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Abstract
In this paper, we extend the definition of the Nathanson height from points in
projective spaces over Fp to points in projective spaces over arbitrary finite fields.
If [a0 : . . . : an] ∈ Pd(Fp), then the Nathanson height is

hp([a0 : a1 : . . . : ad]) = min
b∈Fp

∗

d∑

i=0

H(bai)

where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element
of {0, 1, . . . , p− 1} congruent to N(ai) modulo p.

We investigate the basic properties of this extended height, provide some bounds,
study its image on the projective line hp(P1(Fp)) and propose some questions for
further research.

1. Introduction

The classical Nathanson height is a sort of measure of complexity of a point in a
projective space over a finite field Fp. For each prime p and dimension d we have
a height function. These heights are functions defined given a finite field Fp and
d ∈ N

hp : Pd(Fp)→ Z, hp([a0 : a1 : . . . : ad]) = min
b∈Fp

∗

d∑

i=0

|bai|

where |a| is the element of {0, 1, . . . , p− 1} such that a ≡ |a| (mod p).
In [4], Nathanson and Sullivan defined these heights, and they studied the image

of hp. In [3], Nathanson continued studying these heights in the projective line,
and O’Bryant gave an explicit formula in the projective line in [5]. Also, Batson
extended the definition of Nathanson heights from points to linear subspaces of
Pd(Fp) in [1].
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Nathanson and Sullivan proposed a number of problems in [4]. One of them was
to find a reasonable definition of the height function for points in projective space
over arbitrary finite fields. In this paper, we propose the following definition: let

H : Fp → R, H(a) = |N(a)| + p(deg(a)− 1),

where N is the field norm and deg(a) is [Fp(a) : Fp]. The Nathanson height is the
function

hp : Pd(Fp)→ R, hp([a0 : a1 : . . . : ad]) = min
b∈Fp

∗

d∑

i=0

H(bai). (1)

We describe how this article is organized. In the second section, we recall elemen-
tary facts about finite fields and prove some general properties of these extended
Nathanson heights. In the third section, we study these heights in the projective
line, and we conclude and propose directions for further research in the last section.

We are going to use standard conventions. In this paper, p is a prime. The field
Fp is the finite field with p elements, and Fp is its algebraic closure. If F is a finite
field, then F∗ = F \ {0}.

2. Definition and Basic Properties

From now on, we call the Nathanson heights defined in (1) simply “heights.” To
prove some properties of the heights, we need to recall some facts of the finite fields
(see [2]).

First, for all n ∈ N there is exactly one field of cardinality pn, and we denote this
field by Fpn . If we define the degree as above, then if a, b ∈ Fp

∗ and deg(a) < deg(b),
then

deg(a) < deg(ab) = deg(b). (2)

Recall that if a ∈ Fp, then the norm N(a) is the product of all its conjugates, in
particular N(a) = 0 if and only if a = 0. For a finite extension of finite fields F/F′,
if a ∈ F, then we define

Ta : F→ F by Ta(x) = ax and NF/F′(a) = det(Ta).

The function NF/F′ is multiplicative, and if deg(a) = n and F/Fpn is a finite exten-
sion, then

NF/Fp
(a) = N(a)[F:Fpn ]. (3)

Recall that for all n ∈ N
NFpn/Fp

(F∗pn) = Fp
∗.

Now, if a = [a0 : a1 : . . . : ad] ∈ Pd(Fp), then let n be the minimal natural number
such that a ∈ Pd(Fpn).
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Proposition 1. Let a = [a0 : . . . : ad] ∈ Pd(Fp) and let n be the minimal natural
number such that a sits inside the finite projective space Pd(Fpn). Then

hp(a) = min
b∈Fp

∗

deg(b)≤n

d∑

i=0

H(bai).

Proof. Assume that a0, . . . , ad ∈ Fpn . It is easy to see that

hp(a) ≤ min
b∈Fp

∗

deg(b)≤n

d∑

i=0

H(bai)

since Fpn ⊆ Fp. For the other inequality, the norm of an element is at most p − 1
so if a, a′ ∈ Fp satisfy deg(a) < deg(a′), then H(a) < H(a′). Thus, if deg(b) > n,
then (2) implies that for all ai

deg(ai) ≤ n < deg(bai) and H(ai) < H(bai)

so

hp([a0 : a1 : . . . : ad]) ≤
d∑

i=0

H(ai) <
d∑

i=0

H(bai)

and the inequality follows. !

The proposition shows that our heights agree with the Nathanson heights in the
case Fpn = Fp.

Corollary 2. If a = [a0 : a1 : . . . : ad] ∈ Pd(Fp), then

hp(a) = min
b∈Fp

∗

d∑

i=0

|bai|

Proof. From Proposition 1

hp(a) = min
b∈Fp

∗

deg(b)≤1

d∑

i=0

H(bai) = min
b∈Fp

∗

d∑

i=0

H(bai)

but since bai ∈ Fp, we have H(bai) = |bai|. !

Remark. Recall that the norm and the degree are Galois invariant; Thus, the
functions H and hp are invariant under the action of Gal(Fp/Fp).

For a = [a0 : a1 : . . . : ad] ∈ Pd(Fp), let n be the minimal natural number such
that a ∈ Pd(Fpn).
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Proposition 3. With the notation as above 1 + (n− 1)p ≤ hp(a) ≤ 1 + (np− 1)d.

Proof. Assume a0, a1, . . . ad ∈ Fpn . For the right-hand side inequality, for all ai and
b ∈ F∗pn

|N(bai)| ≤ p− 1 and deg(bai) ≤ n

so if we assume without loss of generality a0 '= 0, then

hp(a) = hp([1 : a−1
0 a1 : . . . : a−1

0 ad]) ≤ 1 +
d∑

i=1

H(a−1
0 ai) ≤ 1 + (np− 1)d.

For the left-hand side inequality, we claim that for all b ∈ F∗pn there is an entry
aib such that deg(baib) = n. In fact, the n is minimal so for all m < n we have
[ba0 : ba1 : . . . : bad] ∈ Pd(Fpn) \ Pd(Fpm), and thereby there is a bai ∈ Fpn which is
not contained in a smaller field.

By Proposition 1, there is a b0 ∈ Fpn such that hp(a) =
∑d

i=0 H(b0ai), and we
have

hp(a) =
d∑

i=0

H(b0ai)

= |N(b0aib0
)| + p(n− 1) +

∑

i&=ib0

H(b0ai) by the claim above

≥ 1 + p(n− 1). !

In the last proposition, if n > 1, then the right-hand side could be improved as
follows:

hp(a) =
d∑

i=0

H(b0ai) = |N(b0aib0
)| + p(n− 1) +

∑

i&=ib0

H(b0ai)

≥ 1 + p(n− 1) +
∑

i&=ib0

H(b0ai)

≥ 2 + p(n− 1). (4)

The last inequality holds since H(b0ai) = 0 if and only if b0ai = 0. This gives us that∑
i&=ib0

H(b0ai) = 0 implies a ∈ Pd(Fp) and n would not be minimal. Furthermore,

NFpn/Fp
(F∗pn) = Fp

∗, NFpn/Fp
is multiplicative, and |F∗

pn |
p−1 > |

⋃
m<n F∗pm | imply, by

the pigeonhole principle, that there is a ∈ F∗pn such that deg(a) = n and N(a) = 1.
Thus, a satisfies

hp([1 : a : 0 : . . . : 0]) = min
b∈Fp

∗

deg(b)≤n

(H(b) + H(ba)) = 2 + p(n− 1)

and the lower bound (4) is the best possible.



INTEGERS: 12 (2012) 5

3. Projective Line

Some research has been done to find an explicit formula for the heights (see [3], [4]
and [5]). In this section, we study the heights in the projective line, and we find
some formulas.

In this section, a = [a0 : a1] ∈ P1(Fp) and n is the minimal natural number such
that a ∈ P1(Fpn). If a0 = 0 or a1 = 0, then hp(a) = 1, so we assume a0 '= 0 and
a1 '= 0 hereafter. Define a∗ = a−1

0 a1,

A0 = {|b| + |bnN(a∗)| : b ∈ Fp
∗}

and
A1 = {|b| + |bnN(a−1

∗ )| : b ∈ Fp
∗}.

Proposition 4. With the notation as above,

hp(a) = p(n− 1) + min(A0 ∪A1).

Moreover, if (p− 1)|(n− 1), then

hp(a) = p(n− 1) + min{hp([1 : N(a∗)]),hp([1 : N(a−1
∗ )])},

and if (p− 1)|n, then

hp(a) = p(n− 1) + min{1 + |N(a∗)|, 1 + |N(a−1
∗ )|}.

Proof. Recall, as in Proposition 2, that a ∈ P1(Fpn) implies that for all b ∈ F∗pn we
have deg(ba0) = n or deg(ba1) = n, and since |N(ba0)| and |N(ba1)| are less or equal
to p− 1, we have that

hp(a) ≤ H(1) + H(a∗) = p(n− 1) + 1 + |N(a∗)| ≤ pn

and thereby the minimum of H(ba0) + H(ba1) with deg(b) ≤ n is achieved when
deg(ba0)+deg(ba1) ≤ n+1, i.e., when deg(ba0)+deg(ba1) = n+1. Since deg(ba0)+
deg(ba1) = n+1 occurs, in this case, if and only if ba0 ∈ Fp or ba1 ∈ Fp, we conclude
that

hp(a) = min{H(b) + H(ba∗),H(b) + H(ba−1
∗ ) : b ∈ Fp}

= p(n− 1) + min{|N(b)| + |N(ba∗)|, |N(b)| + |N(ba−1
∗ )| : b ∈ Fp}

= p(n− 1) + min(A0 ∪A1),

with the last equality following from properties of the norm recalled in Section 2.
For the second claim, if (p− 1)|(n− 1), then

|bnN(a∗)| = |bN(a∗)| and |bnN(a−1
∗ )| = |bN(a−1

∗ )|
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so minA0 = hp([1 : N(a∗)]) and minA1 = hp([1 : N(a−1
∗ )]), and the claim follows.

Finally, if (p− 1) | n, then

|bnN(a∗)| = |N(a∗)| and |bnN(a−1
∗ )| = |N(a−1

∗ )|,

so minA0 = 1 + |N(a∗)| and minA1 = 1 + |N(a−1
∗ )|, and the claim follows. !

4. Conclusion and Further Research

The heights defined above generalize the heights defined by Nathanson and Sullivan
[4]. Roughly, this generalization measures the complexity of a ∈ Pd(Fp); in other
words, if a has a lot of entries which are not zeroes and the minimum n ∈ N
such that ap ∈ Pd(Fpn) is big, then hp(a) is big. In the case of a projective line,
Proposition 2 implies that hp(a) ∈ [(n−1)p+1, np] if and only if n is the minimum
natural such that a ∈ P1(Fpn).

Some problems are the following:

1. Does there exist an easier formula for hp, even in the case of the projective line?

2. O’Bryant proved in [5] that asymptotically, as p → ∞, the image of hp(P1(F))
is roughly equal to {0} ∪ { p

n : n ∈ N}. How about the set hp(P1(F))? Can the set
hp(P1(F)) be asymptotically roughly equal to {0}∪ {pk + p

n : n ∈ N, k ∈ N∪ {0}}?

3. Study the counting functions Hd
p : N→ N, Hd

p(m) = {a ∈ Pd(Fp) : hp(a) ≤ m}.

4. Generalize the heights hp in the direction of the p-adic fields. Can we generalize
the heights proposed by Nathanson and Sullivan in [4] in such a way that they are
related to the classic global fields heights?

Acknowledgement I am indebted to the anonymous referee for his valuable com-
ments on my previous draft.
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