#A45 INTEGERS 12 (2012)

SUPERCONGRUENCES
FOR A TRUNCATED HYPERGEOMETRIC SERIES

Roberto Tauraso
Dipartimento di Matematica, Universita di Roma “Tor Vergata”, Italy
tauraso@mat.uniroma2.it

Received: 11/17/11, Accepted: 6/30/12, Published: 8/8/12

Abstract
The purpose of this note is to obtain some congruences modulo a power of a prime
p involving the truncated hypergeometric series

e @kl -a) 1
Lo w

for a =1 and a = 2. In the last section, the special case © = 1/2 is considered.

1. Introduction

In [6], E. Mortenson developed a general framework for studying congruences mod-
ulo p? for the truncated hypergeometric series

z,1—x = (x)p(1 — )k
oF1 1 ;1 = 71)2 .
tr(p) k=0 (L%

Here we would like to present our investigations about a similar class of finite sums,

namely
p—1
2—z,1+x,1,1 (x)k(l—x)k 1
x(l—x)4F3{ 299 ;1] = TE’
T tr(p—1) k=1 k
and
p—1
2—z,1+2x,1,1,1 ((E)k(l—fl,‘)k 1
I(1—$)5F4|: ! T ;]_:| = MR TR
27272a2 tI‘(p—l) k=1 (l)i k?
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In order to state our main result we need to introduce the definition of what we call
Pochhammer quotient

L1, @2,  om?
Qp(@ = » (1 (1)227 [r/p]m[T/p}m>

where p is an odd prime, x = r/m, 0 < r < m are integers with m prime to p,
(), = x(x+1)---(z +n — 1) denotes the Pochhammer symbol, and [a],, is the
unique representative of a modulo m in {0, 1, ..., m—1}. Note that the Pochhammer
quotient is really a p-integral because by the partial-fraction decomposition

p—1 lim (wk)(l)p> p—1

(1)17 _ r——k (@p _ p—1 (_1)k
(a;)p_kz:O z+k _pkz_o( k >z+k
=p kg = p]m (mod p).

It is easy to verify that for some particular values of « the quotient Q,(x) is con-
nected with the usual Fermat quotient g,(z) = (zP~* —1)/p:

Qp@:%( i Zf) ot 1/p]>— ~ap(35) (mod )
=3 (- () () mamrm) = o) et

0= (15 () () Wi = o) (s
)= (1~ Gz (o) (on) W) = o () (ot )

where we used one of the equivalent statement of Wolstenholme’s theorem, that is
(Z}’)’) = () modulo p? for any prime p > 3.
Our main goal in this paper is to show the following: if p > 3 is a prime then

The next section contains some preliminary results about certain hypergeometric
identities and congruences. We state and prove our main result in the third section.
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We conclude the paper by considering the special case x = 1/2 and by proving that

—1

bS]

M

== =2H(,_1),2(1) (mod p*)

=

=1

where H,(r) = Y_j_; & is the finite harmonic sum of order n and weight .

2. Preliminaries

The hypergeometric identity presented in the next theorem is known (see, for ex-
ample, equation (21), Ch. 5.2 in [5]). Here we give a simple proof by using the
Wilf-Zeilberger (WZ) method.

Theorem 1. For 0 < x < 1 and for any positive integer n,

1—1: 1 (@al—2), (&= 1 &1
P Chk (1)2 (ch+k+kz_()l—w+k>' (1)

n k=0

M |

Proof. For k=0...,n—1, let

02 @l 1
(2)n(l —2)p (1) n—=k

Then WZ method yields the certificate

F(n,k) =

k*(n — k)
(n+1—k)(z+n)(l—xz+n)

R(n,k) = —

with G(n, k) = R(n,k)F(n, k), such that
F(n+1,k)— F(n,k) = Gn,k+ 1) — G(n, k).

It is easy to verify by induction that

n—1 n—1 n—1
S F(nk)+ > G(j,0) =Y (Flk+1,k)+ Gk k).
k=0 7=0 k=0

Thus the desired identity follows by noting that G(j,0) = 0 and

(1+k)? B k2 1 N 1
(x+k)(1—z+k) (x+k)(1—-z+k) z+k l—z+k

O

F(k+1,k)+G(k, k) =
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Let B, (x) be the Bernoulli polynomial in x of degree n > 0, given by

By(z) = Xn: (Z) Bja"*

k=0

where B, are rational numbers called Bernoulli numbers which are defined recur-
sively as follows:

n—1
n
By=1, and ;(k)Bkzo for n > 2.

For the main properties of B, (x) we will refer to Chapter 15 in [3] and to the nice
introductory article [1].

Lemma 2. If p > 3 is a prime and x = r/m, where 0 < r < m are integers with
m prime to p, then for any positive integer a

“il (a:j—k‘ * 1—31c+k) %ail ([r/p]mlJrjm * [—T/p]ranrjm)

k=0 7=0
= 2 (@) Bys(a) (mod p?), @)
(@)ap(1 — @)ap — (%) (a=1)p(1 = ) (a=1)p ] (@)p(L —2)p
vz, - %, (1)2
1 _a(a—1)m? mod 1
2 (1 " [r/p]m[—r/mm) (mod 7). (3)

Proof. We first show (2). By well-known properties of the Bernoulli polynomials

ap—1

Z (z + k)P@)=1 = Bos) (ap + ) — By (7)
k=0 e(p?)

@ (%) 3
- > (so(];; ))Bwps)—k(l’)(ap)k

o07) &

where ¢(+) is the Euler’s totient function. Since m"B,,(z) — B, € Z (see [11] for a
short proof), it follows from the Clausen-von Staudt congruence (p. 233 in [3]) that

(mod p).

_pBy _ [ -1 if(p—1)dividesnandn >1
pBn(r) = - { 0 otherwise

==
Moreover, by Kummer’s congruences (p. 239 in [3]),if ¢ > 0 and 2 < r < p—1 then

Byp-1)+r (@) _ Br(x)
do—D+r  p el
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Because p divides the numerator of the fraction = + k for £k = 0,...,p — 1 if and
only if « + k = p[r/p|m/m, we have that

ail 1 m ai:l 1 = ail( E)e®) -1
prr R Y [r/plm +jm = T+ k)
= ap By (x) — 5 (ap)? By (a)
= ap Bye(pny-1(2) — 5 (an)? By s(x) (mod p°).

Finally, since by the symmetry relation B, (z) = (—1)"B,(1 — ), we have that (2)
holds. As regards (3), let ko = p[r/p|m/m — x, then

(#)ap(1 = T)ap T (a—1)p (a—1)p
(@) (a-1)p(1 = 2)@-1p(@)p(L —2)p H (1 i x+k ) (1 " p—(z+ k))

k=0
_ﬁo+ ala — 1)y )
_k:O (z+k)p—(x+k))
C1yn2
1 ala—1)p
(@ + ko)(p — (z + ko))
a(a — 1)m? 3
=14+ ——————=— (mod p’).
ol /il )
Moreover, by an equivalent statement of Wolstenholme’s theorem (see for example
[14]), "
ap ap) _ 3
— = = a (mod p°)
(1)(a—1)p(1)p (p
and the proof of (3) is complete. O

The next lemma provides a powerful tool which will be used in the next section
in the proof of the main theorem.

Lemma 3. Ifp > 3 is a prime and © = r/m, where 0 < r < m are integers with
m prime to p, then

ap+p—1 p1
M Lo (@)ap(L = T)ap (2)k(1 — )i 1 mod p?
kz%p:-&-l (L3 koo (0% kz::l (1)2 ok (medp7)- (4)
Proof. Since

k-1

k—1
T)ap . _ 1
LLiE:II@+;+mnzm%<r+w;;;¢7)umdﬁ>

Jj=0
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we have

]

(#)ap(1 — x)ap(l)gpﬂc N 1) =0

(@)ap+i (L= @)apr(Vap _ (@)r(L — 2)i (1 + apkijl (

1 2
+ - — - mod p?).
l—2z+7 1+])>( )

Hence it suffices to prove that

p—1 k—1
(l‘)k(l - CC);C 1 1 1 2 _ 2
apkz::l (D7 .ap+klj_0(z+j+1z+j_1+j>:0<m0dp)’
that is,
@l —a), 1A 1 1 _ s (@)l —a) 2H (D) .
217 k;j_o(JH—j 1—J;+j>_k_1 (1)2 p o (modp)
By (1), the left-hand side becomes
p_llk_l (2);(1—z); 1
—k = (1) k—3j
N @(-w); K~ 1
e W k;“ k(k —j)
p—2 p—1
_ (x)](l_x)j 1 L_l
= Hp*1(2) + = (1)2 (,] k;—l (k —j k))
S (@) (1—ax); (1
= tya(2)+ 3 M (5 (Fp1-500) — s 0) 4 10 )
p—2 p—1
- (2);(1 —z); 2H;(1) _ (#);(1 —=); 2H;(1)
=2 R =IO (mod p),

because H,_1_;(1) = H;(1) (mod p) and Hp_1(1) = Hp—1(2) = 0 (mod p). The
proof is now complete. O
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3. The Main Theorem

Theorem 4. If p > 3 is a prime and x = r/m, where 0 < r < m are integers with
m prime to p, then

( l = €T — X 2 mo 2
k=1 (1)% k = Qp(@) + 2pr( )" (mod p7), ©)
Pl (1 — 1 1 2
k=1 | )kél)% . k2 = 9 Qp(x)” (mod p). (6)

Proof. Let

k=ap+1

By (1) with n = p and by (2), we obtain

1 (@),(l—a), (= 1 & 1
_SO<1)_pSO(2)E_;_3+()El)2 ! (Zz+k+kz_(31—x+k>

P k=0
= ptm — 1 (mod p?) (7)
where
_ (z)p(l — x)p N _ 1 1 _ m
="z ™ T T e o

Moreover by (3)

(2)2p(1 = 2)2p %2 (1+2mt) (mod p?).

(1)3, N
and
L 1 3t
[r/plm +m  [=r/plm +m 1+ 2mt’
Hence, by (1) with n = 2p and by (2), we get

—50(1) —2pSo(2) — S1(1) —2p 51 (2

B 1 @al—a)y (W1 R
S Twt g\t Tk

p p 2p k=0 k=0

8 1 2 m 3t 9
= 4+ (142m)— (¢ d

» 2p+ 4(1—i— m)p +1+2 ; (mod p*) (8)
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According to Lemma 3,
S1(1) = B(So(1) = pSo(2)) (mod p*),  81(2) = B5o(2) (mod p),
and (7) and (8) yield the linear system

Btm — 1

—So(1) = pSo(2) (mod p?),

—So(1) = 2pSo(2) = BSo(1) — BpSo(2) ;
t

1+ 2mt

) (mod p?).

By substituting the first congruence in the second one, we obtain

tm — 1 tm — 1
pso()+ 2Ly 50
P 5p 1 B2 3t
== 2p+4(1+2mt)p<t+1+2mt) (mod p?),
which yields
1 /1=ptm\° 1 )
$u2) = =3 () = 5 @yl (mod )

Finally, .
So(1) = Qp(z) + 3P Qp(x)2 (mod p?).

We conclude this section by posing a conjecture which extends (6).

Conjecture 5. If p > 3 is a prime and & = r/m, where 0 < r < m are integers
with m prime to p, then

p—1

— (2)p(1—2)r 1 1 1
k=1 W k2T 2 Qpl)” = 2P Qp()” (mod 7).

More conjectures of the same flavor can be found in Section A30 of [10].

4. The Special Case x = %

As we already noted, if x = % then

@l -2 (1/2)2 (%)i
W O \k) 16
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Let p be an odd prime. Then for 0 < k < n = (p — 1)/2 we have that

n+k Lo =212 T2 -1 (28 (~1)*
( 2%k )_ 4k (2k)! T (—4)k(2k) (k) T

mod p2),

which means that

Q)T - (Y i

Since p divides (2kk) for n < k < p, it follows that for any p-adic integers ag, a1, ...,

ap—1 we have
p—1 2 n
2k\ " a n\ /n+k
(k) %z E (1)kak<k>< K ) (mod p?).
=0

k=0

This remark is interesting because the sum on the right-hand side could be easier
to study modulo p?. With this purpose in mind, we consider Identity 2.1 in [7]:

i O -1y 0

k=1

As a first example, we can give a short proof of (1.1) in [6]. By multiplying (9) by
z, and by letting z — oo, we obtain that

NIV (1)
E) BIGWE
which implies that for any prime p > 3
p—1 2
2k> 1 p=1 -1 2
—=(-1)= = (—) (mod p*).

For more applications of the above remark see [9], [2] and [4].

Let s = (s1,82,...,84) be a vector whose entries are positive integers then we
define the multiple harmonic sum for n > 0 as
1
) o JTRE R

1<k <ka<---<kq<n
We call I(s) = d and [s| = Zle s; its depth and its weight respectively.
Theorem 6. Forn,r > 1

ECUO(T) S w

Is[=r
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Proof. Note that

n d times p 1
—
(142)n = n! 1+;Hn(1,1,...,1)zd cand o (142)n = (1+2)n e

>
Il

Then the left-hand side of (10) can be obtained by differentiating (r — 1) times the
identity (9) with respect to z and then by letting z = 0:

S (1) - ().

)
n z=0
Taking the derivatives we get a formula which involves products of multiple har-

monic sums. This formula can be simplified to the right-hand side of (10) by using
the so-called stuffle product (see for example [13]). O

~— [ —

In the next theorem, we prove two generalizations of (5) and (6) for x = 1/2.
Note that the first of these congruences can be considered as a variation of another
congruence proved by the author in [12]: for any prime p > 3

(D)

Theorem 7. For any prime p > 3

P

—~
—
~_
[\
~—
B

= —H(p_1)/2(1) (mod p?).

=

Il
B
e

p—1 2
1/2 1
(({)2)76 T = —2H(,_1)2(1) (mod p?),
k=1 k
p—1 2
1/2 1 m
((1)2)k = —2H(,—1)/2(1)* (mod p?).
k=1 7k

Proof. We will use the same notations as in Theorem 4. For x = 1/2 we have that
m =1t =2. By (1) with n = p and by (2), we obtain

1 p—1 p—1 1
—S0(1) = pSo(2) —p*So(3) = 5 F (Z A > m>
k=0 k=0

:ﬂtmfl

P =2 2B, 5(1/2) (mod ). (1)
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On the other hand, by [14]

1 2p 4 2 2

= —-p°B d ph),
4(1+pqp < 37 B 3) (mod %)

and by Raabe’s multiplication formula

1
Bp_3(1/2) = <1 — 2})—4) Bp_g = 7Bp_3 (InOd p)

Moreover, by letting n = (p — 1)/2 in (10) for r = 2,3, we have that

k2 ( ) (” Z "’) — _9H,(2) — 4H,(1,1) = —2 H,(1)? (mod p?),

&
—~
(98]
~—
Il

k3 ( > (n _]'; k) =—-2H,(3) —4H,(2,1) —4H,(1,2) —8H,(1,1,1)

3

—
[l

N

S~ 2 Hy(3) (mod p?).

Finally by [8]

2 7
Ho(1) = =205(2) +pp(2)* = 5P°0p(2)° — 750° Bps (mod p),
H,(3) = —2B,_3 (mod p).

By plugging all of these values in (11), after a little manipulation, we easily verify
the desired congruence for Sp(1). O
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