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Abstract

In a recent paper, for “large” (but otherwise unspecified) subsets A, B,C, D of Fy,
Gyarmati and Sarkozy (2008) showed the solvability of the equations a + b = cd,
and ab+ 1 = ¢d with a € A, b € B, ¢c € C, d € D. They asked whether one
can extend these results to every & € N in the following way: for large subsets
A,B,C,D of F,, there are ai,...,ax,a},...,a) € A, br,... by, b}, ..., b0 € B with
a; +b;, a;b; +1€eCD (for 1 < 4,5 < k). In this paper, we give an affirmative answer
to this question.

1. Introduction

In [6] and [5], Sérkézy proved that if A, B, C, D are “large” subsets of Z,, more
precisely, |A||B||C||D| > p?, then the equation

a+b=cd, (1)

respectively
ab+1=cd, (2)

can be solved with a € A4, b € B, ¢ € C and d € D. Gyarmati and Sarkozy
[4] generalized the results on the solvability of equation (1) to finite fields. Using
bounds of multiplicative character sums, Shparlinski [7] extended the class of sets
which satisfy this property. Furthermore, Garaev [2, 3] considered the equations (1)
and (2) over some special sets A, B,C, D to obtain new results on the sum-product
problem in finite fields.

At the end of [4], Gyarmati and Sarkozy proposed some open problems related
to the above equations. They asked whether one can extend the solvability of the
equations (1) and (2) in the following way: for every k € N, there are ¢ = ¢(k) > 0
and qo = qo(k) such that if ¢ > go, A, B,C,D C Fy, |A||B||C||D| > ¢*~¢ then there
are ay,...,ak,a,...,a; € A, by,... b, by,..., b € B with a; +b;, ajb; +1 € CD
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for 1 < 4,5 < k. In this paper, we give an affirmative answer to this question. More
precisely, our results are the following.

Theorem 1. Let k € N. If A,B,C,D C F, with |A||B||C||D] > q4_2‘<k—1+2>, then
there are ay,...,ar € A, by,..., b, € B with a; +b; € CD for 1 <14,5 <k.

Theorem 2. Let k € N. If A,B,C,D C F, with |A||B||C||D] > q4_2‘<k—1+2’>, then
there are a1,...,ar € A, by,..., b, € B with a;b; +1 € CD for1 <4,5 <k.

In [4], Gyarmati and Sarkozy also studied the solvability of other (higher de-
gree) algebraic equations with solutions restricted to “large” subsets of F,. They
considered the following equations:

a+b=f(e,d), ac€ A,beB,ceC,deD;
and
ab= f(c,d), a€ A,beB,ceC,deD,
with f(z,y) € Fy[z,y], A, B,C,D C F,. We generalize Theorems 1 and 2 in this

direction. We have the following result for the sum problem.

Theorem 3. Suppose that f(z,y) € Fylz,y], and f(x,y) is not of the form g(x) +
h(y). We write f(x,y) in the form

flay) =) gl@)y,
i=0

with g;(z) € Fy[z], and let I denote the greatest i value with the property that g;(x) is
not identically constant. Assume that (I,q) =1. Foreveryk € N, if A,B,C,D CF,

1

with |A||B||C||D] > ¢*~ 3%+ | then there are ay,...,ax € A, b1,... by € B with
a; +b; € f(C,D) for1<i,j <k (where f(C,D) ={f(c,d) : c€C,d € D}).

Before formulating the next theorem, we need to take some definitions from [4].

Definition 4. A polynomial
F(z,y) = Gi(y)a' =Y Hi(z)y’ € Fylz,y]
i=1 j

J
is said to be primitive in z if (Go(y),...,Gn(y)) =1, and it is said to be primitive
in y if

(Ho(z),. ..,
Definition 5. Every polynomial f(z,y) € Fy[z,y] can be written uniquely (apart
from constant factors) in the form

f(z,y) = F(x)G(z)H (z,y)

where H(z,y) is primitive in both = and y. The polynomial H(z,y) (uniquely
determined up to constant factors) is called the primitive kernel of f(x,y).

H,(z)) =1.
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We now can state an analog of Theorem 3 for the product problem.

Theorem 6. Suppose that f(x,y) € Fylz,y] and the primitive kernel H(z,y) of
f(z,y) is not of the form c(K(x,y))?. For every k € N, if A,B,C,D C F, with

1

|A||B|[C||D| > ¢ T | then there are an,...,a € A, by,..., b, € B with a;b; €
f(C,D) for1<i,j<k.

2. Pseudo-Randomness of Restricted-Sum Graphs

For any a € A, ¢ € C, denote by N¢P(a) the set of all b € F, such that a +b €

cD, and let NE’D(a) = N%P(a) N B. The following key estimate says that the
|Bl|D]|
q

Lemma 7. For all subsets A,B,C,D of Fy, we have

> (vt]- 'B!D') < 48]

(a,c)€F2

cardinalities of the Ng” (a)’s are close to when |B|, |D| are large.

Proof. For any set X, let X(-) denote the characteristic function of X. Let yx be
any non-trivial additive character of ;. We have

INg"(a)] = > B(b)D(d)

(b,d)€F2Z,a+b—cd=0

- Y Lsarv-cpop@

(b,d)€F2,5€F,

BIPLL L S~ (s(a+b— cd)Bb)D(d).

q 4 (b,d)€F2, seF;,
Therefore
DI\ 2
> <’N§,D(a)‘_6| |)
(a,c)E]FZ q
2
1
= = > x(s(a+b—cd)B(b)D(d)

q (a,c)€F2 \ (b,d)€F2,5€F;
1

= = Y x((s—)a)x(sb— sV)x(c(s'd — 5d)B(b)D(d)BO)D(d)
a,c,b,b’,d,d'€F,
s,s'€F
=Y X(sb-)BOD@BY)
b,d,b’Equ,s:s’E]F;
= Rl + R2 ) (3)
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where R; is taken over b = b’ and Rs is taken over b # b’ (the third line follows
from the orthogonality in @ and ¢. Consider the second line as a sum over a, then
¢ implies that all summands vanish unless s = s’ and d = d'). We have

Ro= Y x(sB-¥)BOD@BY)
b=b',deF,,s=s'€Fy
= (g—1) Y B®D() = (¢g—1)|B||D], (4)
b.deF,
and
R, = S x(s(b— V)BOHD@BY)
b;éb’,dGFq,s:s’EIF;;
- S (sl - 0)BBD@B)
b,d€F,,s€F: t£1€F, b/ =tb
= - > B®bD(d)B(th)
b,dEF,,t£1
<0. (5)
The lemma follows immediately from (3), (4) and (5). O

The following result is an easy corollary of Lemma 7.

Corollary 8. For all subsets A,B,C,D of F, and ¢ € C, let NP (A,B) be the
number of pairs (a,b) € A X B such that a +b € ¢D. Then there exists ¢y € C such
that

D D
\NW(A, B) - 7'|A|B|] < %\/Mnm.

Proof. By the pigeon-hole principle, there exists ¢y € C such that

> (jwemw] - B < L5 (|vgmio| - BIRLY < 21

acA q ac€A,ceC q

By the Cauchy-Schwartz inequality,

, D . B||D
’N‘O’D(A,B)—u|A||B|‘ < 3 |[ner| - B2 "
q acA q
. B||D|\?
< MJZ(!N&%)\—— =)
acA
<[4 VHTE
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As a consequence, for any two large subsets A, B of Fy, there are many pairs
(a,b) € Ax B with a+b e CD.

Corollary 9. For all subsets A,B,C,D of Fy, let NCP(A,B) be the set of pairs
(a,b) € A x B such that a+b € CD. Then

D D
NCP(A,B) > %Anw - ‘ﬂTl'\/MHB.

Proof. Tt follows immediately from Corollary 8. O

Note that Corollaries 8 and 9 can be derived directly from Theorem 1 in [4].
However, Theorem 1 in [4] is also an easy corollary of Lemma 7 above.

Theorem 10. (cf. Theorem 1 in [4]) For any subsets A,B,C,D C F,, denote by
N(A,B,C,D) the number of solutions of Eq. (1). Then we have

Al|B||IC||D
‘N(A,B,C,D) _ W’ < VAl ATBCIDI.

Proof. By Lemma 7, we have

> (jare]- B < s (] - EPY < gy,

acA,ceC q (a,c)€F2

By the Cauchy-Schwartz inequality,

‘N(A,B,C,D)M'B'W' < Z Ng,p(a)‘BIDI’
1 (am)E]F?I q
. B||D|\?
< VM| Y ((NB’D(G)‘__ I |)
a€A,ceC q
< WVl AlBlIC||D].

3. Pseudo-Randomness of Restricted-Product Graphs

For any a € A, c € C, let T*P(a) be the set of all b € F, such that ab+1 € ¢D, and

let TE’D (a) =T%P(a)N ll’n’é‘glhe following key estimate says that the cardinalities of

the Tig(a)’s are close to *=_

when |B|, |D| are large.
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Lemma 11. For all subsets A,B,C,D of F,, we have

>

(a,c)€F2

. B||D|\?
75|~ I2) < asiim)

Proof. For any set X, let X(-) denote the characteristic function of X. Let y be
any non-trivial additive character of ;. We have

TgP(a) = > B(b)D(d)
(b,d)€F2,ab—cd+1=0

— Z lx(s(ab —cd+1))B(b)D(d)

(b,d)€F2,s€F,

B||D 1

BIPLL 1§~ (s(ab— cd + 1)BG)D(@).
q q (b,d)€F2,s€Fy;

Therefore

5. (I°ol]-E2)

(a,c)€F?

2
1
= 5 > > X(s(ab— cd+1))B(b)D(d)
q (a,c)E]Fg (b,d)EFg,se]F;
1
= — Y xla(sb—sV)x(c(s'd — sd))x(s — s')B(b)D(d)B(®')D(d')
q a,c,b,b d,d’ €F,
s,s’EF;
1
= q—Q(R1 + Ry), (6)
where R; is taken over s = s’ and Ry is taken over s # s’. We have
Ry = > x(as(b—b")x(es(d — d")B()D(d)B(b')D(d')
a,c,b,b’,d,d’ €Fq,s=s'€F
= (¢—1)¢*|B||D|, (7)

where the last line follows from the orthogonality in @ and then ¢. Considering the
sum over a and then over b, this implies that all summands with b # b or d # d’
vanish. Now we compute Rs.
Ry = > xlas(b—th)x(es(d — td))x(s(1 — 1))B(b)D(d)B()D(d)
a,c,b,b’,d,d' €F,
s€F; t#1€F,
= - > B(b)D(d)B()D(d')
a,c,b/=tb,d'=td€F 4,s€F} t#1
<0, (8)
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where the last line follows from the orthogonality in a and c¢. By considering the
sum over a, and then over b, this implies that all summands with & # tb or d’ # td
vanish. The lemma follows immediately from (6), (7) and (8).

O

Corollary 12. For all subsets A,B,C,D of F, and c € C, let TP (A, B) be the set
of pairs (a,b) € A x B such that ab+ 1 € ¢D. Then there exists co € C such that

i D D
r02(a.8) - | <12 VATEL
Proof. The proof of this corollary is similar to that of Corollary 8, except that we
use Lemma 11 instead of Lemma 7. O
We also have an analog of Corollary 9 in the shifted-product problem.

Corollary 13. For all subsets A,B,C,D of F,, let N©P(A,B) be the set of pairs
(a,b) € Ax B such that ab+ 1 € CD. Then

D qD
"|A\|B| o AL

TOP(A,B) >

Similarly as in the previous section, slightly weaker (but still useful) versions of
Corollaries 12 and 13 can be derived directly from Theorem 2 in [4].

4. Proof of Theorems 1

We now give a proof of Theorem 1.1. The key tool is the following lemma.

Lemma 14. Suppose that A, B, C, D of Fy with

q|D |< )k
Al,|B| >
|Al, |B| c i

Then there are ai,...,a; € A, bi,...,by € B such that a; + b; € CD for all
1<4,75<k.

Proof. The proof proceeds by induction on k. The base case, k = 1, follows im-
mediately from Corollary 9. Suppose that the theorem holds for all [ < k. From
Corollary 9, we have

D D
N67D<A,6>>%|A||B|— alD| ¢|A|\B "\A||B|



INTEGERS: 12 (2012) 8

By the pigeon-hole principle, there exists a; € A such that

em /2l aD| (4 \*
NPl B) > (1 o) s [0 () )

Let B; be the set of all b € B such that a; + b € CD. From Corollary 9, we have

D 'D
NCP(A,By) > "|A|\61|— q‘ ¢|AH81 "|A||81\

By the pigeon-hole principle, there exists by € By such that

¢, D o @ Q|D‘ o
N7 (A, b1) = (1+0(1)) . |A| > |C| <D|> . (10)

Let A; be the set of all a € A such that a +b; € CD. Set A* = A\{a1} and
B* = B1\{b1}. It follows from (9) and (10) that

- q/D| ( )’H
A*|, 1B > .

Thus, by the induction hypothesis, there are as, ...,a; € A*, ba,...,bx € B* such
that a; +b; € CD for all 2 < 4,5 < k. We also have a1 + b;,a; + by € CD for all

i,7 =1,..., k. This completes the proof of the lemma. O
Let ¢ = c(k) = m and ¢ > 1. Then |A|, |B|,|C|,|D| > ¢*~¢. It follows that
k
(1|D| (14-¢)/24ck 1—c
o W < q < ¢ < |A||8B]. (11)

Therefore, Theorem 1 follows immediately from Lemma 14. Note that the upper
bound for the left hand side of (11) can be estimated by ¢'/2**¢. This can improve
the bound of Theorem 1 to |A||B||C||D| > ¢*~ 2.

5. Proof of Theorem 2

Similar to the previous section, we can obtain the following result from Corollary
13.

Lemma 15. Suppose that A, B, C, D of F, with

q/D| < >k
Al, |B| >
| Al |B| e Ui

Then there are ai,...,ar € A, bi,...,by € B such that a;b; + 1 € CD for all
1<14,j<k.
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Let ¢ = c(k) = m and ¢ > 1, then |A|,|B|,|C|,|D] > ¢'~¢. Tt follows that

q/D|

k
< qF/Fek « gl=c <« | A],|B].
ef (IDI)

Theorem 2 now follows from Lemma 15.

6. Proof of Theorem 3

We write f(z,y) in the form

z,y) =Y gilx)y',
=0

where g;(x) € Fy[z]. Let I denote the greatest ¢ value with the property that g;(z)
is not identically constant: gr(x) # ¢, and either I = m or gr11(z),...,gn(x) are
identically constant. Since f(z,y) is not of the form g(z) + h(y), I > 0. Denote the
degree of the polynomial g;(y) by D so that D > 0. Assume that (I,q) = 1. The
following theorem is due to Gyarmati and Sarkézy [4].

Theorem 16. (c¢f. Theorem 8 in [4]) If A,B,C,D C F,, and the number of solu-
tions of

a+b= f(c,d), ac A,be B,ce(C,de D,
1s denoted by N, then we have

|A[[BJ|C||D|
q

N- < (a0 + (1 = 1g2yasycyo)

The following result is an analog of Corollary 9.

Corollary 17. For all subsets A,B,C,D C F, let Nf’D(A, B) be the number of
pairs (a,b) € A x B such that a+b € f(C,D). Then

C,D @ 7& 1/2| |
Ny (A,B)>mq\«4||5| m\/Q(D+(I 1)q )|C|\/|AHB|

Proof. For any ¢ € C, let N§(A,B, D) denote the number of triples (a,b,d) €
A x B x D such that a+b = f(¢,d). By the pigeon-hole principle and Theorem 16,
there exists ¢y € C such that

D D
Ny (a8,) > P - \/qw 1= g2 g VTATE

Besides, for any fixed a,b and ¢, f(co,d) —a — b is a polynomial of degree m on d.
Therefore, the number of d such that a + b = f(cg,d) is at most m. The corollary
follows. O
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As a consequence, we have the following lemma.

Lemma 18. Suppose that A,B,C,D C F, with

A L o s ng (1)
B> c \ /D

Then there are ai,...,a € A, bi,...,by € B such that a; + b; € f(C,D) for all
1<i,j <k

Proof. The proof of this lemma is similar to that of Lemma 14, except that we use
Corollary 17 instead of Corollary 9 O

Let ¢ = c(k) and ¢ > 1, then |A|, |B|,|C|, |D| > ¢*~¢. Tt follows that

_ 1
— 1(k+2)

1 |D| mq g 3/4 c/2+k 1—
L q<D+<I—1>q1/2>—(—) < AR < e < | AL |B).
m\/ c \o]

Theorem 3 now follows from Lemma 18

7. Proof of Theorem 6

Using multiplicative character sums, Gyarmati and Sarkozy [4] proved the following
theorem.

Theorem 19. rm (c¢f. Theorem 4 in [}]) Suppose that f(x,y) € F4lz,y] and
that the primitive kernel H(x,y) of f(x,y) is not of the form c¢(K(z,y))%. Write
f(z,y) = F(x)G(y)H (z,y) in a unique way up to constant factors. Let r, s, n, m
be the degrees of F', G, f(z,y) in z, f(z,y) iny, respectively. If A,B,C,D C F,
and the number of solutions of

ab= f(c,d), a€ A,be B,ceC,deD,

1s denoted by N, then we have

_ IAIIBICIID|’ <4
q

N 111/2q3/4(|.,4||8||CHD|)1/2 +7(r+s+n+ (nm)l/Q)q5/2.

Similar to the previous sections, we have the following corollary.

Corollary 20. For all subsets A,B,C,D C Fy, let NJf’D(A, B) be the number of
pairs (a,b) € A x B such that ab= f(C,D). Then

D] 4234 [|D| 7(r + s+ n+ (nm)'/?)g*/?
NP ] ) T |
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Proof. For any ¢ € C, let NJ?(.A,B,D) denote the number of triples (a,b,d) €
A x B x D such that ab = f(c,d). By the pigeon-hole principle and Theorem 19,
there exists ¢y € C such that

. |D| 4nt2g3/% [|D| 7(r + s+ n+ (nm)'/?)g>/?
N (A, B,D) > =1 S gy ) et Sy I .

Besides, for any fixed a,b and ¢g, f(co,d) — ab is a polynomial of degree m on d.
Therefore, the number of d such that ab = f(co,d) is at most m. The corollary
follows. O

We following lemma follows from Corollary 20 in a similar way that Lemma 14
follows from Corollary 9.

Lemma 21. Suppose that A,B,C,D C F, with

4n1/2q3/4 ‘D| (mq>k
ALIBl > ——— = | = | -
| Al B — o Uiy

Then there are ai,...,ax € A, bi,..., by € B such that a;b; € f(C,D) for all
1<4,j <k

Let ¢ = c(k) and ¢ > 1. Then |A|, |B|,|C|,|D| > ¢*~¢. It follows that

_ 1
= 1k+2)

4n1/2q3/4 |D| mq
m €]

k
W) < q3/4qc/2+kc < qlfc < |A‘, ‘B‘

Theorem 6 now follows from Lemma 21.

8. Another problem

In [1], Csikvari, Sérkoézy and Gyarmati proposed some further related problems.
One of these problems is the following (Problem 4 in [1]):

Is it true that for all € > 0, there is a ko = ko(g) such that if k € N, k > ky,
p > po = pole, k) and A, B C Fy with

min{|Al, |B[} > ¢°,
then
a1—|—a2:b1...bk,a1,a2EA,bl,...,bkeB (12)

can be solved?
In this section, we give a negative answer for this question by proving the follow-
ing theorem.
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Theorem 22. For alle < 1/2, k € N, there exists two sets A, B C F, with
Al [B] > ¢
such that Eq. (12) cannot be solved.

Proof. Let v be a generator of F} and t = [¢°] 4+ 1. We choose B = {1,v,...,v'}.
Then |B| > ¢¢ and B¥ = {b;...b; : b; € B} = {1,v,...,v*}. Now we choose
elements of A inductively. Let 7o = B/2 = {b/2:b € B}, Ay = {ao} with ag & To.
Suppose that we have 7; and A; = {ao,...,a;}. We then construct 7;11 and A;41
as follows:

Tiv1 =T U(B* —a;) U{a;}, Aig1 = A U {ait ),

for some a;1+1 ¢ Zit1. It is easy to check that under this construction, (A; +
A;) N B¥ = () for all i. Since |Tir1| < |T| + |B¥| +1 < |Ti| + th + 1, we can
continue the process until i(tk + 1) < g. Therefore, we can choose a set A, such
that | A| > [(¢—1)/(kt +1)] > ¢¢ and (A+.A)NB* = ). This completes the proof
of the theorem. O

If F, is not a prime field, we can do slightly better. Suppose that ¢ = p? for
some prime power p. We construct the Paley sum graph P; with the vertex set
F,, and two vertices a,b are adjacent if and only if a + b is a square residue. It is
well known that the maximal clique of Pq“‘ has size p. Since P;‘ is self-symmetric,
the maximal independent set of P; also has size p. Therefore, we can find a set A
with |A| = ¢!/? such that a + o’ is square non-residue for all a,a’ € F,. Let B be
the set of all square residues, then |B| = ¢/2 and Eq. (12) is not solvable in A, B.
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