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Abstract
Using a clear and straightforward approach, we discover and prove new binary digit
extraction BBP-type formulas for polylogarithm constants. Some known results are
also rediscovered in a more direct and elegant manner. Numerous experimentally
discovered and hitherto unproved binary BBP-type formulas are also proved.

1. Introduction

This paper is concerned with proving each of a lengthy list of conjectured binary
BBP-type formulas collected in the “Compendium of BBP-Type Formulas”, an
online collection of BBP-type formulas for various mathematical constants [1]. The
formulas have, in most cases, been outstanding for upwards of fifteen years, in spite
of many thousands of downloads of the BBP Compendium. New binary BBP-type
formulas, together with their proofs will also be derived.

BBP-type formulas are formulas of the form

o l
c= Zl/bk Zaj/(kl +7)°
k=0 j=1

where s, b, [ and a; are integers, and c is some constant. Formulas of this type were
first introduced in a 1996 paper [2], where a formula of this type for 7 was given.
Such formulas allow digit extraction — the i-th digit of a mathematical constant ¢
in base b can be calculated directly, without needing to compute any of the previous
1 — 1 digits, by means of simple algorithms that do not require multiple-precision
arithmetic [1].

Apart from digit extraction, another reason the study of BBP-Type formulas has
continued to attract attention is that BBP-Type constants are conjectured to be
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either rational or normal to base b [3, 4, 5]; that is, their base-b digits are randomly
distributed.

BBP-Type formulas are usually discovered experimentally, through computer
searches, by using Bailey and Ferguson’s PSLQ (Partial Sum of Squares — Lower
Quadrature) algorithm [6] or its variations. PSLQ and other integer relation finding
schemes typically do not suggest proofs [4, 7]. Formal proofs must be developed
after the formulas have been discovered.

Our approach in this paper is the systematic symbolic (that is, non-computer-
search-based) discovery of BBP-type formulas. The methods used here aim to
complement the experimental approaches that have dominated the area. Through
fundamental methods, a wide range of interesting, mostly new, BBP-type formulas
will be obtained, together with their proofs. It should be noted that in this paper,
unlike in [2] or [8], for example, no evaluation of complicated integrals is neces-
sary. The BBP-type formulas come as natural consequences of the corresponding
polylogarithm identities.

2. Notation

Degree s (€ Z*tin this paper) polylogarithm functions Lis are defined by

X _k
Li[z] = Z% 2] < 1.
k=1

In particular, for |z| = 1 and = € R we have

Lig, [e"] = Gl () 4 iCly, ()
Lign41[€"] = Clapi1(2) + iGlanga (2)

where Gl and Cl are Clausen sums [9] defined, for n € Z* by

oo oo

sin kx cos kx
ClQn(x) = Z kT’ Clzn+1($) = E W
k=1 k=1 (2)
>, coskz >\ sinkz
Glgn(l') = an, G12n+1(1') = W .

k=1 k=1
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We shall find the following formulas useful:

Gl (z) = (—1)H 1/ 2on=1an B, (2/27) /n!

m—1
mi—l Cln(mx) = Z C]n(x + 27T7“/m) ) (3)
r=0

Here [n/2] denotes the integer part of n/2 and B,, are the Bernoulli polynomials
defined by

te®t = B, (z)t"
o —1 Zo nl

In order to save space, we will give the BBP-type formulas using the compact
P-notation [1]:

oo l

1 a;

— —— = P(s,b,[,A
Zbkz(kl+])s (S, » Yy )7

where s, b and [ are integers, and A = (aj,as,...,q;) is a vector of integers.

3. Scheme for Obtaining the BBP-Type Formulas
The derivation of a desired degree s BBP-type formula proceeds in two stages

1. An attempt is made to express the polylogarithm constant, ¢, of interest as a
linear combination of the real or imaginary parts of polylogarithms:

c= Z {a; Re Li, [p; exp(iz;)]} (4)

J

or

c= Z {B; Im Li; [g; exp(iy;)]} (5)

J
for aj, B; € Q, pj, ¢; € (0,1) and x;, y; rational multiples of .

2. The identities

o0

k
Re Li; [pe”] = Z pic]:ss i (6)
k=1
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and
I Li, [pe® Z preinks (7)

for p € [0,1], € [0,27] and s € Z*, for the real and imaginary parts of a
polylogarithm function are then employed to write each constituent term of
the linear combination as a BBP-type formula and the indicated combination
is then formed. In particular if a binary formula is sought, then p; and ¢; in
the above formulas must be taken as positive integral powers of 1/2 for z =,
r = 7/2 or x = /3 (odd positive integral powers of 1/v/2 for x = /4 or
x = 3m/4).

To accomplish the first stage, polylogarithm functional equations are evaluated
at certain carefully chosen coordinates and real and imaginary parts are taken.
Sometimes it will be necessary to simultaneously solve two or more equations that
couple several polylogarithm constants.

As a concrete example of how Egs. (6) and (7) give rise to BBP-type formulas,
consider the choice p = 1/v2" and 2 = /4 in Eq. (6) for ¢ € ZT and mod (¢,2) =
1. This choice, together with the periodicity of cos(w/4) yield the very general BBP-
type formula (with ¢ a positive odd integer):

Re Li, {Lqexp <T>} = %P(s,212q724,(2_%_%"'12‘170,—2_%_%+11q7
NG} 4 2124
910g _9—3—5+100 () 9—3—5+9% 98¢ 9—3—5+8¢
9 3 5+70 _g60 _g-3-5+60 ( 9-5-5+50 gig
2*%*%“‘1 0, 2*5*2“"1 22(1,_2*%*%*220
275, 1) 0
We also have (with x = 37/4)

Re Li, [fq exp (3”)] - #P(S,QW,M,(72‘%—%“2’1,0,2‘%—%“1‘17
_210(1 2—%—%-&-1011 0,— —l—%+9q 28q 2—%—%-‘:-8(1’07
93-5+70 901 9-3-5+0 o _9-3-5+5¢ gla,
_93—4+a 93— 5+3 g2 p-3-5+20 ¢
by )
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Another example is (¢ € Z*)

. 1 |1 )
Lis [_ﬁ] = Re Li; [ﬂ exp (m)]
1
- 212q—s
03 26(17 07 _25(17 07 24[]’ 07 _23(]7 07 22(17 03 _2q7 0’ 1)) . (10)

P(s,2'%,24,(0,-2"19,0,2'%,0,-2%,0,2%7,0, -279,

The reader should note that the series given above are not the only possible ones
for the indicated constants; in general, the series used will depend on the particular
base and length that are targeted. For instance, a base 24, length 8 version of (9),
for ¢ an odd positive integer, is

. 1 i 1 _1l 4 _Ll_g
Re Lls |:W exp <T>:| = ZTQP(S’24q’8’(_2 2 2+4q,072 2 2+3q’

1l g 1.4q
—2%4 97372121 0 27212 1)), (11)

while a base 249, length 24 version of the same series is

T 3im 3¢ 1,
Re Li, [Wexp (T)} = 24qP(s,24q,24,(0,0,—2 27214 0,0,0,0,0,
1
9-3-5+34 (. 0,-921 0 0,2"2-5+24 0 0,0,
1

1.9
0,0,-272%2,0,0,1)). (12)

It is of course possible to give BBP-type formulas in general bases for other
classes of polylogarithm constants. This is however not the subject matter of this

paper.

By way of a specific illustration of how to derive a BBP-type formula for a
polylogarithm constant, let us apply the above procedure to obtain a base 2'2
length 24 formula for log® 2. The first step is to express this constant as a linear
combination of polylogarithms. This is accomplished through the identity (Eq. (17),
Section 5.1)

log® 2 = 2Li, {i] — 4 Re Liy [\}5 exp (?)} — 4 Re Liy l(\/_12)3 exp (T)

The next step is to now write each of the three constituent members on the Right
Hand Side as a BBP-type formula and then form the indicated combination. This
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is easily done by choosing ¢ = 2 = s in Eq. (10), ¢ = 1,s = 2 in Eq. (8) and
g =3, s=2in Eq. (11) and the result is

1
log®2 = ﬁp(2,212,24, (21,0, =521, —7.210 990,28 7.28 5.28 0, —26 27,

—25,0,5-257-24 230, —2% —7-22,-5.22.0,1,-2)).

4. Degree 1 Formulas

Degree 1 BBP-type formulas in general bases are discussed in [10]. Binary formulas
are easily obtained by choosing bases that are powers of 2. Degree 1 formulas will
not be discussed further in this paper.

5. Degree 2 Formulas

5.1. Generators of Degree 2 BBP-Type Formulas
The dilogarithm reflection formula (Eq. A.2.1.7 of [9]) is

2
% —logzlog(1 — z) = Lia[a] + Liz[1 — 2] .

Putting = 1/2 in the above formula gives the well-known result:

(13)

A two-variable functional equation for dilogarithms, due to Kummer (Eq. A.2.1.19
of [9]) is

o)) ]

2 1— 1—
z) ol ol )
A : -y 2
Lip | — Lig | ——= =1 .
# i | S5 4L [ 122+ o'y
Putting = —1 and y = 1/2 in Kummer’s formula gives
: 1 |1 . 1
log? 2 = 2 Liy {—g} —4Liy M —4Liy [—5} , (15)

while using x = exp(in/3) and y = 1/2 yields

(1 i |1
72 = 72 Re Li, [5 exp <§>} — 18 Liy {Z] . (16)
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Putting z = 1/2 and y = exp(in/2) in Kummer’s formula gives

1 1 3mi 1 i
log2 2 = 2Liy [} — 4Re Lis [ exp <>} —4Re Lis | ——= exp () . (17
Putting z = —1 and y = (1 4+ 4)/2 in Kummer’s formula and taking real and

imaginary parts give

log 2 1 ; 1 ;
T (;g — 2Tm Lis {5 exp <%>} — 2Tm Lis {2—\/5 exp (%)}

1 s
—ImLiy |[—= — 1
e [4\/§QXP<4)] (s
and
T 1, 1 im 1 im
— — —log“2=2ReLis |= — 2ReLi —
2 8 og Re Lis [Qexp<2)] + 2Re 12[ \/iexp<4)]
. 1 i
_ReL12 [m exp <Z>:| . (19)

Another two-variable functional equation for dilogarithms, due to Abel (Eq. A.2.1.16
of [9]) is

Li Y e || L |
2[1_35 1—y} 2[(1—y>} 2[(1—@} (20)
— Lia [z] — Liz [y] — log(1 — 2)log(1 — ).
Putting x = i and y = —1 in Abel’s formula and taking real and imaginary parts,
gives

2 210822 = Re Li ™
8 2% o [(\/5)36)(1)(4)]

1 ™ . 1 31
— Re Liy {5 exp (7)} — Re Liy [ﬁ exp (T)}

(21)

and
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Putting = 1/2, y = exp(in/3) in Abel’s formula and taking the imaginary part,

gives
5Cl (5) _rlog2 = 6TmLis |~ exp (= (23)
23 mlog s = 215 Xp 3 .
Putting x =i = y in Abel’s formula and taking real and imaginary parts, gives
572 18°2 g [Rexp (T)] - 2Re Ly [ exp (27 (24)
8 4 2P 212 P\ 1
and
log 2 1 3mi 1 '
9T Zg — 2Tm Liy {E exp (%)] + Im Lis [5 exp (g)} . (25)

5.2. Base 212 Binary BBP-Type Formulas

Solving Equations (21) and (24) simultaneously, we find

25— sre i Lo (T)] - et [ exp (270
log®2 = 8 Re Lis Lexp 2 4 Re Liy ﬂexp 1

26
et [ o (2] !
2 (\/5)3 p 4
and
144 1 ) 144 1 37
2= & Re Lis {5 exp <%>] ~ 5 Re Liy {E exp (%)]
. (27)
— 4—8 Re Li {L ex <ﬂ)]
5 2o “P\d )]
Solving Equations (22) and (25) simultaneously, we find
1 37 1 )
G =3Im Liy [—2 exp <%>} — Im Lis {W exp (%)} (28)
and
mlog2 = 16Im Lis Lexp smi —41Im Liy 1exp s
/2 4 2 2 )

st | e (7))

Identities (26), (27), (28) and (29) facilitate the derivation of base 2!, length
24 BBP-type formulas for the respective polylogarithm constants through the pre-
scription of Section 3. The explicit formulas or their variants are listed in the BBP
Compendium.
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5.3. Base 260 length 120 Formulas

Solving Equations (13) and (19) simultaneously, we have

t i . 1 i
72 = 192Reli, [5 exp (;)} + 192 Re Lis {2—\/5 exp <Z)]
1 i 1
—96ReLiy | —= — ]| —24Liy | = 30
e [4x/§eXp<4>} * M (30)

and

T

1 1 ;
log22 = 32Relis {5 exp (5)] + 32ReLiy [ﬁ exp <%>}
1 T 1
—16ReLiy | —— TV —6Liy | = . 31
ctiz 500 (7)] -ouia 3] @)

Using Equations (18) in Equations (22), we have

1 T . 1 13w
G = b5ImLiy [2 exp <2>} —ImLis L/i exp (4)}

1 i 1 i
—3ImLiy | —=exp| — )| —2ImLiy | —=exp | — 32
e ()] -2t 5o (7)) 0
Applying the prescriptions of Section 3 to Equations (30), (31), (18), and (32),
respectively, we obtain the following base 269, length 120 binary BBP-type formulas:

3 7
= ﬁp(2,260,120,(0,—258,32.258,—32.25,—52-256,—256,0,

7.9% 32,955 9% ( 33,958 () 952 7.951 7.951 () _9%0 953

32 . 2497 _2487 07 52 . 2477 52 . 2467 _2467 32 . 2467 _32 . 245707 _244,07 7 3 243,

_32. 243’ _2427 _52. 241, _33. 241707 _240’ _32. 2407 _32. 240’ 0, _238’ 0,

_32. 2377 _7. 2367 _ 936, 0, 52 . 235707 _234732 . 2347 _32.9% 0, _232’ 52 231’
7. 231’ _32. 2317 _230’ 0, _230’ 0, _228’ _32. 228’ 7. 2277 52. 2267 _225’07

_32. 225’ 32. 225’ 722470’ 52. 223’ 0, 7222’ 7. 221’ _32. 2217 0, 72207 0,

_32. 2207 _32. 219’ 721870’ _33. 2177 _52. 216’ 72167 _32. 2167 7. 215’ 0,

_214’ 0, _32. 2137 32. 2137 _212’ 52. ot 52. 2™ 0, _210,32 . 210, 2137
0,—2%0,7-27,7-2° 2% 0,-3%.2° 0,-2% —3%.2",7.2% 0,27,
—5%.2,-3%.2,3%.2,-1,0,0)), (33)
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log2 2

7log 2

and

L
257
—32.9257 _3.2% 0,-5.11-20,—-3-2%,7.2% 13.2% 0,-3.2% 31.2%,
32 .251’ _3. 249’07 72, 248’52 . 248’ _3. 247732 . 2487 _19. 246707 _3. 245707
13-2% —3%2.2% _3.9% _52.2%8 _5.11.2%2 0,—3.2% _32.2%2 _37.9%0
0,—3-2%,0,—19-2% —7.2% _3.92%7 ¢ 7%.2% 0, —3.2% 32.92%¢
—19.2%,0,-3-2% 52.2% 13.2% _3%2.9% _3.9% 0 —5.2% 0,—3.2%°
—32.2%0 13.92%8 52.9% _3.92%7 0, —19.2%6 3%.92%7 _3.2% o, 7%.2% 0,
—3.2% _7.2% _19.2%% 0,-3.2% 0,—37-2%°, —3%.2% _3.2% 0,
—5.11-2"% —5%.2'8 _3.217 _32.9!8 13.216 o _3.2!% 0 —19.2' 3%.2%5,
—3.218 5%.213 72.912 g 3.2 32.912 31.2'0 0 —3.2° 0,13.2% 7. 25,
-3.27,0,-5-11-250,—3-2° —3%.2% 13.2% 0,—3.2%, —5%.2% —19.2%
32.2%,-3.2,0,-1)), (34)

P(2,2%,120, (0, —3-2°9,3% .20, —19. 2% _52.9%% _3.257 0 13.2% 0,

%P(Z, 2%9,120, (0,2, —3% - 2°7,0, =5 - 2°°, 13 . 2°° 0,0, —3% . 2°*,

—17-2°,0,0,0,—2°*, —7-2°°,0,0,13 - 2°°,0,0,3% . 2*8, —2° 0,0,5% - 2%, 2*8,
—32.2% 0,0,—2%,0,0,—3%. 22 2% 52.2% 0 0,—2*2 32.2% 0,0,13 - 2%,0,
0,—7-2% -2% 0,0,0,—17-2%,-3%.2% 0,0,-13 - 2%?, —5%. 2% 0, —3%. 2%,
232 0,0,0,—2%0,3%.227 0,52 .22° 13.2%¢ 0,0,3% - 224,17 2%%,0,0,0, 2%,
7-2%0.0,0,-13-2%°,0,0,—-3% - 2'%,2%° 0,0, —5% - 2'%, —2'% 32.2% 0,0,2"3,0,
0,32.2'2 —2' _5%.2'9 0,0,2'% —32.2 0,0,—-13-2%,0,0,7-2°,2%,0,0,0,
17-2%3%.2%0,0,13-2%,5%,0,3%,—2%,0,0)) (35)

Q—iop(z,fo, 120, (—2%2,3.7.2% —7.2%0 0, —72. 257 3. 2% 2% 0,

—7.2%7 _29.2% _9% 0 2% _3.7.92% _11.2% 0 —2% 3.2% _2%°

7. 251’ _3.7. 2497 248707 72 24773 7. 2477 _7. 248707 2457246724470’ _7. 2457
3.7.2% 72.9%2 0,2% —3.7.2% 7.2% 0,-2% 3.2% 2% 0,

—11-2%8 -3.7.2%7 9% 0 2% _99.2% _7.9% 2% _3.9%7 _72.92%%
0,—7-2%,3.7.2% 2% 0,2% _3.7.2% 7.2% 0,72.2%7 3.2% _2%
7.227.29.9% 924 0 2% 3.7.22% 11.2% 0,2, —3.2% 2% 0, —7.2%",
3.7. 2197 7218’07 72, 217’ _3.7. 217’ 7. 21870’ 7215’ 72167 7214’07 7. 215’
—3.7.218 —72.212 o, 2!t 3.7.2" —7.2'2 0,2° —3.21% 2% 0,11 2",
3.7.27,-25,0,25,29.2% 7.25 0,-2%,3.27 7% . 2% 0,

7-2°,-3.7-2,1,0)). (36)
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6. Degree 3 Formulas

No proved explicit Digit Extraction BBP-type formulas are known for 72 and
mlog® 2. In what follows, we now present, together with their proofs, new binary
degree 3 BBP-type formulas for these and the remaining three trilogarithm con-
stants.

6.1. Generators of Degree 3 BBP-Type Formulas
A functional equation for trilogarithms (Eq. A.2.6.10 of [9]) reads

N e N R, . 1 1_. o 7
ng{l+x}—L13[x+1]—2L13[l x]+2L13[1+x] 2ng[l x} 4C(B)

7.‘.2

1
+ 3 log(1+z) — 3 log®(1 + ).
(37)

The use of x =1 in the functional equation (37) gives the well-known formula

7 n2log2 log®2 |1

Another functional identity for trilogarithms (Eq. A.2.6.11 of [9]) is

Lis {%] + Lig [wy] + Lis H — s {H} ok [%]

— 9Lis ﬁ%} —9Li, [%} — 9Lig [2] — 2Lis [y] + 2¢(3)  (39)

1—y 1 1
= log? ylog (ﬂ) — §7r2 logy — 3 log®y .

The use of z = —1, y =7 in the above equation gives

pr2log2 1 1 :
—%+Elog32:8ReLig Lﬁexp (%)] . (40)

Plugging x = —i, y = 1 —i in Equation (39) and taking real and imaginary parts
gives

7 5m2log2  Tlog®2 1 im 9 1 i
—((3 - = 2Re Liz | —= — “ReLiz | = —
16(( )+ 193 15 e Lis L/iexp(4 )} + — Re Liz [ exp( )}

R

35
)




INTEGERS: 11 (2011) 12

and

3rlog?2 973 i L e (7
——— — — =ImLig |—=exp | —
32 128 Slave TP\

9 1 i\ | 1 ;
+ ZIm Lis {5 exp <%)_ — 6Im Lig {E exp (%)} .

Yet another functional equation for trilogarithms (Eq. 6.96 p 174 of [9]) is
1—y)? —z(1— [2(1 —
Lis [m( y)g] = 2Lis {‘T( y)] oy [2L=Y) y)}
y(1 —x) (1-2) Ly(1 — )
-yl —2x) C[1—-= .
2Lig | ———= 2L 2L
! 13{ (1-y) }+ 13[1—?1 el

[«

(42)

2 1—
+ % log (ﬁ) + log(—y) log?(1 — y) (43)

3 1—=x

1 —y(l—z)\ 1. 53/ 1-y
Zlogd [ L - -7
+3og ( 1=y >+3log ;

1
—glog’(1-y).

Using © = —1, y = 1 4+ ¢ in Eq. (43), simplifying and taking real and imaginary
parts gives

~ 1og(~y) log(1 - z) — = log? <1 - y)

7 1572log2  5log®2
R A T T
1 s 1 T
=4Re Liz | — — 4Re Lig | —= —
e 13{\/§exp(4>]+ e 13[2\/§exp<4>] (44)
7 1 i 1 s
ZReLis | = i I i | — i
+2 e 13[Zexp(2)] ReL13{4\/§exp<4)]
and
1373 7rlog?2 [1 i 1 i
28~ 32 = 41Im Lis [ﬁexp (4)] — 41Im Lig {2\/5 exp (4)] .
—|—7I Li 1e T I Li 1 T
—ImLiz |zexp | — || — — — .
g B 9 P s B P

Using x = —1, y = 1/2 in Equation (43) gives the identity

1 1
7¢(3) —m2log2+ 3 log®2 = 9Ls {ﬂ —2Ls {—g} . (46)
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We are now ready to derive formulas for 73, 7log? 2, ¢(3), m?log2 and log® 2.

6.2. Base 212 Formulas

Solving Equations (38), (40) and (46) simultaneously, we find the BBP-ready iden-
tities:

128 . 1 i 88 . |1 12 . |1
8 . 1
320 1 s 328 1 .
71'2 10g2 = 3 ReL13 [ﬁ exp <Z):| — T L13 |:§:| +48 L13 |:Z:|
32 1
——Lig |—= 4
3 13 |: 8:| ( 8)
and
64 1 s 80 1 1
log®2 = — Reliz|—= — )| - & Lis |z | +15Liz | -
o g el Lﬁexp ( 4 ﬂ 3 {2] o {4}
10 1
——Lig |—=| . 49
3 Lis | 5] (19)

Application of the prescriptions of section 3 to the identities (47), (48) and (49)
facilitates the derivation of base 2'2, length 24 BBP-type formulas for the respective
polylogarithm constants. The explicit formulas or their variants are as listed in the
BBP Compendium.

6.3. Base 292 Formulas

Eliminating mlog® 2 between Equations (42) and (45), we have the following BBP-
ready formula for 73:

1 T 1 T

3 . .
7 =16Im Lis | —=exp | — +160Im Lig | —=exp [ —
44@ p(4)] L/E p(4)]

; ; (50)
—l—? Im Lij {2—\1/5 exp (%)] — 140Im Lij B exp (%)} .



INTEGERS: 11 (2011) 14

Eliminating 7% between Equations (42) and (45), we have the following BBP-
ready formula for 7 log? 2:

1 T 1 X
log? 2 = 12Im Lig | —— — Im Liz | — —
7 log m Lig [4\/§exp<4>}+56 m Lig [ﬂexp<4)]

. k (51)
2 1 1
—l—% Im Lig [ﬁ exp <%>} — 81 Im Lig [5 exp (%)} .
Eliminating 7% log 2 and log® 2 between Eqs. (40), (41) and (44) we find
16 1 i 32 1 s
3)=—Relis|—=exp| — || + = Relis |—exp | —
)= Fretis [ e ()|« T remn [ ()
48 1 ; 1 (52)
- Re Lis {2—\/5 exp (%)] Re Lis [— exp (z;r)] .
Eliminating ¢(3) and log® 2 between Eqs. (40), (41) and (44) we find
312 1 s 336 1 s
2log2 = == ReLi {e ()]+ReLi {e ()}
- log 5 34\/§XP4 3\/§XP4 (53)
4 1 1 )
_%Re Lig [2\/_exp (mﬂ 866 —— Re Lisg [ﬁexp (%)] .
Elimination of 72 log2 and ((3) between Eqs. (40), (41) and (44) gives
) 1 s
log®2 = 18Re Li e ”)] +12Re Li [e ()}
g 3{4\/— XP( 3 \/ixp 1 54

1 i 243 1 i
—4 Lis | —= — )| — —RelLis | = — .
6 Re Lig [Qﬂexp<4 )} 5 Re Lig [Qexp(2 )}

As in the previous cases, the application of the prescriptions of section 3 to the
identities (50), (51), (52), (53) and (54) facilitates the derivation of base 25°, length
120 BBP-type formulas for the respective polylogarithm constants. The explicit
formulas or their variants are as listed in the BBP Compendium.

7. Degree 4 Formulas

Next we derive binary BBP-type formulas for %, 72 log2 2, log‘4 2 and two linear
combinations of Cly(m/2), wlog®2 and 73 log2. We will also give formal proofs of
the known but hitherto unproved formulas for these polylogarithm constants.
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7.1. Generators of Degree 4 Binary BBP-Type Formulas

The two-variable degree 4 polylogarithm functional equation (Eq. 7.90, p. 211 of
[9]) reads

2 2 2 2
i |- [ i [ v 5]
=6 Lig [2y] + 6 Liy [ﬁ] 46 Liy {—@} 46 Liy [—@}
UES n 3
+3 Lig ] + 3 Liy [y€] + 3 Lig m +3Liy m +3 Liy {xﬂ (55)
+3 Liy {—y—ﬂ +3 Liy [—i] +3 Liy {—i} — 6 Liy [2]
n ng ng

— 6 Liy [y] — 6 Lis [—ﬂ — 6 Liy [—%] +3/2 log?€logn,

where E =1—z,n=1—y.
Evaluating Equation (55) at coordinates (1/2,1/2) gives

| 5 |1 . 1 27 . |1
? — 5 7T2 10g2 2 + Z 10g42 = 24L14 |:§:| + 2Ll4 |:§:| - 7 Ll4 |:Z:| . (56)

Evaluating the functional equation Eq. (55) at coordinates (i, ¢), simplifying and
taking real and imaginary parts, we obtain

3497*  Tr’log?2 5 .
_ 2 gt
9216 128 6108

1 ' 1 )
= 2RelLiy [ﬁ exp (%>:| + 12ReLiy |:E exp (%>:| (57)
27 1 i |1
-7 ReLiy [5 exp (5)} —6Liy [5}

E) n 37rlog32 _ 2773 log 2
2 32 128

. 1 LT 27 it LT
= —2ImLiy4 [2\/5 exp <4>] -7 Im Liy {2 exp <2>} (58)

4 36 Tm Liy {% exp (%ﬂ .

Evaluating Equation (55) at (1 + ¢,1/2), simplifying and taking the real part

and

20C1, (
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yields
16977*  137x%log”2 115,
— —log™ 2
9216 384 192

= —14ReLiy [\}5 exp (?T)] +30ReLiy [\}5 exp (T)] (59)
. 1 ) 01 11 . 1
— 6ReLiy {2—\/5 exp (%)} —7Liy [5] + §L14 {—Z] :

Finally, evaluating the identity at ((1—14)/2,1/2) and taking real and imaginary
parts, we find
12657%  11372log?2 91

_ o
18432 768 T 381 %%

= ReLiy {4\[ exp (7”)] — 12ReLiy {% exp <%)]

. , (60)
1 i 1 37
Liy | — — | - Liy | — —
+5Re 14[\/§exp<4)] 7Re 14{\/§exp(4)]
95 1 i 11 _, 1 |1
— g ReLl4 |:§ exp (?)] + g L14 |:_Z:| + 6L14 |:§:|
and
12C1 (z) 297 log® 2 3 4773 log 2
* 192 256
1 j 95 1 ;
= —6ImLiy4 {m exp (%)} + 3 ImLiy4 [5 exp (%)} o

Pt [ e (g)} et [ L e (7))
it [ e (7))

We are now ready to derive formulas for 7%, 72log? 2, log? 2, and the two linear
combinations of Cly(m/2), 7log®2 and 73 log 2.

7.2. Base 2!2 Binary BBP-Type Formulas
Solving Equations (56), (57) and (59) simultaneously, we find

27648 i 51840 1 i
4 _ _ -
= RL4|:2\/_6X ( )]+ 10 RL4{\/§exp(4)}

24192 1 3im 58320 1 i
+— 1 ReLiy [E exp (T)} T ReLiy [5 exp (?)] (62)

32832 . |1 3888 . |1 576 _ . 1 2376 1
BT H_TLI“ [ﬂ*ﬂm {‘g} s L14[ 4}’
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98944 m 47408 1 i
2log?2 = Re Liy ReLi —
7~ log 23~ 2\/_ exp + — 11 14 \/Eexp 1

31920 1 Jim 65142 1 i
+ — 41 ReLl4 |:ﬁ exp (T)] 4 ReLl4 |:§ exp <E>:|

(63)
30200 17 6606 . [1] 2936 . 1
T L4H_ T M 123 M4 [_5}
3135 _ . 1
T ap M [_ﬂ
and
161024 i 71776 1 ir
log? 4 = ReLiy ReLi -
oo b ()] " ()
53088 1 3im 104364 1 i
Liy | — ddag | Liy | = -
+ —— 205 Re Liy [ﬂexp< 1 )} 205 ReLiy {2exp<2>]
(64)

sl
* 615 4

8

205

2

205

41872 Lis [1} 13698 Li, [ﬂ 6088 [ 1}

5214 [ 1
~ 505 [_Z] ‘

The identities (58), (62), (63) and (64) facilitate the derivation of base 2!2, length
24 BBP-type formulas for the respective polylogarithm constants. The explicit
formulas are listed in the BBP Compendium.

7.3. Base 26° Binary BBP-Type Formulas
Solving Egs. (57), (59) and (60) simultaneously, we find

57600 1 i 442368 1 ir
4= 2 "Reli - " " Reliy | — -
T 1 eliy 2\/§ exp 1 197 eliiy \/ﬁ exp 1
13824 1 3im 239328 1 i
— " "Reliy | — = T Reliy | = — 65
# SRt | ow ()| - PRt oo (T)] 09
34560

im\] 432000 [1] 4752 1
20 ReLiy it N e (B e
197 e {4[ (4 )] 17 M M o { 4} ’
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73632 z7r 258592 1 T
2log?2 = ——"Reli ————"Reli —
7~ log 1 eliy 2\/_ + 197 eliy \/iexp 1

7584 1 i 818152 1 i
Lis | — = Lis | = i
1 ReLiy L/iexp< )] + — 197 ——Reliiy {2exp<2>}

(66)
58720 i 423872 . |1
o etk [ ee (7)) ]
6512 _ 1
T Ty L {_ﬂ
and
25440 1 i 42928 1 i
log* 2 = L — Liy | —= —
og = Re 14{2\/§exp(4)]+ 197 ——Re 14{\/§exp<4>}
1392 1 3im 413758 1 i
= ——Reliy [ﬁ exp (T)} + 197 ———Reliy [5 exp (?>}
(67)

sz [ 1 (im)] 125480 [1
197 M2 TP\ 17 2

The identities (61), (65), (66) and (67) facilitate the derivation of base 2%°, length
120 BBP-type formulas for the respective polylogarithm constants. The explicit
formulas are listed in the BBP Compendium.

8. Degree 5 Formulas

Next we give formal proofs for the binary BBP-type formulas for ((5), n*log2,
721log® 2 and log® 2. These formulas were found experimentally by David H. Bailey,
using his PSLQ algorithm. This section provides the first avenue where the hitherto
unproved formulas are formally proved.
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8.1. Generators of Degree 5 Binary BBP-Type Formulas

The following two-variable degree 5 polylogarithm functional equation was derived
by Broadhurst [11] (Eq. 63 pg. 5)

Lis [ ] | Lis [eayn] + Lis [ zaf } + Lis [e€ y8) + Lis [—5]
Yo n yn

LY aybl an
””5[ 5 %L% ¢ %L‘”’[syn}*“{w]

— 9Lis [zy] — 9Lis [28] — 9 Lis [xn] — 9 Li [ﬂ — 9Lis [%}

—9Li5{ ] — 9Li5 [ay] — 9Li5 [« f] — 9Lis [a 7]

. . [ . . (68)
—9L15{ —9Lis [—] —9Lis [;] —9Li5 [€y] — 9Li5 [€ 5]
— 9Lis [¢ 7] — 9 Lis M — 9Lis m — 9L m
+ 18 Lis [] — 18¢(5) = 3/10 (log€)® + 3/4 (logy — log ) (log &)*
+3/2 (3 logy —logn) (logn)” (log€)” + 1/27* (log& — 3 log ) (log¢)”
+1/57tlogé.
In the above formula { =1 -2z, n=1—-y, a = —x/¢ and 8 = —y/n.
Evaluating Eq. (68) at coordinates (1/2,1/2) gives
403 g( ) — 27r log 2 4 72 log® 2 1og52 = 144 Lis H — 82—1 Lis H
) (69)
[

Evaluating at (—i,4) and taking the real part gives

4371 349 7 3
8 ¢(5) — ——7tlog2 + — n?log® 2 — — log”2

= 36 Re Li; [\}5 exp (T)] — 36Re Lis [\}5 exp <3ZT>} (70)
1 i 1 9 . 1
#aRetis [0 oo ()] - 18t 5] - e |5
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Evaluating the identity at (—1,4) and taking the real part gives

279 977 97 ,
it log2 + — 72log?2 — — ]
g C(5) ~ Gag ™ log2+ Zegm log 128 og’

= 2RelLis [4—\1/5 exp (%)] — 36ReLis [% exp <%>} (71)
. 1 i |1 7. 1
—32RelLis [E exp <T>:| + 37 Lis [§:| + §L15 |:Z:| .

Broadhurst proved (Eq. 68 of [11] written out) that

31 343 5
2 ¢(5) — g2 4 2 2210632~ 2 1og%92
32 ¢0) ~ o360 ™ 82t ops ™ og” 1035 og’ 72
_18 [ ir\] 20 . 1 (72)
1 — X —_— 1 — .
60 e P\ 690 % |2

8.2. Base 26° Binary BBP-Type Formulas

Solving Eqs. (69), (70), (71) and (72) simultaneously for ¢(5), 7*log 2, 72log® 2 and
log® 2 we find

1317888 377856 T
_amiTsss R
O = g e 15{ exp( ﬂ G651 O LM exp( )]

56097792 1240064 in
92 ReLis S22 ReLi
T 62651 ' [ P ( )] 62651 15[2\/‘6’“’ ( >}

4 (73)
929664 . 1 644112
62651 62651
63616 . 71 616752 1
62651 | 78] T 62651 9 4
18593280 5294592 1 T
*log2 = ——— RelLi Lis | —= -
7" log 7 ReLis { exp ( )} 5021 ReLis {4\/5 exp (4 )]
794230272 1 s
+WReL15[ exp< 1 )}
16467456 . i
+ 2001 ReLis { exp (Z)] (74)

11408256 {1] 9121248
il § T ) [ Wty

1

2021 2 2021 [Z}
900864, . [ 1] . 8769816 1
- Ly |—= Lis [—=
2021 8] " 2021 | 4
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17440704 4835904 1 ;
72log®2 = ——— ReLis [ exp <27r) Re Lij {— exp <E)]

47 4 2021 44/2 4
747218112 3im
+WR L15 [—exp( >:|
12619200
B 7432176 . |1 8731962L 1
2021 7|2 2021 4
862416 _ . 1 8350599 _ . 1
— ——Lis |—— —— Lis |——
2021 8 2021 4
and
6218880 1 i 1689472 1 i
log®2 = ——""RelLis | — — )| = ——RelLis | — —
og 17 ReLi {ﬂexp(Zl)} 2021 ReLij [4\/§exp<4>]

| 266609392 [ 1 (3in
2021 512 P\

+ —37280027136 Re Lis {2 N (”)] (76)
2092736 [1] 3217563 . [1

© 2021 H 2021 M
317784 [ 11 3005666 . [ 1

© 2021 {_g} 2021 O {_Z} '

Identities (73), (74), (75) and (76) facilitate the derivation of base 2°°, length
120 BBP-type formulas for the respective polylogarithm constants. The explicit
formulas are as listed in the BBP Compendium.

9. Zero Relations

BBP zero relations are BBP-type formulas that evaluate to zero. Considering that
BBP-type formulas are usually discovered through computer searches, the need to
study zero relations is aptly set forth in the BBP Compendium [1]:

Knowledge of these zero relations is essential for finding formulas using
integer relation programs (such as PSLQ). This is because unless these
zero relations are excluded from the search for a conjectured BBP-type
formula, the search may only recover a zero relation.
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9.1. Degree 2 Zero Relations
9.1.1. Base 22 Relations
Eliminating 72 between Eqs. (16) and (27), we find the identity

01 T . 1 3im
0 = 72RelLiy [5 exp (5>] — 72ReLiy {ﬁ exp (T)]

1 ; 1 ;
—24ReLip [ﬁ exp <%>] — 180 Re Lis {5 exp (%
01
+45L12 |:Z:| s

which leads immediately to the zero relation

)

0 = P(2,2'%24, (2!, —5. 211 212 3.212 99 5.210 98

32.29 2% —5.927 926 0,—2° —5.25 26 3%2.25 23,
5.24 -22.3.21 23 _5.21,0)).

Eliminating log® 2 between Eq. (15) and (17) gives the identity

. 1 3w . 1 X
0 = 2RelLiy L/? exp (4)] + 2 RelLis {2\/5 exXp (4)]

. 1 . 1 . [1 , 1
+L12 |:—§:| — 2L12 |:—§:| — 2L12 |:Z:| —LIQ |:_Z:| s

which produces the zero relation

0 = P(2,2'%24, (2!, 213 —5.2!1 13.210 29 7.210 98 33 .98

5.28 —29 26 98 _95 9T 5.95 33.94 93 7.91
—2213-22,-5-.22, -231,0)).

9.1.2. A Base 26° Relation

Eliminating 7 log 2 between Eq. (18) and Eq. (29) gives the identity

1 ] 1 i
0 = b5ImLiy [5 exp (%)} —41Im Lis {Eexp (ﬁ%)]

1 s 1
—2ImLiy |——e — —2ImLiy | ——=e
2{2\/5 Xp<4)] 2[4\/5 Xp(

from which we get, immediately, the binary BBP-type zero relation

T

4

)

22

(78)

—~

79)

—~

81)
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0 = P(2,2%,120,(—2%,3.2% —11.2°7,0,-23-2°, -3.7.2% 2% 0 —11.2%*
—13.2% 2% 0,258 _3.92% _7.2%2 0 —2%1 3.7.2%9 250 0 11.2% —3.2%
218 0,23.2%0 3.2%8 _11.2% 0,2%° 2% 2% 0,—11.2%% 3.2% 23.2% 0,2",
—3.2%211.2% 0,-2% 3.7.2% 2% o —7.2%7 _3.2%8 236 o 2% _13.92%,
—11-2%,0,2% —3.7.2% —23.2% 0,—11-2% 3.2% 9230 0 2% _3.2%
11-2%7,0,23.2% 3.7.2%¢ 226 0,11-2%*, 13224 224 0,-22%,3.2%* 7.2%2 0,

2 _3.7.2%0 220 0 —11.2'% 3.2%0 28 g _23.216 _3.2!8 11.2!% 0, —2'°,

—216 o1 0,11.2'% —3.2™ _923.2" 0,—2' 3.2 —11.2°0,2°,—3.7.2% 2%
0,7-27,3-2% —2°0,2°,13.2* 11-2%,0,-2%,3.7-2%23. 2,
0,11,-3-2%,1,0)). (82)

9.2. Degree 3 Zero Relations
9.2.1. Base 212 Zero Relation

Eliminating 72log2 and log® 2 between Equations (40), (41) and (46), and sub-
tracting the resulting identity from Eq. (47) gives the BBP-ready identity

88 . |1 132 . |1 88 . 1 1584 1 i
0 = _ﬁ L13 |:§:| — ﬁ L13 |:Z:| + @ L13 |:—§:| — —133 Re L13 |:§ exp <?>:|
704 X 704 1 s
—— ReLig — ReLis | —= — 83
i e [rgee (7)< e [ e (7)) o

which yields the only ezpected degree 3 base 2'2 length 24 zero relation listed in
the BBP Compendium and which was originally discovered by Bailey [1], using his
PSLQ program.

9.2.2. Base 290 Zero Relations

Solving Equations (38), (44) and (46) for {(3) and subtracting Eq. (52) gives the
identity

50 1 5 . |1 10 _ . 1 319 1 T
0 = — L13 |:§:| — ? ng |:Z:| + @ L13 |:—§:| — a Re L13 |:§ exXp <5):|
236 LT 8 . 1 s
_7ReL13 {2\/_exp< )] —§ReL13 {ﬁexp (4)]
1 T
— Relis | —= — . 4
+63Re 13{4\/§exp(4>] (84)

Solving Equations (41), (44) and (46) for ¢(3) and subtracting Equation (52)
gives the identity
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30 1 20 1] i
= _—— — —_ —_—| = = L — —_—
0 119 3{4]’*357 3[ 8] 31“313[ eXp(i?)}
52 . i\ | 1 iT
g7 et [0 ()« s e [0 ()
76 71 i\
+ﬁ ReLis [4\/5 exp (4) . (85)

The explicit base 2°0 zero relations resulting from the identities (84) and (85)

are as listed in the BBP Compendium.

9.3. Degree 4 Zero Relation

9.3.1. A Base 2%° Relation

Subtracting Eq. (65) from Eq. (62), we obtain the identity

398592 im 7627392
- Lig |—— Lig | —
5911 ReLiy {2\[@( ( )]—i— 20377 Re 14{ exp<4)]
1150848 . 1 Jim 34560
WRQLL} |:\/§ exp (4):| 497 ReLl4 |:\/_ (
4 1 ) 13944 1
_ 38797 88ReLi4 [_ exp <ﬂ>:| n 39 96Li4 |:§]

-]y

)

20377 2 2 20377
3888 [1] 576 11 26136, [ 1
— Ly | = 4+ 2Ly |- o | + Ly | ——
41 4| " m 8] " 2011 4

As usual, writing each component of Eq. (86) as a base 20, length 120 binary
BBP-type formula and forming the indicated combination, we obtain the only degree
4 binary zero relation, given explicitly in the BBP Compendium.

10. Conclusion

Using a clear and straightforward approach, we have obtained and proved inter-
esting new binary digit extraction BBP-type formulas for polylogarithm constants.
Some known results were also rediscovered in a clearer and more elegant manner.
Experimentally discovered binary BBP-type formulas are also proved.

Acknowledgement. The author enjoyed interesting correspondence and exchanges
with Dr. David H. Bailey and Jaume O. Lafont. He is also grateful to the reviewer
for a detailed excellent review with very useful comments and suggestions which
led to a significantly improved manuscript. The author received a lot of support,
encouragement and goodwill from Prof. H. W. Lenstra.



INTEGERS: 11 (2011) 25

References

1]

(2]

(3]

(4]

[9]
(10]

(11]

D. H. Bailey. A compendium of bbp-type formulas for mathematical constants
http://crd.1lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. 2011.

David H. Bailey, Peter B. Borwein, and Simon Plouffe. On the rapid computation of various
polylogarithmic constants. Mathematics of Computation, 66(218):903-913, 1997.

David H. Bailey and Richard E. Crandall. On the random character of fundamental constant
expansions. Ezxperimental Mathematics, 10:175, 2001.

Jonathan M. Borwein, William F. Galway, and David Borwein.
Finding and excluding b-ary Machin-type BBP formulae. Canadian Journal of Math-
ematics, 56:1339-1342, 2004.

Marc Chamberland. Binary bbp-formulae for logarithms and generalized gaussian-mersenne
primes. Journal of Integer Sequences, 6, 2003.

H. R. P. Ferguson, D. H. Bailey, and S. Arno. Analysis of pslq, an integer relation finding
algorithm. Math. Comput., 68:351-369, 1999.

David H Bailey. Algorithms for Experimental Mathematics I
http://crd.1bl.gov/~dhbailey/dhbpapers. 2006.

G. Huvent. Formules BBP
http://math.univ-1lillel.fr/~bbecker/ano/seminaries/expo_huvent01.pdf. 2001.

Leonard Lewin. Polylogarithms and associated functions. Elsevier North Holland Inc., 1981.
Kunle Adegoke. A non-pslq route to bbp-type formulas. Journ. Maths. Res., 2:56—-64, 2010.

D. J. Broadhurst. Polylogarithmic ladders, hypergeometric series and the ten millionth digits
of ¢(3) and ¢(5). arXiv:math/9803067v1 [math.CA], 1998.



