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Abstract
The purpose of this note is to obtain some congruences modulo a power of a prime
p involving the truncated hypergeometric series

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
ka

for a = 1 and a = 2. In the last section, the special case x = 1/2 is considered.

1. Introduction

In [6], E. Mortenson developed a general framework for studying congruences mod-
ulo p

2 for the truncated hypergeometric series

2F1

�
x, 1− x

1 ; 1
�

tr(p)

=
p−1�

k=0

(x)k(1− x)k

(1)2k
.

Here we would like to present our investigations about a similar class of finite sums,
namely

x(1− x) 4F3

�
2− x, 1 + x, 1, 1

2, 2, 2 ; 1
�

tr(p−1)

=
p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k

,

and

x(1− x) 5F4

�
2− x, 1 + x, 1, 1, 1

2, 2, 2, 2 ; 1
�

tr(p−1)

=
p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k2

.
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In order to state our main result we need to introduce the definition of what we call
Pochhammer quotient

Qp(x) =
1
p

�
1− (x)p(1− x)p

(1)2p
· m

2

[r/p]m[−r/p]m

�

where p is an odd prime, x = r/m, 0 < r < m are integers with m prime to p,
(x)n = x(x + 1) · · · (x + n − 1) denotes the Pochhammer symbol, and [a]m is the
unique representative of a modulo m in {0, 1, . . . ,m−1}. Note that the Pochhammer
quotient is really a p-integral because by the partial-fraction decomposition

(1)p

(x)p
=

p−1�

k=0

lim
x→−k

�
(x + k)(1)p

(x)p

�

x + k
= p

p−1�

k=0

�
p− 1

k

�
(−1)k

x + k

≡ p

p−1�

k=0

1
x + k

≡ m

[r/p]m
(mod p).

It is easy to verify that for some particular values of x the quotient Qp(x) is con-
nected with the usual Fermat quotient qp(x) = (xp−1 − 1)/p :

Qp(
1
2
) =

1
p

�
1− 1

16p

�
2p
p

�2

· 4
[1/p]2[−1/p]2

�
≡ −qp(

1
16

) (mod p
2),

Qp(
1
3
) =

1
p

�
1− 1

27p

�
3p
p

��
2p
p

�
· 9
[1/p]3[−1/p]3

�
≡ −qp(

1
27

) (mod p
2),

Qp(
1
4
) =

1
p

�
1− 1

64p

�
4p
2p

��
2p
p

�
· 16
[1/p]4[−1/p]4

�
≡ −qp(

1
64

) (mod p
2),

Qp(
1
6
) =

1
p

�
1− 1

(16 · 27)p

�
6p
2p

��
4p
2p

�
· 36
[1/p]6[−1/p]6

�
≡ −qp

�
1

16 · 27

�
(mod p

2).

where we used one of the equivalent statement of Wolstenholme’s theorem, that is�ap
bp

�
≡

�a
b

�
modulo p

3 for any prime p > 3.
Our main goal in this paper is to show the following: if p > 3 is a prime then

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k
≡ Qp(x) +

1
2

pQp(x)2 (mod p
2),

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k2
≡ −1

2
Qp(x)2 (mod p).

The next section contains some preliminary results about certain hypergeometric
identities and congruences. We state and prove our main result in the third section.
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We conclude the paper by considering the special case x = 1/2 and by proving that

p−1�

k=1

(1/2)2k
(1)2k

· 1
k
≡ −2H(p−1)/2(1) (mod p

3)

where Hn(r) =
�n

k=1
1
kr is the finite harmonic sum of order n and weight r.

2. Preliminaries

The hypergeometric identity presented in the next theorem is known (see, for ex-
ample, equation (21), Ch. 5.2 in [5]). Here we give a simple proof by using the
Wilf-Zeilberger (WZ) method.

Theorem 1. For 0 < x < 1 and for any positive integer n,

n−1�

k=0

(x)k(1− x)k

(1)2k
· 1
n− k

=
(x)n(1− x)n

(1)2n

�
n−1�

k=0

1
x + k

+
n−1�

k=0

1
1− x + k

�
. (1)

Proof. For k = 0 . . . , n− 1, let

F (n, k) =
(1)2n

(x)n(1− x)n
· (x)k(1− x)k

(1)2k
· 1
n− k

.

Then WZ method yields the certificate

R(n, k) = − k
2(n− k)

(n + 1− k)(x + n)(1− x + n)

with G(n, k) = R(n, k)F (n, k), such that

F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

It is easy to verify by induction that

n−1�

k=0

F (n, k) +
n−1�

j=0

G(j, 0) =
n−1�

k=0

(F (k + 1, k) + G(k, k)) .

Thus the desired identity follows by noting that G(j, 0) = 0 and

F (k+1, k)+G(k, k) =
(1 + k)2

(x + k)(1− x + k)
− k

2

(x + k)(1− x + k)
=

1
x + k

+
1

1− x + k
.
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Let Bn(x) be the Bernoulli polynomial in x of degree n ≥ 0, given by

Bn(x) =
n�

k=0

�
n

k

�
Bkx

n−k

where Bk are rational numbers called Bernoulli numbers which are defined recur-
sively as follows:

B0 = 1, and
n−1�

k=0

�
n

k

�
Bk = 0 for n ≥ 2.

For the main properties of Bn(x) we will refer to Chapter 15 in [3] and to the nice
introductory article [1].

Lemma 2. If p > 3 is a prime and x = r/m, where 0 < r < m are integers with
m prime to p, then for any positive integer a

ap−1�

k=0

�
1

x + k
+

1
1− x + k

�
− m

p

a−1�

j=0

�
1

[r/p]m + jm
+

1
[−r/p]m + jm

�

≡ −2
3

(ap)2 Bp−3(x) (mod p
3), (2)

(x)ap(1− x)ap

(1)2ap
≡

(x)(a−1)p(1− x)(a−1)p

(1)2(a−1)p

· (x)p(1− x)p

(1)2p

· 1
a2

�
1 +

a(a− 1)m2

[r/p]m[−r/p]m

�
(mod p

3). (3)

Proof. We first show (2). By well-known properties of the Bernoulli polynomials

ap−1�

k=0

(x + k)ϕ(p3)−1 =
Bϕ(p3)(ap + x)−Bϕ(p3)(x)

ϕ(p3)

=
1

ϕ(p3)

ϕ(p3)�

k=1

�
ϕ(p3)

k

�
Bϕ(p3)−k(x)(ap)k

where ϕ(·) is the Euler’s totient function. Since m
n
Bn(x)−Bn ∈ Z (see [11] for a

short proof), it follows from the Clausen-von Staudt congruence (p. 233 in [3]) that

pBn(x) ≡ pBn

mn
≡

�
−1 if (p− 1) divides n and n > 1
0 otherwise (mod p).

Moreover, by Kummer’s congruences (p. 239 in [3]), if q ≥ 0 and 2 ≤ r ≤ p−1 then

Bq(p−1)+r(x)
q(p− 1) + r

≡ Br(x)
r

(mod p).
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Because p divides the numerator of the fraction x + k for k = 0, . . . , p − 1 if and
only if x + k = p[r/p]m/m, we have that

ap−1�

k=0

1
x + k

− m

p

a−1�

j=0

1
[r/p]m + jm

≡
ap−1�

k=0

(x + k)ϕ(p3)−1

≡ apBϕ(p3)−1(x)− 1
2

(ap)2 Bϕ(p3)−2(x)

≡ apBp2(p−1)−1(x)− 1
3

(ap)2 Bp−3(x) (mod p
3).

Finally, since by the symmetry relation Bn(x) = (−1)n
Bn(1− x), we have that (2)

holds. As regards (3), let k0 = p[r/p]m/m− x, then

(x)ap(1− x)ap

(x)(a−1)p(1− x)(a−1)p(x)p(1− x)p
=

p−1�

k=0

�
1 +

(a− 1)p
x + k

��
1 +

(a− 1)p
p− (x + k)

�

=
p−1�

k=0

�
1 +

a(a− 1)p2

(x + k)(p− (x + k))

�

≡ 1 +
a(a− 1)p2

(x + k0)(p− (x + k0))

= 1 +
a(a− 1)m2

[r/p]m[−r/p]m
(mod p

3).

Moreover, by an equivalent statement of Wolstenholme’s theorem (see for example
[14]),

(1)ap

(1)(a−1)p(1)p
=

�
ap

p

�
≡ a (mod p

3)

and the proof of (3) is complete.

The next lemma provides a powerful tool which will be used in the next section
in the proof of the main theorem.

Lemma 3. If p > 3 is a prime and x = r/m, where 0 < r < m are integers with
m prime to p, then

ap+p−1�

k=ap+1

(x)k(1− x)k

(1)2k
· 1
k
≡ (x)ap(1− x)ap

(1)2ap

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
ap + k

(mod p
2). (4)

Proof. Since

(x)ap+k

(x)ap
=

k−1�

j=0

(x + j + ap) ≡ (x)k

�
1 + ap

k−1�

j=0

1
x + j

�
(mod p

2)
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we have

(x)ap+k(1− x)ap+k(1)2ap

(x)ap(1− x)ap(1)2ap+k

≡ (x)k(1− x)k

(1)2k



1 + ap

k−1�

j=0

�
1

x + j

+
1

1− x + j
− 2

1 + j

��
(mod p

2).

Hence it suffices to prove that

ap

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
ap + k

k−1�

j=0

�
1

x + j
+

1
1− x + j

− 2
1 + j

�
≡ 0 (mod p

2),

that is,

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k

k−1�

j=0

�
1

x + j
+

1
1− x + j

�
≡

p−1�

k=1

(x)k(1− x)k

(1)2k
· 2Hk(1)

k
(mod p).

By (1), the left-hand side becomes

p−1�

k=1

1
k

k−1�

j=0

(x)j(1− x)j

(1)2j
· 1
k − j

=
p−2�

j=0

(x)j(1− x)j

(1)2j

p−1�

k=j+1

1
k(k − j)

= Hp−1(2) +
p−2�

j=1

(x)j(1− x)j

(1)2j



1
j

p−1�

k=j+1

�
1

k − j
− 1

k

�



= Hp−1(2) +
p−2�

j=1

(x)j(1− x)j

(1)2j

�
1
j

(Hp−1−j(1)−Hp−1(1) + Hj(1))
�

≡
p−2�

j=1

(x)j(1− x)j

(1)2j
· 2Hj(1)

j
≡

p−1�

j=1

(x)j(1− x)j

(1)2j
· 2Hj(1)

j
(mod p),

because Hp−1−j(1) ≡ Hj(1) (mod p) and Hp−1(1) ≡ Hp−1(2) ≡ 0 (mod p). The
proof is now complete.
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3. The Main Theorem

Theorem 4. If p > 3 is a prime and x = r/m, where 0 < r < m are integers with
m prime to p, then

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k
≡ Qp(x) +

1
2
pQp(x)2 (mod p

2), (5)

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k2
≡ −1

2
Qp(x)2 (mod p). (6)

Proof. Let

Sa(b) =
ap+p−1�

k=ap+1

(x)k(1− x)k

(1)2k
· 1
kb

.

By (1) with n = p and by (2), we obtain

−S0(1)− pS0(2) ≡ −1
p

+
(x)p(1− x)p

(1)2p

�
p−1�

k=0

1
x + k

+
p−1�

k=0

1
1− x + k

�

≡ βtm− 1
p

(mod p
2). (7)

where

β =
(x)p(1− x)p

(1)2p
, and t =

1
[r/p]m

+
1

[−r/p]m
=

m

[r/p]m[−r/p]m
.

Moreover by (3)

(x)2p(1− x)2p

(1)22p

≡ β
2

4
(1 + 2mt) (mod p

3).

and
1

[r/p]m + m
+

1
[−r/p]m + m

=
3t

1 + 2mt
.

Hence, by (1) with n = 2p and by (2), we get

−S0(1)− 2pS0(2)− S1(1)− 2pS1(2)

≡ −β

p
− 1

2p
+

(x)2p(1− x)2p

(1)22p

�
2p−1�

k=0

1
x + k

+
2p−1�

k=0

1
1− x + k

�

≡ −β

p
− 1

2p
+

β
2

4
(1 + 2mt)

m

p

�
t +

3t
1 + 2mt

�
(mod p

2) (8)
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According to Lemma 3,

S1(1) ≡ β(S0(1)− pS0(2)) (mod p
2), S1(2) ≡ β S0(2) (mod p),

and (7) and (8) yield the linear system





−S0(1)− pS0(2) ≡ βtm− 1
p

(mod p
2),

−S0(1)− 2pS0(2)− β S0(1)− β pS0(2)

≡ −β

p
− 1

2p
+

β
2

4
(1 + 2mt)

m

p

�
t +

3t
1 + 2mt

�
(mod p

2).

By substituting the first congruence in the second one, we obtain

−pS0(2) +
βtm− 1

p
+ β

βtm− 1
p

≡ −β

p
− 1

2p
+

β
2

4
(1 + 2mt)

m

p

�
t +

3t
1 + 2mt

�
(mod p

2),

which yields

S0(2) ≡ −1
2

�
1− βtm

p

�2

≡ −1
2

Qp(x)2 (mod p).

Finally,

S0(1) ≡ Qp(x) +
1
2
pQp(x)2 (mod p

2).

We conclude this section by posing a conjecture which extends (6).

Conjecture 5. If p > 3 is a prime and x = r/m, where 0 < r < m are integers
with m prime to p, then

p−1�

k=1

(x)k(1− x)k

(1)2k
· 1
k2
≡ −1

2
Qp(x)2 − 1

2
pQp(x)3 (mod p

2).

More conjectures of the same flavor can be found in Section A30 of [10].

4. The Special Case x = 1
2

As we already noted, if x = 1
2 then

(x)k(1− x)k

(1)2k
=

(1/2)2k
(1)2k

=
�

2k
k

�2 1
16k

.
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Let p be an odd prime. Then for 0 ≤ k ≤ n = (p− 1)/2 we have that
�

n + k

2k

�
=

�k
j=1(p

2 − (2j − 1)2)
4k(2k)!

≡
�k

j=1(2j − 1)2

(−4)k(2k)!
=

�
2k
k

�
(−1)k

16k
(mod p

2),

which means that

(−1)k

�
n

k

��
n + k

k

�
= (−1)k

�
2k
k

��
n + k

2k

�
≡

�
2k
k

�2 1
16k

(mod p
2).

Since p divides
�2k

k

�
for n < k < p, it follows that for any p-adic integers a0, a1, . . . ,

ap−1 we have

p−1�

k=0

�
2k
k

�2
ak

16k
≡

n�

k=0

(−1)k
ak

�
n

k

��
n + k

k

�
(mod p

2).

This remark is interesting because the sum on the right-hand side could be easier
to study modulo p

2. With this purpose in mind, we consider Identity 2.1 in [7]:
n�

k=1

(−1)k

z + k

�
n

k

��
n + k

k

�
=

1
z

�
(1− z)n

(1 + z)n
− 1

�
. (9)

As a first example, we can give a short proof of (1.1) in [6]. By multiplying (9) by
z, and by letting z →∞, we obtain that

n�

k=0

(−1)k

�
n

k

��
n + k

k

�
= (−1)n

which implies that for any prime p > 3

p−1�

k=0

�
2k
k

�2 1
16k

≡ (−1)
p−1
2 =

�
−1
p

�
(mod p

2).

For more applications of the above remark see [9], [2] and [4].
Let s = (s1, s2, . . . , sd) be a vector whose entries are positive integers then we

define the multiple harmonic sum for n ≥ 0 as

Hn(s) =
�

1≤k1<k2<···<kd≤n

1
k

s1
1 k

s2
2 · · · ksd

d

.

We call l(s) = d and |s| =
�d

i=1 si its depth and its weight respectively.

Theorem 6. For n, r ≥ 1
n�

k=1

(−1)k−1

kr

�
n

k

��
n + k

k

�
=

�

|s|=r

2l(s)
Hn(s). (10)
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Proof. Note that

(1+z)n = n!



1 +
n�

d=1

Hn(
d times� �� �

1, 1, . . . , 1)zd



 , and
d

dz
(1+z)n = (1+z)n

n−1�

k=0

1
z + k

.

Then the left-hand side of (10) can be obtained by differentiating (r− 1) times the
identity (9) with respect to z and then by letting z = 0:

n�

k=1

(−1)k−1

kr

�
n

k

��
n + k

k

�
=

(−1)r

(r − 1)!

�
d

r−1

dzr−1

�
1
z

�
(1− z)n

(1 + z)n
− 1

���

z=0

=
(−1)r

r!

�
d

r

dzr

�
(1− z)n

(1 + z)n

��

z=0

.

Taking the derivatives we get a formula which involves products of multiple har-
monic sums. This formula can be simplified to the right-hand side of (10) by using
the so-called stuffle product (see for example [13]).

In the next theorem, we prove two generalizations of (5) and (6) for x = 1/2.
Note that the first of these congruences can be considered as a variation of another
congruence proved by the author in [12]: for any prime p > 3

p−1�

k=1

(1/2)k

(1)k
· 1
k
≡ −H(p−1)/2(1) (mod p

3).

Theorem 7. For any prime p > 3

p−1�

k=1

(1/2)2k
(1)2k

· 1
k
≡ −2H(p−1)/2(1) (mod p

3),

p−1�

k=1

(1/2)2k
(1)2k

· 1
k2
≡ −2H(p−1)/2(1)2 (mod p

2).

Proof. We will use the same notations as in Theorem 4. For x = 1/2 we have that
m = t = 2. By (1) with n = p and by (2), we obtain

−S0(1)− pS0(2)− p
2
S0(3) ≡ −1

p
+ β

�
p−1�

k=0

1
x + k

+
p−1�

k=0

1
1− x + k

�

≡ βtm− 1
p

− 2β
3

p
2
Bp−3(1/2) (mod p

3). (11)
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On the other hand, by [14]

β ≡ 1
16p

�
2p
p

�2

≡ 4
16p

�
1− 2

3
p
3
Bp−3

�2

≡ 1
4(1 + p qp(2))4

�
1− 4

3
p
3
Bp−3

�
(mod p

4),

and by Raabe’s multiplication formula

Bp−3(1/2) =
�

1− 1
2p−4

�
Bp−3 ≡ 7Bp−3 (mod p).

Moreover, by letting n = (p− 1)/2 in (10) for r = 2, 3, we have that

S0(2) ≡
n�

k=1

(−1)k

k2

�
n

k

��
n + k

k

�
= −2Hn(2)− 4Hn(1, 1) = −2Hn(1)2 (mod p

2),

S0(3) ≡
n�

k=1

(−1)k

k3

�
n

k

��
n + k

k

�
= −2Hn(3)− 4Hn(2, 1)− 4Hn(1, 2)− 8Hn(1, 1, 1)

= −4
3

Hn(1)3 − 2
3

Hn(3) (mod p
2).

Finally by [8]

Hn(1) ≡ −2qp(2) + p qp(2)2 − 2
3

p
2
qp(2)3 − 7

12
p
2
Bp−3 (mod p

3),

Hn(3) ≡ −2Bp−3 (mod p).

By plugging all of these values in (11), after a little manipulation, we easily verify
the desired congruence for S0(1).
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