numbers as the sequence of binomial
coefficients

(n
2

)
, n = 2, 3, . . . , then we see from the 2i-divisibility triangles that 21

does not divide any triangular number, that 22 divides the triangular numbers for
n of the forms 4m and 4m + 1, that 23 divides the triangular numbers for n of the
forms 8m and 8m+1, and so on. It is already visually obvious that pi for p+ i > 3
divides triangular numbers thus defined for n of the forms pim and pim + 1. And
it is clear why 21 is the only exception. The same kind of reasoning can be applied
to the sequence of tetrahedral numbers defined as

(n
3

)
, n = 3, 4, . . . , and so on.

We can view the subprime-divisibility triangles as tilings with a triangle A of
zeros and a triangle V of ones as the two basic tile types. Viewed as triangles
consisting of zeros and ones, the subprime-divisibility triangles differ for different
subprimes (and for different primes), but they are basically identical when viewed
as tilings. The kth tile row, k ≥ 0, consists of a triangle A followed by k copies of
the rhombus formed by concatenating a triangle V and a triangle A.

If we take one element (0 or 1) as the unit length, then the tilings differ in scale
(the size of the tiles). If we take a characteristic tile length (pi for example) as the
unit length, then the tilings only differ in resolution (elements per unit length). If
we plotted the triangle for 29 at a scale of one inch equals the tile length with a
white pixel for 0 and a black pixel for 1, then the “line” between the triangles A and
V would look very much like a straight line at 512 ppi (pixels per inch). Moreover,
if we plotted the similar triangle for 54 at a scale of one inch equals the tile length,
then it would be difficult to distinguish the picture at 512 ppi from the picture at
625 ppi. In other words, we can view the subprime-divisibility triangles as all the
same tilings except for their resolution. In the limit as pi → ∞, the basic tiles
form a perfect square with the lower-left white triangle equal in area to the upper-
right black triangle (we take the diagonal of the square to belong to the lower-left
triangle, but this line has no area). In the discrete case (the digitized picture), the
triangle A has the “area”

∑pi

k=1 k and the triangle V has the “area”
∑pi−1

k=1 k (and
the difference in area is the number pi of elements on the diagonal).

Letting + denote concatenation, we can write R = V+A for the rhombus formed
by concatenating a triangle V and a triangle A. Similarly, kR, for example, denotes
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the concatenation of k copies of R. We indicate the size of of these objects with
subscripts. For example, Api is the triangle A in the subprime-divisibility triangle
for pi, also called the pi-divisibility triangle. The row lengths (number of zeros) of
Api from top to bottom range from 1 to pi. The row lengths (number of ones) of
the triangle Vpi from top to bottom range from pi−1 to 0 (it is convenient to allow
a row of zero length).

Viewing the pi-divisibility triangle as a tiling, we can easily see that the region
from pi to pi+1 contains p tile rows Api + kRpi , 0 ≤ k < p. The kth tile row in this
region “overlays” the rows of Pascal’s triangle numbered by kpi ≤ n < (k + 1)pi.
Furthermore, it is easily seen that Api+1 and Vpi+1 respectively correspond to p tile
rows of the pi-divisibility triangle as Api +kRpi and (p−k−1)Rpi +Vpi , 0 ≤ k < p.
As an example, we show the tiles A5 and V5 (with omitted subscripts) in the range
25 ≤ n < 50 with the separations between the corresponding A25 and V25 indicated
by spaces and with the range of n shown for each tile row:

25 to 29 A VAVAVAVAV A
30 to 34 AVA VAVAVAV AVA
35 to 39 AVAVA VAVAV AVAVA
40 to 44 AVAVAVA VAV AVAVAVA
45 to 49 AVAVAVAVA V AVAVAVAVA.

This example is obviously generalizable to any prime p: we simply have p tile rows
and p V triangles in the first of those rows.

We now consider some simple summaries of the information contained in the set
of subprime-divisibility triangles for a given prime p. Treating the elements zero and
one of the subprime-divisibility triangles as Boolean truth values and sum these tri-
angles using Boolean addition, then we obtain the self-similar prime-divisibility
triangle. If we treat the elements of the subprime-divisibility triangles as ordinary
integers and sum these triangles using ordinary addition, we obtain a triangle of the
degrees of the highest powers of the prime dividing the binomial coefficients. For
example, summing the subprime-divisibility triangles for 2i, i = 1, 2, 3, we obtain

Row
0 0
1 00
2 010
3 0000
4 02120
5 001100
6 0102010
7 00000000
8 032313230
9 0022112200

10 01031213010
11 000011110000
12 0212032302120
13 00110022001100
14 010101030101010
15 0000000000000000 .
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Formula (1) is a slightly more complicated summary of information from the
set of subprime-divisibility triangles. We illustrate the statement at the beginning
of this section that the question of how many binomial coefficients are exactly
divided by a given power of a prime reduces to considering which subprimes appear
in the subprime factorization of the binomial coefficients. We give some specific
terms F (w)L(w)

∏r−1
i=1 M(w, i) in the summation in (1) for large r and j = 2: for

w = 110 . . . , the term

(p− c0 − 1)(cr + 1)(p− c1)c2(c3 + 1) · · · (cr−1 + 1)

counts the number of
(n

k

)
that contain p1 and p2 and no other pi (this term is zero

if c0 = p− 1 or c2 = 0); for w = 1010 . . . , the term

(p− c0 − 1)(cr + 1)c1(p− c2 − 1)c3(c4 + 1) · · · (cr−1 + 1)

counts the number of
(n

k

)
that contain p1 and p3 and no other pi (this term is zero

if c0 = p− 1 or c1 = 0 or c2 = p− 1 or c3 = 0); and for w = 0110 . . . , the term

(c0 + 1)(cr + 1)(p− c1 − 1)(p− c2)c3(c4 + 1) · · · (cr−1 + 1)

counts the number of
(n

k

)
that contain p2 and p3 and no other pi (this term is zero

if c1 = p− 1 or c3 = 0). Adding these terms does not strictly make sense from the
subprime standpoint (it is like adding a count of apples and a count of oranges and
a count of pears). But passing from subprime factorization back to ordinary prime
factorization allows summing the terms (somewhat like considering apples, oranges,
and pears to be fruits).

In summary, the notion of subprime factorization simplifies problems concerning
powers of primes that divide binomial coefficients by, first, passing from primes and
powers of primes to an infinite set of subprimes without powers (identical except
for scaling) with each subprime associated with a specific power of the prime and,
second, passing from a self-similar “fractal object” to an infinite set of regular tilings
(identical except for scaling and resolution). Such an approach might be applicable
or adaptable to other problems.

3. Examples

We give a few simple examples to help in visualizing the formulas. We take p = 5
and consider a few four-digit numbers (r = 3) in base 5. We note that the Θ
sequences have a finite positive portion: there exists a nonnegative integer k such
that θk(n, p) > 0 and θj(n, p) = 0 for all j > k. For brevity in the numerical
examples, we let 〈θ0(n, p), . . . , θk(n, p)〉 denote the finite positive portion of the
sequence Θ(n, p).
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Example. n = 586 = 43215. To determine Θ(586, 5) ≡ Θ(43215), we must
calculate Θ(13215), Θ(3215), Θ(1215), and Θ(215) using the general recurrence
relations and Θ(115) and Θ(1) using the base formulas. From the base formulas,
we obtain

Θ(115)
(3)
= 〈4, 3〉, Θ(1)

(2)
= 〈2〉.

From the general recurrence relations, we obtain the additional intermediate values

Θ(215)
(5)
= 2Θ(115)−Θ(1) = 2〈4, 3〉 − 〈2〉 = 〈6, 6〉,

Θ(1215)
(4)
= 2Θ(215) + 3"Θ(115)− 4"Θ(1)
= 2〈6, 6〉+ 3〈0, 4, 3〉 − 4〈0, 2〉 = 〈12, 16, 9〉,

Θ(3215)
(5)
= 3Θ(1215)− 2Θ(215)
= 3〈12, 16, 9〉 − 2〈6, 6〉 = 〈24, 36, 27〉,

Θ(13215)
(4)
= 2Θ(3215) + 2"Θ(1215)− 3"Θ(215)
= 2〈24, 36, 27〉+ 2〈0, 12, 16, 9〉 − 3〈0, 6, 6〉 = 〈48, 78, 68, 18〉.

We then obtain

Θ(43215)
(5)
= 4Θ(13215)− 3Θ(3215)
= 4〈48, 78, 68, 18〉 − 3〈24, 36, 27〉 = 〈120, 204, 191, 72〉,

i.e., θ0(586, 5) = 120, θ1(586, 5) = 204, θ2(586, 5) = 191, and θ3(586, 5) = 72.

Example. n = 156 = 11115. In addition to the same two base values as in the
above example, we must calculate the intermediate value

Θ(1115)
(4)
= 2Θ(115) + 4"Θ(115)− 5"Θ(1)
= 2〈4, 3〉+ 4〈0, 4, 3〉 − 5〈0, 2〉 = 〈8, 12, 12〉.

We then obtain

Θ(11115)
(4)
= 2Θ(1115) + 4"Θ(1115)− 5"Θ(115)
= 2〈8, 12, 12〉+ 4〈0, 8, 12, 12〉 − 5〈0, 4, 3〉 = 〈16, 36, 57, 48〉,

i.e., θ0(156, 5) = 16, θ1(156, 5) = 36, θ2(156, 5) = 57, and θ3(156, 5) = 48.

Example. n = 149 = 10445. We note that 149 = 52 · 6− 1. Therefore, we can use
the special recurrence relation Θ(149, 5)

(6)
= 25Θ(5, 5). In this case, we obtain

Θ(10445)
(6)
= 25Θ(105) = 25〈2, 4〉 = 〈50, 100〉,

i.e., θ0(149, 5) = 50 and θ1(149, 5) = 100.
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4. Proofs of the Recurrence Relations

In proving Eqs. (2)–(6), in addition to the Api notation in Section 2, we use sub-
scripts indicating the the first and last rows overlaid by the object. For example,
A2pi,3pi−1 = Api . We also use the notion of a “restricted” Θ(n, p)

∣∣
object

containing
the counts for the portion of the nth row of Pascal’s triangle “overlaid” by the
object. Thus, for p ≤ n < 2p, we can write

Θ(n, p) ≡ Θ(n, p)
∣∣
Ap$Vp$Ap

= Θ(n, p)
∣∣
Ap

+ Θ(n, p)
∣∣
Vp

+ Θ(n, p)
∣∣
Ap

= 2Θ(n, p)
∣∣
Ap

+ Θ(n, p)
∣∣
Vp

.

Proof of base formula (2). Base formula (2) follows directly from fact P1 in Section
2 because the number of binomial coefficients in the nth row of Pascal’s triangle is
n + 1. !

Proof of base formula (3). For numbers n = p + c0, we have

Θ(n, p) = 2Θ(n, p)
∣∣
Ap,2p−1

+ Θ(n, p)
∣∣
Vp,2p−1

.

Because Ap,2p−1 = A0,p−1, the first term in the right-hand side is twice the sequence
given by base formula (2). From the discussion in Section 2, p divides every binomial
coefficient overlaid by Vp,2p−1 ≡ Vp. Therefore, the first term in Θ(n, p)

∣∣
Vp

must
be zero. No pi divides any

(n
k

)
for i > 1 because n < pi. Therefore, only the second

term in Θ(n, p)
∣∣
Vp

is nonzero, and the value of this term must be n+1−2(c0 +1) =
p− c0 − 1. Base formula (3) is proved. !

Proof of general recurrence relation (4). We first examine the objects that overlay
the rows of Pascal’s triangle from pr to 2pr − 1. These rows are overlaid by

Apr,2pr−1 +Vpr,2pr−1 +Apr,2pr−1.

From the discussion in Section 2, Θ(n, p)
∣∣
Apr,2pr−1

is clearly identical to Θ(n−pr, p).
Hence, Θ(n, p) = 2Θ(n− pr, p) + Θ(n, p)

∣∣
Vpr,2pr−1

.

We examine Vpr,2pr−1 in relation to the subprime-divisibility triangles. The
portion of the triangle of the degrees of the highest powers of p dividing the
binomial coefficients overlaid by Vpr,2pr−1 contains the arithmetic sums of the
corresponding portions of the subprime-divisibility triangles for p1 through pr−1

plus one (Vpr,2pr−1 contains only ones in the subprime-divisibility triangle for pr).
The “plus one” for all the powers of p in this overlaid region corresponds to the
shift operation on sequences. This region contains pr−1 rows corresponding to
(p− 1)Rpr−1,2pr−1−1 +Vpr−1,2pr−1−1 followed by pr−1 rows corresponding to

(p− 2)Rpr−1,2pr−1−1 +Vpr−1,2pr−1−1,
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and so on down to the last pr−1 rows corresponding to Vpr−1,2pr−1−1. The top
set of rows corresponds to pr ≤ n < pr + pr−1, the second set corresponds to
pr + pr−1 ≤ n < pr + 2pr−1, and so on. Altogether, the p sets of pr−1 rows
correspond to pr ≤ n < 2pr. We now have

Θ(n, p)
∣∣
Vpr,2pr−1

= (p− cr−1 − 1)"Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Rpr−1,2pr−1−1

+ "Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Vpr−1,2pr−1−1

. (7)

We now seek the restricted Θ in terms of unrestricted Θ. Obviously,

Θ(n− pr − (cr−1 − 1)pr−1, p) = Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Apr−1,2pr−1−1

+ Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Rpr−1,2pr−1−1

= 2Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Apr−1,2pr−1−1

+ Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Vpr−1,2pr−1−1

.

Moreover, we have

Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Apr−1,2pr−1−1

= Θ(n− pr − cr−1p
r−1, p).

Therefore,

Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Rpr−1,2pr−1−1

= Θ(n− pr − (cr−1 − 1)pr−1, p)−Θ(n− pr − cr−1p
r−1, p)

and

Θ(n− pr − (cr−1 − 1)pr−1, p)
∣∣
Vpr−1,2pr−1−1

= Θ(n− pr − (cr−1 − 1)pr−1, p)− 2Θ(n− pr − cr−1p
r−1, p).

Substituting the expressions with unrestricted Θ in (7) and combining “like” terms,
we obtain general recurrence relation (4). !

Proof of general recurrence relation (5). It is now easy to prove general recurrence
relation (5). Clearly, for r > 0 and cr > 1,

Θ(n, p) = Θ(n− (cr − 1)pr, p)|Apr,2p1−1
+ crΘ(n− (cr − 1)pr, p)|Rpr,2p1−1

= (cr + 1)Θ(n− (cr − 1)pr, p)|Apr,2p1−1
+ crΘ(n− (cr − 1)pr, p)|Vpr,2p1−1

.

(8)

Similarly to the preceding proof, we have

Θ(n− (cr − 1)pr, p)|Vpr,2p1−1
= Θ(n− (cr − 1)pr, p)− 2Θ(n− crp

r, p)
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and
Θ(n− (cr − 1)pr, p)|Apr,2p1−1

= Θ(n− crp
r, p).

Substituting the expressions with unrestricted Θ in (8) and combining “like” terms,
we obtain general recurrence relation (5). !

Proof of special recurrence relation (6). It is clear from the discussion in Section 2
that the nth row, n ≥ pi−1, of the pi-divisibility triangle contains only zeros if and
only if pi | n+1. It follows that for n ≥ pi+1−1, if the nth row of the pi-divisibility
triangle is not all zeros, then the nth row of the pi+1-divisibility triangle is not all
zeros. Because θr(n, p) is a count of the number of positions containing 1 in the
nth rows of all the subprime-divisibility triangles for p1 through pr, θr(n, p) > 0
if and only if p ! n + 1. Similarly, θr−1(n, p) > 0 if and only if p2 ! n + 1. And
so on. It remains to show that if θr(n, p) = 0, then p | θj(p, n) for 0 ≤ j < r,
and this easily follows by induction on r. Noting that the applicability condition
n = pkm− 1 for special recurrence relation (6) is equivalent to pk | n + 1, we have
proved relation (6). !

Remark. From the foregoing, it is clear that if θj(n, p) = 0, then θk(n, p) = 0
for all k ≥ j. Moreover, θ1(n, p) = 0 if and only if n has the form cps − 1, where
0 < c < p and s is a nonnegative integer; θ2(n, p) = 0 if and only if n has the form
crpr + cpr−1 − 1, where r > 1; and so on.

5. Conclusion

We briefly consider the computational efficiency of different ways of computing
Θ(n, p) by looking at the basic rate of increase in the number of computational
steps as a function of increasing r. Traditionally, Θ(n, p) has been computed by
counting the number of carries when adding n − k and k in base p (Kummer’s
formula for the degree of the highest power of p that divides

(n
k

)
[7]). To compute

Θ(n, p), we sum n − 1 pairs (there is no point in summing for
(n
0

)
and

(n
n

)
). This

means summing crpr + · · · + c0 − 1 pairs, and the basic rate of increase is as pr.
General formula (1) for θj(n, p), which follows because the subprime factorization

of Pascal’s triangle of binomial coefficients gives essentially the same regular binary
tiling for all powers of all primes and the tiles only differ in scale and resolution,
reduces the basic rate of increase from pr to

∑r
i=0

(r
i

)
= 2r.

Using the general recurrence relations in Theorem 1 in the general case with
n = c0+c1p+· · ·+crpr, we calculate one value for Θ(c0, p), two values for Θ(c0+p, p),
two values for Θ(c0+c1p, p), . . . , r+1 values for Θ(c0+c1+· · ·+pr, p), and r+1 values
for Θ(c0 + c1p + · · · + crpr, p). In all, the number of intermediate values calculated
before calculating the final r+1 values is r2 +2r−1. The number of computational
steps for calculating each value is obviously bounded by a small positive constant
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independent of r. Therefore, the basic rate of increase in computational steps is as
r2, which is an improvement over 2r.
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