#A46 INTEGERS 12 (2012)

COMPUTING THE VAN DER WAERDEN NUMBER W (3,4) = 293

Michal Kouril, PhD
Cincinnati Children’s Hospital Medical Center,
University of Cincinnati, Cincinnati, OH
Michal.Kouril@cchmc.org

Received: 3/26/12, Revised: 6/30/12, Accepted: 8/24/12, Published: 9/3/12

Abstract

We have verified that the van der Waerden number W(3,4) is 293, that is, 293 is
the smallest integer n = W (3, 4) such that whenever the set of integers {1,2,...,n}
is 3-colored, there exists a monochromatic arithmetic progression (a.p.) of length
4. The fact that W (3,4) > 292 was established by Rabung in 1979, who con-
structed a 3-coloring of {1,2,...,292} without a monochromatic a.p. of length 4
using Folkman’s method. By a combination of novel preprocessing and efficient
solver design we have determined all 3-colorings of {1,2,...,292} that do not con-
tain a monochromatic a.p. of length 4, and have shown that none of them can
be extended to {1,2,...,293} without generating a monochromatic a.p. of length
4 (thus W (3,4) = 293). The search was similar to what we previously used to
establish the result W (2,6) = 1132. The search space was split into 3,642,579
non-equivalent initial colorings of length 19 during preprocessing, and these color-
ings were then processed using an FPGA-based solver. Subsequent post-processing
recovered the entire search space and produced our result. We also calculated a
number of new off-diagonal van der Waerden numbers, and verified all currently
known numbers.

1. Introduction

In 1926 B.L. Van der Waerden proved the following result[19]: given positive in-
tegers K and L, both having value at least two (one being trivial), there is a
smallest integer n = W(K, L) such that every K-coloring of {1,2,...,n} contains
a monochromatic a.p. of length L. The original proof gave bounds on W (K, L)
that were huge and not even primitive recursive. Shelah, in 1988 [17], obtained
primitive recursive bounds that were much lower but still quite large. Gowers, in
2001, obtained even better bounds [11]; however, they are still impractical for com-
puting exact numbers. The empirical evidence (such as it is) seems to indicate that

INTEGERS: 12 (2012) 2

K\L[3] 4] 5] 6
2 [9|35 | 178 | 1132
3 |27 293

G

Table 1: van der Waerden numbers

the numbers W (K, L) are in reality far smaller than the three proofs cited would
indicate. The results in this paper further that evidence.

The currently known Van der Waerden numbers W (K, L) are shown in Table 1.
The bound W (3,4) > 292 was previously shown by Rabung in 1979 using Folkman’s
method [15]. We show in this paper that this bound, surprisingly, is actually sharp,
ie., W(3,4) = 293.

2. Overview of the W (3,4) = 293 Computational Proof

Our proof that W (3,4) = 293 follows closely the computation of W(2,6) = 1132
given in [13]. We begin with a preprocessing step starting with an unavoidable
pattern {112}. More precisely, unavoidable means that for a sufficiently large n,
if {1,...,n} is 3-colored with colors {1,2,4} and doesn’t contain a monochromatic
a.p. of length 4, then there is an integer x such that the coloring of z,z+ 1,z +2 is
1,1,2 or something similar (e.g., 2,2,1 or 4,4, 2, etc.). (The reason that the colors
are encoded in a power of two sequence is related to the internal representation
of the integers in our solvers, which works by narrowing down the list of possible
colorings of a given integer.)

We expand the unavoidable pattern {112} by eliminating redundant patterns
thereby significantly cutting down the search space. This expansion continues while
the pattern set is reasonably large, stopping at 3,642,579 initial patterns.

These initial patterns are then processed one by one on a set of Field Pro-
grammable Gate Arrays (FPGAs) housing a special SAT solver. Each pattern
is padded with unassigned variables on each side, effectively placing the initial pat-
tern in the middle and the SAT solver attempts to assign colors to the unassigned
variables avoiding any monochromatic a.p. length 4. Using standard SAT terminol-
ogy we call such an assignment a satifying assignment. Such an assignment exists
for only a fraction of the initial patterns. The FPGA solver does not return the
assignment itself, but rather this is done on a computational cluster with another
SAT solver able to report all satisfying assignments.

These satisfying assignments are then post-processed to recover the original
search space and extended to find a set of longest 3-colored patterns without con-
taining a monochromatic a.p. of length 4. We found that the maximum length of

INTEGERS: 12 (2012) 3

such patterns is 292, thereby proving that W (3,4) = 293.

3. Preprocessing

3.1. The Unavoidable Pattern {112}

As indicated earlier, we have started the preprocessing step with the unavoidable
pattern {112}. This pattern was obtained by adding additional constraints to the
W (3,4) solver, which not only eliminated any colorings containing a monochromatic
a.p. of length 4, but also any colorings that contained two consecutive numbers
with the same color ({11}, {22}, or {44}). By adding additional constraints into
our solver we found out that the minimum n for which 112 is unavoidable is 94.

3.2. Expansion Operations

As discussed in [13], we used two elementary operations to find equivalent patterns
and cut down the search space. As mentioned earlier, for ease of implementation
we labeled the three colors as 1,2,4. The operations leading to equivalence classes
of patterns were:

1. re-coloration:
e.g., {112} is equivalent to {221,224, 441,442, 114}.

2. reversal
e.g., {112} is equivalent to {211}.

These operations can be applied to any pattern. In the re-coloration preprocess-
ing step we went through iterations where we kept extending a set of patterns by one
additional element, and then transformed them to the unique lowest value in their
equivalence class. The lowest value in an equivalence class of patterns is defined as
the pattern that represents the smallest base ten number in the class. For example,
112 is the lowest value since {221,224,441,442,114,122,144,211, 244,411,422} all
have a base ten number value higher than 112.

Our starting point for the preprocessing step was the unavoidable pattern {112},
which led to 3,642,579 satisfying assignments of length 19 following the expansion
steps.

The first few expansions are:

e Length = 4, number of patterns = 3
{1121, 1122, 1124}

e Length = 5, number of patterns =9

INTEGERS: 12 (2012)

{1121} — {11211,11212,11214} — {11211,11212, 11214}
{1122} — {11221,11222,11224} — {11221,11122, 11224}
{1124} — {11241,11242, 11244} — {11241,11242, 11244}

{11122,11211,11212,11214,11221,11224,11241, 11242, 11244}
e Length = 6, number of patterns = 26

{111211,111221,111222, 111224, 111244, 112112, 112114, 112121
112122, 112124, 112141, 112142, 112144, 112211, 112212, 112214,
112241, 112242, 112244, 112411, 112412, 112414, 112421, 112424,

112441, 112442}

The following table (Table 2) lists the number of patterns at each step 1...19.
Although the rate of growth is decreasing, the absolute number of patterns is quite
large, and we stop expanding at what we consider is a still manageable number.

Table 2: Number of patterns at each preprocessing step 1...19

Length of the patterns | Number of patterns
4 3
5 9
6 26
7 68
8 178
9 459

10 1,148
11 2,880
12 7,235
13 17,805
14 43,969
15 109,608
16 262,714
17 638,988
18 1,548,112
19 3,642,579

4. FPGA-Based SAT Solver

In order to process all 3,642,579 patterns generated in the previous step, we built
an FPGA-based solver, which, as shown in [13], is significantly faster than the

INTEGERS: 12 (2012))

PC-based solver.

An FPGA solver is given an initial assignment, which contains one preprocessed
pattern placed in the middle of n unassigned variables. As discussed above, the
length of the preprocessed patterns was 19. For example, when n = 160 there
are 141 unassigned variables, 70 placed before and 71 after the pattern. In the
first pass all 3,642,579 patterns were processed using a solver with n = 160. After
about a month of computation, the FPGA solver found that there were exactly 1408
initial patterns that could be extended to patterns of length 160 not containing a
monochromatic a.p. of length 4. In order to reduce the number of patterns further,
we increased our pattern length to 200 by adding unassigned variables on both sides
of these assignments. After a few hours of additional computation, it turned out
that exactly 23 initial patterns could be extended to patterns of length 200 not
containing a monochromatic a.p. of length 4.

5. Postprocessing

For 23 patterns from the previous phase, we collected 420 satisfying assignments
for n = 200 by adding unassigned variables and using the SAT solver to determine
all solutions.

In order to recover the entire search space we first re-colored all patterns of
length 200 with a permutation of all 3 colors and then shifted the resulting set in
the space of length n = 292. Then we used the SAT solver to fill in the unassigned
variables and obtained 468 unique patterns (called ”extreme” patterns) representing
all possible colorings of length n = 292 without a monochromatic a.p. of length 4.
None of these colorings extend further, so that W (3;4) = 293.

All extreme patterns have the following structure:
tPP,eyuPPeyv PP,y

where
o P =122424214441244241114142441121241142224221221114 (length 48);
e P.., is a reversal of the pattern P;
e t u,v,w are “glue” variables.

Glue variables can have 3* —3 = 78 values, the only constraint being avoiding an
assignment where all glue variables have the same color. Additional re-coloration
provides a total of 6 combinations of the pattern P jhence 468 unique patterns.

INTEGERS: 12 (2012) 6

6. FPGA-Based and PC-Based SAT Solver Design Notes

The FPGA solver design used in [13] was focused only on 2-colored van der Waerden
numbers, which allowed us to simplify (and save the much needed FPGA area). For
a description of the original version please refer to [13].

We further developed the solver and added two additional designs. Here is the
summary of all three designs:

e Original version for K = 2 and one inference block;

e Original version expanded to K colors but maintaining only one inference
block;

e K-inference blocks version.

All three versions maintained the basic schema (see Figure 1) and realized trade-
offs in speed, occupied space on an FPGA chip, ease of routing for the synthesis
tool, and so forth. The original version was still best! for K = 2 numbers with uni-
form bounds W (2, L). The second version of the solver was best for targets K > 2
and uniform bounds. The third version was the only version on which a computa-
tion of van der Waerden numbers W (K; Ly, Lo, . .. L) with nonuniform bounds in
each color was possible (due to the existence of an inference block for each color).
Recall that W(K; Ly, L, ... Lk) is the smallest integer n = W(K; Ly, Lo, ... Lk)
such that every K-coloring of 1,2,...,n contains a monochromatic a.p. of length
L; for some ¢ in {1,2,..., K}.

6.1. FPGA Solver Design: Original Version Expanded to K Colors

We expanded the design of the W (2, 6) solver to accommodate multiple colors. The
schema remained unchanged (see Figure 1). Just as with W (2, 6) we chose to utilize
only single inference block (vs. K-blocks), which is a block searching for inferences
and detects contradictions in a single color at a time. The idea of using single
inference blocks rather than K-blocks was related to the size of an inference block,
which was by far the largest part of the combinatorial portion of the solver. This
saved FPGA space and allowed for multiple solvers to be placed on a single chip
(up to 4 on LX110T).

When computing W (3,4) we had 9 FPGA boards available: 4 boards with Xilinx
Virtex 4 (X60) and 5 boards with Xilinx Virtex 5 (LX110T).

The combinatorial block shown in Figure 2 shows the complexity of the solver.
The entire combinatorial block was verified by comparing its formal definition in the
cryptol language [1] and VHDL code using the cryptol equivalence-checking tool.

1We define best as the combination of achievable clock speed and solvers per area allowing to
process the given patterns fastest.

Figure 1: FPGA solver — basic schema
PCITAG/
RS232
Combinatorial Logical Interface
Block Block Block
Memory
Figure 2: Combinatorial block for solver version 2
& —>finst_busy_delay: T_reg num_stages-NUM_CB_STAGES }%
-
% é g ?iinst_mask_dclay: ff_reg num_stages=NUM_CB_STAGES-4 g cchfc)reﬁnut . -
s :E £ —Sfinst_s2_ib_delay: ff_reg_vector num_stages-NUM_IB_STAGES* 1 T num_stages-1 Hoema=yinst.: num_stages—4 o CUl0,
25 |8 | bs2 ek
° g8~ 2 J] J
) §. sz inst_first_set: 3 ; - cb_sq mask =
e : 3 sq |
g Felz first_set] P inst_ib_post: I inst_ib_post_merge: |cb mask ougla
= Py = Praracait . —> = 0 ib_post ib_post_merge
o3 g ife(n)="10.0 Tafrenos Block
5 c g = nfercnce Blod num_stages=1 ob_sa_{(0) | nim_stages 4
2 B then g num_stages= . = "
= iz c_ib_ed(m)="1" = Yoot cb_ib(n) cb_mask_zero
e s g NUM_IB_STAGES detect those cb fel_change, |add to mask those [our
H ¢ ib_cd(n)="0’ & 0] positions that colors thatend up as |~
E 5 10 o changed _c-_cl_new(n) single color for a
) o S position
& g = (0) is the #/ - 2
o> £ g selected one Inst. cb_2_ib_cd: L= inst_cd_from ib: e
g £ ff_reg_vector E 57| cdfrom ib L cb Cd% inst_cd_out_zero: | cb cd out
z B Inum_stages= & | pum stages= pipe_is_not_zero
- = UM_IB_STAGES 3) | & | - (bnm& test for zeros
[ty e cb_s2_ib_cd_post_ib(n)) num_stages=4
inst_any_set: = 2
any_set 2 f cb co done out,
e(@)="10.0° 8 il ch en out(n)
orc(n)="010..0" & nst..: num_stages=4
] inst_cp: CP ch en done
then c_cp(n)="0" # ChoicePoint E
elsee_cpm)="1" | s = num_stages= T cb_sel_out(nk)
NUM_CP_STAGES (4) b cofn) LCP_spilt: cb,_ _mask_oul%

split
gt cb_ram_out(nk)
cb ¢ colnk) Fp_spln_cb;_c num_stages=4 cb_ram_mask_og‘g)

L——finst_s2_cp_delay: fT_reg_vector num_stages-NUM_CP_STAGES+1

6.2. FPGA Solver Design: K—Inference Blocks Version

We later optimized the size of an inference block for L — 1 < LUTputs (wWhere
LUT;pputs is equal to 6 for Virtex-5 and Virtex-6). The optimization involved trying
to fit as many clauses on a single LUT. The algorithm does not find the minimum
number of LUTs for a given formula, but significantly improves the optimization

INTEGERS: 12 (2012) 8

done by Xilinx ISE tool for the block, which finds inferences and contradictions.
The optimization was most significant for smaller L (e.g., for L = 3 and n = 128,
the number of LUTs was cut from roughly 7000 down to 2500 for the same Virtex-5
device?).

The reduction in size of an inference block allowed us to change the design and
instantiate a separate inference block for each color. This reduction in size reduced
the amount of support functions involved in deciding which color to check for in-
ferences/contradictions next, thereby speeding up the design. It also allowed us to
change the design to allow for off-diagonal computations (see results in Section 7).

6.3. PC-based Solver

Our method requires recovery of all satisfying assignments to the unassigned vari-
ables for initial assignments. The FPGA solvers used in our computation can only
return 1 or 0 to indicate whether such an assignment exists, but not the actual
solutions. The decision not to store the actual assignments was driven by concerns
for FPGA space and added complexity. Hence we developed a PC-based solver to
find all satisfying assignments given an initial assignment and a set of unassigned
variables. Similar to the FPGA solver for n = 200, there are 181 unassigned vari-
ables, 90 placed before and 91 after a given pattern. This solver only processes the
23 assignments that the FPGA solver flagged as having a satisfiable assignment for
n = 200 and collected all solutions.

7. Regression Testing and Comments on Previously Found Van der
Waerden Numbers

Using our techniques we recomputed all known van der Waerden numbers listed
in [2]. They were all verified and in one case corrected. For results see Tables 3
through 7. The recalculations were done as an additional integrity check of the
solver. Furthermore, for each number we added information about the number of
“extreme” colorings (number of satisfying assignments for n — 1 variables for each
van der Waerden number n), and about the runtime on an FPGA at 100MHz.

During the regression testing, except where specifically noted, no preprocessing
was done and run times could be greatly improved if, for example, simple pruning
of redundant branches was applied.

We also included the time it took to build the solvers (synthesis and place-
and-route times), which showed some of the drawbacks of using FPGAs for the
computation of van der Waerden numbers. We also included statistics of the number
of LUTs and slices occupied on a Virtex-6 FPGA chip. This information points out

2Xilinx ISE 10.1

INTEGERS: 12 (2012) 9
how much area is occupied by the solver and points to possible scaling issues for
larger van der Waerden numbers as another drawback of FPGAs.

Furthermore we utilized Cryptol to define formal models for many parts of the
FPGA solvers and using the equivalence checking tool included with Cryptol verified

many blocks of the solver.

Table 6 shows our new additions.

W(K; L1, L2, ... L) n # of | Runtime | Synth./P&R | LUTs/Slices
n—1 (secs)3 | (CPU time secs)d

W(2;3) [10] 9 6 <10 | 13/256 968,300
W(2;3,4) [10] 18 2 <10 | 19/249 1325/555
W (2;3,5) [10 22 14 <10 | 21/2940 1634,/500
W(2;3,6) [10 32 12 < 10 30/295 2288/1109
W(2;3,7) [10] 46 8 <10 | 40/435 4065,/1547
W(2:3,8) [7] 58 2 <10 | 53/658 4460/1927
W(2:3,9) [7] 7 2 <10 | 84/490 6208/3063
W(2;3,10) [7] 97 16 <10 | 135/850 8163/3952
W(2;3,11) [14 114 30 <10 188/3994 10336,/4152
W(2;3,12) [14 135 1 < 10 267,/1488 14120/6136
W(2;3,13) [14 160 21 <10 | 424/2700 | 18363/7103
W(2;3,14) [12 186 4 < 10 669/1894 25001/10199
W(2;3,15) [12 218 2 54 1101/2678 31938/12266
W(2;3,16) [12 238 38 311 1402/3151 36132/13920
W(2;3,17) [4 279 1 3075 2436/6508 47123/16987
W(2;3,18) [4 312 144 23533 3402/8210 57846,/20930
W(2;3,19) [6 349 458 257086 5392/8303 68019/25624
W (2;4) [10] 35 28 <10 | 30/523 2405/1179
W(2;4,5) [10] 55 65 <10 | 49/1047 1652/1937
W(2:4,6) [7 73 2 <10 | 87/663 6892,/2996
W(2;4,7) [8 109 2 < 10 336/1044 15955/5681
W(2;4,8) [12] 146 19 104 | 440/1863 | 16463/5973
W(2;4,9) [5] 309 3 52330 5151/6836 63150/22524
W(2;5) [18] 178 | 193624 < 10 708/938 31123/11670
W(2;5,6) [12] 206 720 509 2360/1177 40383/16035
W(2;6) [13] 1132 3552 | 276 hrs® 390/2906 107786,/33799

Table 3: Known van der Waerden numbers for K = 2

3Running on 100MHz Xilinx ML605(Virtex 6) unless specified otherwise. The interface between
FPGA and PC adds less than 10s overhead.

4Running on 2.66GHz Intel Core2 Duo with 6GB RAM.

50n 5x Xilinx ML605 at 200MHz each running 4 solvers for n = 240.

10

INTEGERS: 12 (2012)
W(K;Li, L, ... L) n | # of | Runtime | Synth./P&R | LUTs/Slices
n—1 (secs)3 | (CPU time secs)?
W (3:2,3,3) [9] 14 2 <10 | 16/178 1190/421
W (3;2,3,4) 9 21 8 <10 | 21/192 1607 /682
W(3;2,3,5) [9 32 2 < 10 32/240 2472/1171
W(3;2,3,6) [9] 40 20 < 10 33/266 3308/1427
W(3:2.3,7) [14] 55 | 36 <10 | 56/316 5673/2316
W(3:2,3,8) [12] 72 14 <10 | 82/468 6313/3255
W(3;2,3,9) [3] 90 6 < 10 123/555 8210/4079
W(3;2,3,10) [3 108 2 <10 172/6152 10878/3923
W(3;2,3,11) 3 129 14 13| 254/2553 | 13187/5542
W3 2,3,12) 3 150 2 148 366/1844 18058/7338
W(3:2,3,13) 3] 171 14 9205 | 532/2773 | 219021/8276
W (3; 2 1,4) [9] 10 2 <10 | 28/265 3216,/1380
W(3;2,4,5) [9] 71 14 <10 | 87/1282 7283/2635
W(3;2,4,6) [14] 83 12 < 10 127/530 9092/3802
W (3;2,4,7) [12] 119 14 337 464/1003 19238/6487
W(3;2,5,5) [3] 180 | 16444 25 760/1018 33039/13053
W (3:3) [10] 27 48 <10 | 25/635 2163/860
W (3;3,3,4) [7] 51 16 <10 | 45/955 1920/2393
W(3:3,3,5) [14] 80 81 91 | 112/946 9704 /4774
W (3;3,3,6) 5] 107 | 180 1153 | 237/800 | 15935/6433
W(3:3,4,4) [14] 89 8 183 | 125/1020 | 11775/5239
W(4;2,2,3,3) 9] 17| =4 <10] 19/210 1494/537
W(42,2,3,4) [0 % 8 <10 | 27/210 2085,/858
W(4;2,2,3,5) [9 43 2 < 10 39/3727 3998/1363
W(4;2,2,3,6) [14 48 56 < 10 44/330 4483/2072
W(4;2,2,3,7) [14 65 10 < 10 83/582 7809/3169
W(4;2,2,3,8) [3 83 4 < 10 112/917 8094/3751
W(4;2,2,3,9) [3 99 16 51 156/580 10399/5369
W(4;2,2,3,10) [3] | 119 8 443 | 244/2630 | 13095/5093
W(4;2,2,3,11) [16] | 141 8 7015 336/2598 17625/6681
W(42.2.4,4) [53 16 <10 | 43/687 4952 /2242
W(4;2,2,4,5) [3 75 4 < 10 103/558 8207/3811
W(4,2,2,4 6) [3 93 16 280 177/754 12079/4251
W(4;2,3,3,3) [9 40 54 < 10 31/244 3635/1796
W(4;2,3,3,4) [14] 60 16 < 10 63/494 6463/3352
W (4;2,3,3,5) [3] 86 160 1157 138/1759 12099/5477
W (4;) [7] 76 1440 152 73/4216 10378/5551

Table 4: Known van der Waerden numbers for K =3 and K =4

INTEGERS: 12 (2012) 11
W(K; L1, La,...Lk) n # of | Run. | Synt./P&R | LUTs/Slices
N —1 | (secs)® | (CPUtime secs)®

W(5:2,2,2,3,3) [14] 20 60 | <10 | 23/914 1838/581

W (5;2,2,2,3,4) [3 29 24 | <10 27/223 2567/1099
W(5:2,2,2,3,5) |3 14 132 | <10 | 44/702 | 4181/1933
W (5;2,2,2,3,6) [3 56 12 18 61/339 5708/2725
W (5;2,2,2,3,7) [3 72 24 39 110/448 9468/4325
wW(5;2,2,2,3,8) [3 88 12 471 134/2073 10203/4417
W(5;2,2,2,4,4) [3 54 240 17 48/403 5363/2713
W(5;2,2,2,4,5) [3 79 408 139 124/530 9256,/3992
W (5;2,2,3,3,3) [14] AT 504 | <10 | 35/1329 | 4146/1472
W(5:2,2,3,3,4) 3] 63 80 | 136 | 73/444 | 7312/3683
W(6:2,2,2,2,3,3) 3 91 | 4560 | <10 | 28/288 2083 /771

W(6;2,2,2,2,3,4) 3 33 144 | <10 | 33/262 3177/1342
W (6;2,2,2,2,3,5) [3 50 288 12 55/409 5334/2413
W(6;2,2,2,2,3,6) [3 60 96 117 74/486 6834,/2980
W(6,2,2 2,2,4,4) 3 56 192 | 44| 58/328 6118/2914
W(6;2,2,2,3,3,3) [3 42 7128 14 38/358 4472/2067
W(7:2.2.2.2.2.3.3) [24 240 | <10 | 26/243 9582/997

W(7,2,2,2,2,2,3,4) [3 36 3720 10 41/272 3866,/1529
W (7:2.2,2.2.2.3.5) [3] 55 | 1020 | 286 | 72/383 | 6470/2969
W (8;2,2,2,2,2,2,3,3) [3] 25 93600 10 29/286 2958/1012
7 (3:2.2,2,2,2.2.3.4) 5] [40| 1440 | 265 | 49/338 4699,/2001

W(9,2,2,2,2,2,2,2,3,3) [3] | 28 | 131040 | 129 | 35/504 | 3489/1399

Table 5: Known van der Waerden numbers for K =5...9

W(K; L1, Lo, ... Lk) n | # of | Runtime | Synth./P&R | LUTs/Slices
n—1 (secs)3 | (CPU time secs)*
W(3;4,4,4) 293 468 | 852 hrs® 391/8433 119412/34576
W(3;2,3,14)7 202 1 26951 866/1553 30268/12489
W(3;2,4,8) 157 24 159795 540/2512 21886/7925
W (3;2,5,6) 246 4 562677 4625/1782 55528/19878
W(4;2,2,4,7) 143 132 119721 750/1150 26775/9154
W (5;2,2,2,3,9) 107 48 6487 205/1042 12569/5616
W(5;2,2,2,4,6) 101 12 46201 237/839 14808/5321

Table 6: Previously unknown van der Waerden numbers

60n 5x Xilinx ML605 at 150MHz each running 4 solvers for n = 160.
7Corrected earlier result found in literature.

INTEGERS: 12 (2012) 12

8. Conclusion

We have demonstrated that W (3, 4) equals 293 using a problem-specific preprocess-
ing that significantly cut down the search space, an efficient FPGA solver which
took 3 months to run, a PC-based solver together with postprocessing to recover
the search space, and an exhaustive expansion of the resulting patterns to ob-
tain the complete set of extreme (i.e., of maximal length) colorings of length 292.
We verified that those colorings do not extend further and hence established that
W(3,4) = 293. Using these techniques we also established a number of previously
unknown off-diagonal van der Waerden numbers. The specifically crafted SAT solver
running on FPGAs, as well as cutting down on the search space via preprocessing,
were the key components to accomplishing the task in a reasonable amount of time.
The drawback of using FPGAs is the complexity of developing and running a solver.
The synthesis and P&R time in Tables 3 through 6 show that a significant amount
of time must be spent just to get the solver built, adding onto other challenges such
as debugging, power consumption, heat dissipation, and so forth. Computational
proofs almost entirely depend not only on the quality of coding, but also on the
reliability of the computational infrastructure.

In addition to computing new van der Waerden numbers, we verified all currently
known van der Waerden numbers. Moreover, in each case we computed the extreme
colorings associated with these numbers, i.e., colorings without monochromatic a.p.s
of the appropriate length for one less variable than the actual associated van der
Waerden number. The extreme colorings are a critical component when implement-
ing regression tests. Last but not least, we added several new upper bounds for van
der Waerden numbers.

Acknowledgments This work has been supported by Cincinnati Childrens Hos-
pital Medical Center, and in previous years by NSF Grants 9871345 and 0521189.
The author would like to thank Jerry Paul for his contributions and help with this
paper. The author also would like to thank William Gasarch for his review and
helpful comments on a previous draft of this paper.

References

[1] Cryptol. http://corp.galois.com/cryptol/. Accessed: May 30, 2012.

[2] AnMED, T. Van der Waerden numbers. http://users.encs.concordia.ca/"ta_ahmed/vdw.
html. Accessed: May 30, 2012.

[3] AHMED, T. Some new Van der Waerden numbers and some Van der Waerden-type numbers.
Integers 9 (2009), 65-76.

[4] AaMmED, T. Two new van der Waerden numbers: w(2;3,17) and w(2;3,18). Integers 10
(2010), 369-377.

INTEGERS: 12 (2012) 13

(9]
(10]

(11]
(12]

(13]
(14]
(15]

(16]

(17]
(18]

(19]

AHMED, T. On computation of exact Van der Waerden numbers. Integers 11 (2011), 1-7.

AHMED, T., KULLMANN, O., AND SNEVILY, H. On the van der Waerden numbers w(2; 3, t).
arXiv.org math.CO (2011).

BEELER, M. Some new van der Waerden numbers. Discrete Mathematics 28 (1979), 135-146.

BEELER, M. D. A new Van der Waerden number. Discrete Applied Mathematics 6 (1983),
207.

BROWN, T. Some new van der Waerden numbers (preliminary report). Notices American
Math. Society 21 (1974), A-432.

CHVATAL, V. Some unknown van der Waerden numbers. Combinatorial Structures and their
Applications, 1970.

GOWERs, W. T. A new proof of Szemerédi’s theorem. GAFA 11 (2001), 465-588.

KouriL, M. A backtracking framework for beowulf clusters with an extension to multi-cluster
computation and sat benchmark problem implementation. Dissertation (2006), 153.

KOURIL, M., AND PAUL, J. L. The van der Waerden number W (2, 6) is 1132. Ezperimental
Mathematics 17, 1 (2008), 53-61.

LANDMAN, B., ROBERTSON, A., AND CULVER, C. Some new exact van der Waerden numbers.
INTEGERS 5, 2 (2005), A10.

RABUNG, J. Some progression-free partitions constructed using Folkman’s method. Canad.
Math. Bull. 22 (1979), 87-91.

SCHWEITZER, P. Problems of unknown complexity: graph isomorphism and Ramsey theo-
retic numbers. Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften
(2009).

SHELAH, S. Primitive recursive bounds for van der Waerden numbers. J. Amer. Math. Soc.
1 (1988), 683-697.

STEVENS, R. Computer-generated van der Waerden partitions. Math. Computation 32 (1978),
635-636.

VAN DER WAERDEN, B. Beweis einer baudetschen vermutung 15 (1927) Nieuw Arch. Wisk.

