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Abstract
A ternary inclusion-exclusion polynomial is a polynomial of the form

Q{p,q,r} =
(zpqr − 1)(zp − 1)(zq − 1)(zr − 1)
(zpq − 1)(zqr − 1)(zrp − 1)(z − 1)

,

where p, q, and r are integers ≥ 3 and relatively prime in pairs. This class of
polynomials contains, as its principle subclass, the ternary cyclotomic polynomials
corresponding to restricting p, q, and r to be distinct odd prime numbers. Our
object here is to continue the investigation of the relationship between the coeffi-
cients of Q{p,q,r} and Q{p,q,s}, with r ≡ s (mod pq). More specifically, we consider
the case where 1 ≤ s < max(p, q) < r, and obtain a recursive estimate for the
function A(p, q, r) – the function that gives the maximum of the absolute values of
the coefficients of Q{p,q,r}. A simple corollary of our main result is the following
absolute estimate. If s ≥ 1 and r ≡ ±s (mod pq), then A(p, q, r) ≤ s.

1. Introduction

Throughout this paper we adopt the convention that the integers p, q, and r are
relatively prime in pairs and that p, q, r ≥ 3. To each set τ = { p, q, r } we associate
a polynomial Qτ given by

Qτ (z) =
(zpqr − 1)(zp − 1)(zq − 1)(zr − 1)
(zpq − 1)(zqr − 1)(zrp − 1)(z − 1)

. (1)

A routine application of the inclusion-exclusion principle to the roots of the factors
on the right of (1) shows that Qτ is indeed a polynomial and we refer to it as a
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ternary (or of order three) inclusion-exclusion polynomial. This class of polyno-
mials generalizes the class of ternary cyclotomic polynomials which corresponds to
restricting the parameters p, q, and r to be distinct odd prime numbers. As the
terminology suggests, the notion of inclusion-exclusion polynomials is not restricted
to the ternary case, and the reader is referred to [1] for an introductory discussion of
inclusion-exclusion polynomials and their relation to cyclotomic polynomials. Our
interest in inclusion-exclusion polynomials is motivated by the study of coefficients
of cyclotomic polynomials. Thus in the ternary case, the only case we shall consider
here, from a certain perspective, questions about coefficients of cyclotomic polyno-
mials are really questions about coefficients of inclusion-exclusion polynomials. We
shall see below that adopting this point of view is rather helpful.

The degree of Qτ is

ϕ(τ) = (p− 1)(q − 1)(r − 1), (2)

see [1], and we write

Qτ (z) =
ϕ(τ)∑

m=0

amzm
[
am = am(τ)

]
.

It is plain from (1) that am are integral. The polynomial Qτ is said to be flat if
am takes on the values ±1 and 0. The existence of flat Qτ with an arbitrary large
min(p, q, r) was first established in [2]. This was done by showing that if

q ≡ −1 (mod p) and r ≡ 1 (mod pq) (3)

then Qτ is flat. Actually in [2] this was stated explicitly for cyclotomic polynomials
only, but the argument used applies equally well to inclusion-exclusion polynomials.
In fact, this observation extends to much of the work on the coefficients of ternary
cyclotomic polynomials (cyclotomic polynomials of low order in general - see [1])
and, in particular, to all such work referenced in this paper. Consequently, we
shall ignore this distinction in the future and, when appropriate, simply state the
corresponding result for inclusion-exclusion polynomials. An improvement on (3)
was obtained by T. Flanagan [5] who replaced both the −1 and 1 there by ±1. But
the conditions on q in these results were entirely superfluous, for it was shown by
N. Kaplan [7] that

Qτ is flat if r ≡ ±1 (mod pq). (4)

Our object here is to establish a general principle of which (4) is seen to be a special
case. We begin by introducing some conventions. Put

A(τ) = max
m

|am(τ)| and Aτ = { am(τ) }.

Moreover, in a slight abuse of notation, let us agree to write A(p, q, r) in place of
A(τ) when the dependence of A on the parameters p, q, and r needs to be made
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explicit. Let us emphasize that, in a departure from the usual practice, we are
not assuming any particular order for the parameters p, q, and r. The structural
symmetry of Qτ with respect to these parameters is a key aspect of the problem and
plays an important role in our development. Correspondingly, we shall explicitly
state any additional assumptions on p, q, and r when it is appropriate. In his work
on (4), Kaplan showed that for r > max(p, q), A(τ) is determined completely by the
residue class of r modulo pq. More precisely, he showed that if r ≡ ±s (mod pq)
and r, s > max(p, q) then

A(p, q, r) = A(p, q, s). (5)

Moreover, under the stronger assumption r, s > pq, he showed that, in fact, we have

A{p,q,r} =

{
A{p,q,s}, if r ≡ s (mod pq),
−A{p,q,s}, if r ≡ −s (mod pq).

(6)

The first of these identities was also proved by Flanagan [5]. These results gave a
strong indication that for r > max(p, q), the set Aτ is also determined completely
by the residue class of r modulo pq.

We are thus lead to examine the relation between coefficients of Q{p,q,r} and
Q{p,q,s} with r ≡ s (mod pq). This problem splits naturally into two parts according
to whether

r, s > max(p, q) or r > max(p, q) > s ≥ 1. (7)

say. The first of these cases was dealt with completely by the first author in [1]. It
was shown there that the identity (6) indeed holds in the full range r, s > max(p, q).
Let us mention in passing another interesting property of sets Aτ (see [1, 4, 6]): Aτ

is simply a string of consecutive integers, that is

Aτ = [A−(τ), A+(τ) ] ∩ Z,

where A−(τ) and A+(τ) denote the smallest and the largest coefficients of Qτ ,
respectively.

That leaves the second alternative in (7), and this case is the object of the present
paper. The statement of our main result will make use of the following extension
of the definition of A(τ). For s = 1, 2 and relatively prime in pairs triples { p, q, s }
put

A(p, q, s) = s− 1. (8)

We note that this convention is not inappropriate when considered in the context
of the corresponding polynomials Q{p,q,s}. Indeed, Q{p,q,2} is of order 2 and its
coefficients are ±1 and 0, see [1], and, as is immediate from (1), Q{p,q,1}(z) ≡ 1.

Theorem. If r ≡ ±s (mod pq) and r > max(p, q) > s ≥ 1, then

A(p, q, s) ≤ A(p, q, r) ≤ A(p, q, s) + 1. (9)



INTEGERS: 11 (2011) 4

Evidently this case is more complicated than the case covered by (5) and, accord-
ing to the calculations kindly supplied by Yves Gallot, both possibilities implicit in
(9) do occur quite readily. On the other hand, numerical evidence suggests that in
this case too the equality (5) is the more likely outcome. We do not know of any
simple criteria that can be used to determine which of the two possibilities in (9)
must hold.

Note that under the hypothesis of the theorem we have, by (5),

A(p, q, r) = A(p, q, pq ± s). (10)

In this light (9) is seen as a recursive estimate. Of course, using an absolute upper
bound for A(p, q, s) on the right of (9) yields the corresponding upper bound for
A(p, q, r). The corollary below gives a particularly simple estimate of this type. To
get it we use the bound

A(p, q, s) ≤ s− &s/4' [s ≥ 1], (11)

proved in [3] (a better estimate for min(p, q, s) ≥ 7 was recently announced by J.
Zhao and X. Zhang [8]).

Corollary. Under the hypothesis of the theorem we have

A(p, q, r) ≤ s, (12)

for all s ≥ 1. Moreover, (12) holds with strict inequality for s ≥ 5.

It should be noted that (11), and hence the corollary, holds with s replaced
by min(p, q, s). Estimate (12) sacrifices precision for convenience and is certainly
weaker than the upper bound of the theorem for s ≥ 5. It is interesting, however,
to consider the quality of this estimate for s ≤ 4–the following observations are
based largely on calculations of Yves Gallot. First we observe that the bound (11)
is sharp in this range. For s = 1, 2 this follows by convention (8), and for s = 3, 4
this is verified computationally, e.g., A(5, 7, 3) = 2 and A(11, 13, 4) = 3. It follows
that for s ≤ 4, (12) is just the uniform version of the upper bound of the theorem,
and that the possibility of equality in (12) is the only remaining question. That is,
by (10), we are lead to consider the equation

A(p, q, pq + s) = s. (13)

For s = 1, (13) holds for all choices of p and q since, trivially, A(p, q, pq + 1) ≥ 1.
Recall that this is just Kaplan’s result (4). Equation (13) also has solutions for
s = 2, 3, for instance A(3, 5, 17) = 2 and A(7, 16, 7 · 16+3) = 3. On the other hand,
no solutions were found for s = 4 with p, q < 100.

Using the estimate (11) carried no penalty for s ≤ 4. For general s we ought to
proceed implicitly and use the function

M(s) = max
p,q

A(p, q, s).
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This is well-defined by (11). Indeed, using M(s) on the right of (9) gives a sharp
form of (12) and leads us to consider the general form of (13), namely the equation

A(p, q, pq + s) = M(s) + 1. (14)

The main point is that solutions of (14) are particularly interesting instances of
when the upper bound of the theorem is the best possible. Plainly, the focus here
is on the parameter s, and we shall say that s solves (14) if the equation holds
for some { p, q, s }. Thus we summarize the preceding paragraph by saying that (i)
M(s) = s − 1, for s ≤ 4; and (ii) s = 1, 2, 3 are solutions of (14). Unfortunately
equation (14) takes us into a largely uncharted territory. Indeed, in addition to the
earlier discussion of s ≤ 4 we can say with certainty only that s = 5 is also a solution.
This follows on combining (11) with the explicitly computed A(7, 11, 5) = 3 = M(5)
and A(13, 43, 13 · 43 + 5) = 4.

Finally, observe that for certain types of triples τ , the application of the theo-
rem may be iterated providing a very efficient technique for estimating A(τ). For
instance, if p and q are relatively prime we get

A(q, pq ± 1, q(pq ± 1)± p) ≤ A(q, pq ± 1, p) + 1 = 2.

The remainder of this paper gives a proof of the theorem and is organized as
follows. Our proof naturally splits into two parts corresponding to s ≤ 2 (the “non-
ternary case”) and s ≥ 3. In the next section we collect preliminaries needed for
both cases. The non-ternary case is appreciably simpler and its proof is carried out
in Section 3. We include the argument for s = 1 since it is substantially different
from that of [7] and it helps to illuminate the more difficult general argument.
Finally, we complete the proof in Section 4.

2. Preliminaries

We begin by observing that given a triple { p, q, r }, each integer n has a unique
representation in the form

n = xnqr + ynrp + znpq + δnpqr,

0 ≤ xn < p, 0 ≤ yn < q, 0 ≤ zn < r, δn ∈ Z.
(15)

We shall say that n is (τ -)representable if δn ≥ 0 and let χτ be the characteristic
function of representable integers. When τ is understood to be fixed we shall simply
write χ in place of χτ . For our purposes it will be sufficient to consider only n < pqr,
as we shall assume henceforth, and in this range the condition δn ≥ 0 becomes
δn = 0, so that

χ(n) =

{
1, if δn = 0,
0, otherwise.

(16)
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The key role of representable integers is evident from the following identity – for
the proof see [1].

Lemma 1. For all m < pqr, we have

am =
∑

m−p<n≤m

(
χ(n)− χ(n− q)− χ(n− r) + χ(n− q − r)

)
. (17)

Of course, we interpret am as 0 for m < 0 and m > ϕ(τ). Having the identity
(17) in the “extended range” m < 0 and, by (2), ϕ(τ) < m < pqr will prove to be
useful for technical reasons.

Recall that we are after a reduction for A(p, q, r) with r ≡ ±s (mod pq), and
eventually we shall assume that r satisfies this condition and that p < q. Let us
emphasize, however, that unless any of these conditions are used there is complete
symmetry in the parameters p, q, and r. For instance, Lemma 1 implies that (17)
with p and r interchanged is also valid. When it is not inconvenient, e.g., (15) and
(16), we make this symmetry perfectly explicit, but we shall opt for convenience,
e.g., Lemmas 1 and 2, whenever this choice has to be made.

Lemma 2.
∣∣χ(n)− χ(n− p)− χ(n− q) + χ(n− p− q)

∣∣ ≤ 1.

Proof. See [3, Lemma2].

Note that, by (15) and (16),

χ(n) = χ(n− pq) unless zn = δn = 0. (18)

But zn = 0 if and only if n is a multiple of r, say n = kr. Thus

χ(kr + tpq) = χ(kr) [0 ≤ t < r]. (19)

Similarly
χ(kr − tpq) = 0 [t > 0]. (20)

These simple observations are quite handy. Thus our next lemma [1, Lemma 3] is
an immediate consequence of Lemma 1 and (18).

Lemma 3. Let

I1 = (m− q − p,m− q] ∩ Z and I2 = (m− p,m] ∩ Z. (21)

Then we have
am = am−pq,

unless there is n ∈ I1 ∪ I2 such that n is a multiple of r and either n or n− r are
representable.
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Next we consider (15) modulo pq (modulo a product of two of the parameters).
Let r∗ be the multiplicative inverse of r modulo pq and set

f(n) = fτ,r(n) = xnq + ynp, (22)

with xn and yn given by (15). Then, in the first place, we have

f(n) ≡ nr∗ (mod pq). (23)

Now let [N ]pq denote the least nonnegative residue of N modulo pq and let Rp,q

be the set of integers representable as a nonnegative linear combination of p and q,
that is,

Rp,q = {N | N = xq + yp, x, y ≥ 0 }. (24)

It follows by (22)–(24) that, in fact,

f(n) =

{
[nr∗]pq, if [nr∗]pq ∈ Rp,q,

[nr∗]pq + pq, otherwise.
(25)

There is an obvious advantage in considering linear combinations in (22) over those
in (15). This is a useful observation in view of the following relationship between
the functions χ and f .

Lemma 4. χ(n) = 1 if and only if f(n) ≤ *n/r+.

Proof. See [1, (3.26)]

Our next lemma will be the only observation in this section that considers triples
τ = { p, q, r } and τ ′ = { p, q, s } (with r ≡ s (mod pq)) simultaneously. To simplify
the notation we consider p and q to be fixed and write fr(n) for fτ,r(n). In this
setting function fr(n) is a function of two variables but it depends only on the
residue classes of r and n modulo pq.

Lemma 5. If r ≡ s, n ≡ n′ (mod pq), then fr(n) = fs(n′).

Proof. This is immediate from (25).

Now put
σk(m) =

∑

m−k<n≤m

χ(n). (26)

Then, by Lemma 1, we have

am = σp(m)− σp(m− r)− σp(m− q) + σp(m− q − r). (27)

For the purpose at hand we shall find it useful to rewrite this identity as follows.
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Lemma 6. If r = pq + s and s ≥ 1, then am = Σ1 + Σ2, with Σi given by

Σ1 = σs(m)− σs(m− p)− σs(m− q) + σs(m− q − p) (28)

and

Σ2 = σp(m− s)− σp(m− s− pq)− σp(m− q − s) + σp(m− q − s− pq). (29)

Proof. Observe that

σp(m) = σs(m) + σp(m− s)− σs(m− p).

Whence

σp(m)− σp(m− r) = σp(m)− σp(m− s− pq)
= σs(m)− σs(m− p) + σp(m− s)− σp(m− s− pq).

(30)

Of course, (30) also holds with m−q in place of m. Combining this with (27) proves
the claim.

In the final lemma of this section we evaluate Σ2 in (29). This evaluation depends
on whether the two intervals

I ′1 = (m− s− q − p,m− s− q] ∩ Z and I ′2 = (m− s− p,m− s] ∩ Z (31)

contain a multiple of r. Note that since r = pq + s, the range I ′1 ∪ I ′2 contains at
most one multiple of r, which we will denote by αr.

Lemma 7. If r = pq + s, s ≥ 1, and p < q, then

am =

{
Σ1, if αr /∈ I ′1 ∪ I ′2,
Σ1 + (−χ(αr))j , if αr ∈ I ′j,

with Σ1 fiven by (28).

Proof. By Lemma 6, this is just an evaluation of Σ2. But

Σ2 =
∑

m−s−p<n≤m−s

((
χ(n)− χ(n− pq)

)
−

(
χ(n− q)− χ(n− q − pq)

))
.

Therefore, by (18), (20), and (31), we have

Σ2 =

{
0, if αr /∈ I ′1 ∪ I ′2,
(−χ(αr))j , if αr ∈ I ′j ,

as claimed.
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3. Proof of Theorem: The Non-ternary Case

At this stage we are ready to break the symmetry and, using the usual convention,
put p < q < r. Moreover, we note that by (5) it suffices to prove (9) for r = pq + s,
as we shall assume henceforth.

In this section we deal with s ≤ 2. In this case (9) becomes

s− 1 ≤ A(p, q, pq + s) ≤ s,

by (8), and the first of these inequalities is trivially satisfied. Therefore to complete
the proof in the present case we need to show that every coefficient am of Qτ satisfies

|am| ≤ s. (32)

Since inclusion-exclusion polynomials are reciprocal (see [1]), we have am = aϕ(τ)−m,
and it suffices to prove (32) for m ≤ ϕ(τ)/2, as we shall now assume. Note that by
(2), for m in this range the quantity αr occurring in Lemma 7 satisfies the condition

α = *m/r+ < 1
2 (p− 1)(q − 1), (33)

which proves to be quite convenient.
An appeal to Lemma 7 leads us to consider two cases. The simplest case occurs

when either αr /∈ I ′1 ∪ I ′2 or χ(αr) = 0. In this case Lemma 7 gives

am = Σ1 =
∑

m−s<n≤m

(
χ(n)− χ(n− p)− χ(n− q) + χ(n− p− q)

)
,

and the argument is completed by an application of Lemma 2.
Now suppose that αr ∈ I ′j and χ(αr) = 1. In this case it is simplest to treat

s = 1 and s = 2 separately, and we consider s = 1 first. Then by Lemma 7 we have

am = χ(m)− χ(m− p)− χ(m− q) + χ(m− p− q) + (−1)j . (34)

We will evaluate this sum using Lemma 4. To this end we observe that since
αr ∈ I ′j , every argument of the function χ occurring in (34) is of the form αr + i
with |i| ≤ p + q. Moreover, α satisfies (33). But by (23)

f(αr + i) ≡ α + i (mod pq),

since both r and its inverse r∗ are congruent to 1 modulo pq. It follows from
Lemma 4 and (25) that if χ(αr + i) = 1, then, in fact, f(αr + i) = α + i and
i ≤ 0. In particular, χ(m) = 0. Furthermore, if αr ∈ I ′1, then we also have
χ(m− q) = χ(m− p) = 0, and (32) follows from (34). Moreover, we reach the same
conclusion if αr ∈ I ′2 and χ(m − p − q) = 0. Finally, (34) also yields (32) under
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the assumptions αr ∈ I ′2 and χ(m − p − q) = 1, since in this case we must have
χ(m− q) = 1. To see this, write m− p− q = αr − i0, so that

q ≤ i0 < p + q and f(m− p− q) = α− i0,

and observe that

[(m− q)r∗]pq = [αr − i0 + p]pq = α− i0 + p = xm−p−qq + (ym−p−q + 1)p,

by (22). Whence, by (25), f(m− q) = α− i0 + p and the desired conclusion follows
by Lemma 4. This completes the proof for s = 1.

The subcase s = 2 differs from the previous subcase only in some technical
details. In place of (34) we now have, by Lemma 7,

am = σ2(m)− σ2(m− p)− σ2(m− q) + σ2(m− p− q) + (−1)j (35)

=
∑

m−2<n≤m

(
χ(n)− χ(n− p)− χ(n− q) + χ(n− p− q)

)
+ (−1)j . (36)

Since r = pq + 2, r∗ = (pq + 1)/2 and it is now better to view arguments of χ in
the form αr + 2i + ε, with ε = 0 or 1. Indeed, by (23) we get

f(αr + 2i + ε) ≡ α + i + ε
pq + 1

2
(mod pq). (37)

Now, by Lemma 3 we may assume that αr is either in I1 ∩ I ′1 or in I2 ∩ I ′2, so that
every αr + 2i + ε appearing as an argument in (36) satisfies |2i + ε| < p + q. But
then, by (37), (33), Lemma 4, and (25), we see that if χ(αr + 2i + ε) = 1 then we
must have ε = 0 and i ≤ 0. It follows that σ2(m) = 0 and that

σ2(m− p),σ2(m− q),σ2(m− p− q) ≤ 1.

This is sufficient if αr ∈ I ′2, for then (32) follows from (35). If on the other hand
αr ∈ I ′1, then we also have σ2(m− q) = σ2(m− p) = 0, and (32) follows in this case
as well. This completes the proof in the non-ternary case.

4. Proof of Theorem: The Ternary Case

Recall from Section 3 that we fixed p < q and r = pq + s. In this section we will
estimate A(τ) in terms of A(τ ′), where τ = { p, q, r }, τ ′ = { p, q, s }, and 3 ≤ s < q,
and this will require us to consider coefficients of Qτ and Qτ ′ simultaneously. To
this end let us adopt the following conventions. We shall continue to write am for
coefficients of Qτ and we shall write bl for coefficients of Qτ ′ . We shall write χ and
χ′ for the characteristic functions χτ and χτ ′ defined in (15) and (16), respectively.
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We shall also write σk and σ′k for the summatory functions defined in (26) with χ
and χ′, respectively.

The functions χ and χ′, and hence σ and σ′, are closely related. In the next
three lemmas we collect certain properties of these functions.

Lemma 8. If |j| < s then

χ(kr + j) = χ′(ks + j).

Proof. Since fr(kr + j) = fs(ks+ j), by Lemma 5, and *(kr + j)/r+ = *(ks+ j)/s+,
the claim follows by Lemma 4.

Lemma 9. For |k| < pq, 0 < |j| < s, and |β| ≤ *pq/s+, we have

χ(kr + j + βpq) = χ(kr + j).

Proof. There is nothing to prove if β = 0, so assume that 0 < |β| ≤ *pq/s+. Recall
that [N ]pq denotes the least nonnegative residue of N modulo pq and that r∗ = s∗.
Write

[k + js∗]pq = [k]pq + tj . (38)

Evidently
*pq/s+ ≤ |tj | ≤ pq − *pq/s+, (39)

since tjs ≡ j (mod pq). Now suppose that χ(kr+j) = 1. Plainly this is not possible
unless k > 0. Therefore in this case we may replace [k]pq by k in (38) and, by (25)
and Lemma 4, we get

f(kr + j) = k + tj and tj < 0. (40)

Also, by Lemma 5, f(kr + j + βpq) = f(kr + j). But
⌊kr + j + βpq

r

⌋
≥ k − |β| ≥ k − *pq/s+,

and the claim in this case follows by (39) and Lemma 4.
On the other hand

⌊kr + j + βpq

r

⌋
< k + |β| ≤ k + *pq/s+.

Therefore if χ(kr + j + βpq) = 1 then, by Lemma 4, f(kr + j) < k + *pq/s+.
Arguing as before one readily verifies that this implies that (40) must hold. This
yields χ(kr + j) = 1, and the proof is complete.

Lemma 10. For |k| < pq, 0 ≤ γ < s, and |β| ≤ *pq/s+, we have

σs(kr + γ + βpq)− χ(kr + βpq) = σ′s(ks + γ)− χ′(ks)
= σ′s(ks + γ − pq).
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Proof. The first identity follows from Lemmas 8 and 9. The second identity follows
from (18) and (20) with χ′ in place of χ.

Our preparation is now complete and we are ready to embark on the main ar-
gument. Let am be a coefficient of Qτ and set α = *m/r+. Recall from Section 3
that we may assume that α satisfies (33). Furthermore, by Lemma 3, we may also
assume that

αr ∈ I1 ∪ I2. (41)

Now write

m1 = m = αr + β1s + γ1,

m3 = m− q = αr + β3s + γ3,

m2 = m− p = αr + β2s + γ2,

m4 = m− p− q = αr + β4s + γ4,
(42)

with 0 ≤ γi < s. Moreover, set

li = (α + βi)s + γi and l = l1 (43)

and observe that

l2 = l − p, l3 = l − q, and l4 = l − p− q. (44)

From (42), (41), and (21) we see that s|βi| < p + q + s, so that

|βi| ≤ *3q/s+ ≤ *pq/s+ , (45)

and, by (33),
|α + βi| < pq. (46)

Now, by (42), quantities mi have a representation in the form

mi = (α + βi)r + γi − βipq.

Therefore, by (46), (45), Lemma 10, and (43), we have

σs(mi)− χ
(
(α + βi)r − βipq

)
= σ′s(li)− χ′

(
(α + βi)s

)
(47)

= σ′s(li − pq). (48)

We are now in the position to relate the sum Σ1 given by (28) and the coefficient
bl of Qτ ′ with l given in (43). Using notation (42) we write

Σ1 =
4∑

i=1

θ(i)σs(mi), (49)

where θ(i) = 1, for i = 1, 4, and θ(i) = −1, for i = 2, 3. On the other hand, by (43)
and (46), Lemma 1 with r replaced by s applies to the coefficient bl. We implement
(17) with χ′ in place of χ and with p and r replaced by s and p, respectively, to get

bl =
4∑

i=1

θ(i)σ′s(li), (50)
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by (44). Similarly

bl−pq =
4∑

i=1

θ(i)σ′s(li − pq). (51)

Therefore, by (49), (50), and (47), we have

Σ1 − bl =
4∑

i=1

θ(i)
(
χ
(
(α + βi)r − βipq

)
− χ′

(
(α + βi)s

))
.

Furthermore applying (19), Lemma 8, and (20) to the right side of this expression
gives

Σ1 − bl =
∑

βi>0

θ(i)
(
χ
(
(α + βi)r − βipq

)
− χ′

(
(α + βi)s

))

= −
∑

βi>0

θ(i)χ′((α + βi)s).
(52)

Moreover if we use (51) and (48) in place of (50) and (47) the same computation
yields

Σ1 − bl−pq =
4∑

i=1

θ(i)χ
(
(α + βi)r − βipq

)

=
∑

βi≤0

θ(i)χ
(
(α + βi)r − βipq

)
.

(53)

We complete the proof by considering the two alternatives of Lemma 7. Suppose
first that αr /∈ I ′1 ∪ I ′2, with I ′j given by (31). One then readily verifies that, in view
of (41) and (42), we must have either

β1 = 0 > β2 ≥ β3 ≥ β4, (54)

if αr ∈ I2, or
β4 < β3 = 0 < β2 ≤ β1, (55)

if αr ∈ I1. In either case am = Σ1, by Lemma 7, so that (52) holds with Σ1 replaced
by am. But under (54) the right side of (52) vanishes and we get

am = bl. (56)

Observe that by (43), (33), and (2), index l = αs + γ1 is arbitrary in the range
l ≤ ϕ(τ ′)/2. Thus (56) says that every integer occurring as a coefficient of Qτ ′ is
also a coefficient of Qτ and the first inequality in (9) follows.

Now consider (55). In this case (52) yields

am − bl = χ′((α + β2)s)− χ′((α + β1)s),
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so that we certainly have
|am − bl| ≤ 1. (57)

But (56) and (57) imply the right side of (9), and it only remains to consider the
second alternative of Lemma 7.

Suppose now that, in addition to (41), αr ∈ I ′1 ∪ I ′2. Then, reasoning as in (54)
and (55), we conclude that either

β4 ≤ β3 ≤ β2 ≤ 0 < β1, (58)

if αr ∈ I ′2, or
β4 ≤ 0 < β3 ≤ β2 ≤ β1, (59)

if αr ∈ I ′1. In the first case we get, by Lemma 7, (52), and (58),

am − bl = χ(αr)− χ′((α + β1)s).

Therefore (57) holds in this case as well. In the second case we appeal to (53)
instead of (52) to get, by Lemma 7 and (59),

am − bl−pq = χ
(
(α + β4)r − β4pq

)
− χ(αr).

This yields (57) with bl replaced by bl−pq, and completes the proof of the theorem.

Acknowledgement We wish to thank Yves Gallot for making available to us his
calculations of heights of inclusion-exclusion polynomials

References

[1] G. Bachman, On ternary inclusion-exclusion polynomials, Integers 10 (2010), 623–638.

[2] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006),
53–60.

[3] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100
(2003), 104–116.

[4] B. Bzdȩga, Bounds on ternary cyclotomic coefficients, Acta Arith. 144 (2010), no.1, 5–16.

[5] T. Flanagan, On the coefficients of ternary cyclotomic polynomials, MS Thesis, University of
Nevada Las Vegas, 2006.

[6] Y. Gallot and P. Moree, Neighboring ternary cyclotomic coefficients differ by at most one, J.
Ramanujan Math. Soc. 24 (2009), 235–248.

[7] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.

[8] J. Zhao and X. Zhang, A proof of the corrected Beiter conjecture, arXiv:0910.2770v1
[math.NT].


