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Abstract
A sequence in an additively written abelian group is called a minimal zero-sum
sequence if its sum is the zero element of the group and none of its proper subse-
quences has sum zero. The structure of the longest minimal zero-sum sequences in
the group C2 ⊕C2k is known. Their length is equal to 2k + 1. We characterize the
minimal zero-sum sequences in C2 ⊕ C2k (k ≥ 3) with lengths at least 2�k/2�+ 4.
In particular the characterization theorem covers sequences whose lengths are just
a bit greater than half of the maximum possible one.

The characterization cannot be extended in the same form to shorter sequences.
The argument is based on structural results about minimal zero-sum sequences in
cyclic groups.

1. Introduction

A non-empty sequence in an additively written abelian group G is called a minimal

zero-sum sequence if its terms add up to the zero element of G and all of its proper
subsequences have nonzero sums. The direct Davenport problem for a finite abelian
group G is to find the maximum length D(G) of a minimal zero-sum sequence in G.
The number D(G) is the Davenport constant of the group. The associated inverse

Davenport problem is to describe the minimal zero-sum sequences of length D(G).
A related inverse zero-sum problem is to characterize all sufficiently long minimal
zero-sum sequences over G. The group structure should suggest a reasonable mean-
ing of the words “sufficiently long.” This generalized inverse problem is solved for
cyclic groups in a sense to be explained below. In this article, we address the same
question for the rank-2 group C2 ⊕ C2k. A complete solution is available in this
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probably simplest non-cyclic case.
A characterization and its range depend on the demands imposed on the “long”

sequences in C2 ⊕ C2k. The characterization theorem for cyclic groups provides
well-reasoned suggestions.

Theorem 1. ([6],[10]) Each minimal zero-sum sequence α of length � ≥ �k/2�+ 2
in the cyclic group Ck, k ≥ 3, has the form x1g, . . . , x�g, where g is a term of α

that generates Ck and x1, . . . , x� are positive integers with sum k.

The theorem found a number of meaningful and diverse applications; for example
see [7], [3], [4]. In search of an analogue for non-cyclic groups we focus attention
on the following features. There is a coordinate-form representation x1g, . . . , x�g

in Theorem 1, with “coordinates” xj adding up to the group exponent k. Also α

contains a generator g of Ck, and hence it has a term of maximum order. It appears
desirable to have analogous attributes for the “long” minimal zero-sum sequences
in C2 ⊕ C2k. Length 2�k/2� + 4 is sufficient to ensure them. We chose one of the
equivalent ways to state such a result.

A Characterization Theorem for the Group C2 ⊕ C2k. Let G = C2 ⊕ C2k

where k ≥ 3, and let α be a sequence in G with length � ≥ 2�k/2� + 4. Then

α is a minimal zero-sum sequence if and only if there exist a term a of α with

order 2k, a basis {e, a} of G containing a, with ord(e) = 2, and a representation

(y1e + z1a), . . . , (y�e + z�a) of α with yj ∈ {0, 1}, zj ∈ Z, so that:

(i)
��

j=1 yj is even;

(ii) 0 < zj < k if yj = 0 (1 ≤ j ≤ �) and

0 < zi + zj ≤ k if yi = yj = 1 (1 ≤ i < j ≤ �);

(iii)
��

j=1 zj = 2k.

The threshold length is 2�k/2�+ 4, i.e., k + 4 if k is even and k + 3 if k is odd.
Thus the characterization includes sequences with lengths just a little greater than
half of the Davenport constant D(C2 ⊕C2k), which is known to be equal to 2k + 1.

We refer to Theorem 1 not only for the spirit of the characterization in C2⊕C2k

but also for a proof. The general idea is to reduce the essential part of the argument
to a problem in the subgroup 2G = {2x | x ∈ G}, which is cyclic of order k. Divide α

into blocks with sums in 2G and replace each block by its sum. The division yields
a minimal zero-sum sequence β in 2G ∼= Ck. We aim to apply Theorem 1 to such
sequences β, and then draw conclusions about the original α. To obtain β long
enough we need a division with blocks as short as possible. Such divisions exist
because the factor group G/2G is an elementary 2-group, namely C2 ⊕ C2. So
every two terms of α from the same proper 2G-coset have sum in 2G, and we can
ensure that almost all nontrivial blocks in β have length 2.
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In principle the outlined approach is widely popular. We mention only its related
recent applications in [8] and [1], where the main point of interest are the longest
minimal zero-sum sequences in a certain group. The respective sequences β are long
enough to be analyzed directly. In contrast, our goal is a complete characterization
in a wide length range, and some of the involved sequences β are rather short. So
not only the full strength of Theorem 1 is required but also additional considerations
for the limit cases.

The proof would have been significantly shorter and more transparent if only
lengths � ≥ k+5 were considered. Broadly speaking, Theorem 1 suffices for a neatly
shaped argument in this reduced “essentially optimal” length range. However most
of the substance is to be found in the limit cases � = k+4 with k even and especially
� = k + 3 with k odd. They are the subtle ones. We observe one more time that
a difference in length of 1 or 2 may essentially mean a rather substantial difference
in zero-sum settings.

The idea is developed in Section 3, which contains the core of the argument.
Along with Theorem 1 we need related properties of long minimal zero-sum se-
quences in cyclic groups. They are presented in Section 2. Section 4 contains a
proof of the characterization theorem for C2 ⊕C2k and examples to the effect that
the range of characterization is optimal.

We regard sequences as multisets because the ordering of terms is irrelevant to our
purpose. The notation is multiplicative; for example (e+a)2a3

e is the sequence with
terms e + a, e + a, a, a, a, e. The length, the sum and the sumset of a sequence α

are denoted by |α|, S(α) and Σ(α) respectively. We write β | α for a subsequence β

of α, and αβ
−1 is the complementary subsequence of β.

2. Basis of a Sequence in a Cyclic Group

We start with two lemmas for positive integer sequences.

Lemma 2. Let γ be a sequence with positive integer terms, sum k ≥ 3 and

length � ≥ �k/2�+ 2.
a) If µ is the multiplicity of the term 1 in γ then µ ≥ 2�− k ≥ 3.
b) If t ∈ γ is an arbitrary term then t ≤ µ− 1.

Proof. a) The inequalities µ ≥ 2�−k ≥ 3 follows from the estimate k ≥ µ+2(�−µ)
and the length condition, which we use in the form 2� ≥ k + 3.

b) For t = 1 we have t < µ−1 as µ ≥ 3 by a). If t �= 1 then k ≥ µ+t+2(�−µ−1),
which rewrites as µ ≥ t + (2�− k)− 2. Now 2� ≥ k + 3 yields t ≤ µ− 1.

A notion closely related to Theorem 1 was introduced in [6]. It is relevant here
too. A positive integer sequence with sum S is behaving if its sumset is {1, . . . , S}.
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Lemma 3. A nonempty positive integer sequence γ that satisfies 2|γ| ≥ S(γ) is

behaving or has one of the forms γ = 2� and γ = 1�−1(� + 1) with � = |γ|. In

particular γ is behaving whenever 2|γ| > S(γ).

Proof. Let γ =
��

j=1 xj where 1 ≤ x1 ≤ · · · ≤ x�. Define x0 = 0, γj = x0x1 . . . xj ,
0 ≤ j ≤ �, and denote Sj = S(γj) =

�j
i=0 xi, Σj = Σ(γj). If γ is not behaving then

Σ(γ) �= {1, . . . , S(γ)} and so Σ� = Σ(γ�) = Σ(γ) ∪ {0} �= {0, 1, 2, . . . , S�}. Hence
there are indices j > 0 such that Σj �= {0, 1, 2, . . . , Sj}. Choose j to be the least one
of them to ensure Σj−1 = {0, 1, 2, . . . , Sj−1}. Because Σj = Σj−1∪{xj}∪(xj+Σj−1),
it follows that Σj = {0, 1, 2, . . . , Sj−1} ∪ {xj , xj + 1, . . . , xj + Sj−1}. In addition
xj +Sj−1 = Sj > Sj−1, and hence Σj �= {0, 1, 2, . . . , Sj} only if xj ≥ 2+Sj−1. So if
i ≥ j then xi ≥ xj ≥ 2 + Sj−1 ≥ 2 + (j − 1) = j + 1. Use 2|γ| ≥ S(γ), i. e. 2� ≥ S�,
to obtain the estimate

2� ≥ S� =
j−1�

i=0

xi +
��

i=j

xi ≥ (j − 1) + (�− j + 1)(j + 1).

The inequality is equivalent to (j − 1)(j − �) ≥ 0 and yields j = 1 or j = �. Since
xj ≥ j + 1, we see that j = 1 implies x1 ≥ 2; likewise j = � implies x� ≥ � + 1.
It follows easily that γ = 2� if j = 1 and γ = 1�−1(� + 1) if j = �. In both cases
S(γ) = 2�, and hence γ is behaving if 2|γ| > S(γ).

Now we introduce terminology and notation convenient for our main purpose.

Definition 4. Let g be a generator of the cyclic group Ck.

• The g-coordinate of an element a ∈ Ck is the unique integer xg(a) ∈ [1, k]
such that a = xg(a)g.

• The singleton {g} is a basis of a sequence β in Ck if
�

t∈β xg(t) = k.

Sequences with a basis are clearly minimal zero-sum sequences (and they can
have any length not exceeding k). Naturally the converse is not true. A “short”
minimal zero-sum sequence does not have a basis in general, or it may not contain
the basis element as a term if a basis exists.

However for length ≥ �k/2�+ 2 the notions of a minimal zero-sum sequence and
a sequence with a basis are equivalent. Moreover the basis of a long minimal zero-
sum sequence is unique, and the sequence has terms equal to its basis element. For
completeness and convenience of the exposition we include the uniqueness of the
basis in the next lemma, which is a more detailed restatement of Theorem 1.

Lemma 5. Each minimal zero-sum sequence β of length � ≥ �k/2�+2 in Ck, k ≥ 3,
has a unique basis {g} with basis element g a term of β. In addition:

a) If µ is the multiplicity of the basis element g in β then µ ≥ 2�− k ≥ 3.
b) If t ∈ β is an arbitrary term then xg(t) ≤ µ− 1.
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Proof. The existence part is the nontrivial one. The sequence has a basis {g} by
Theorem 1, with g ∈ β. Since

�
t∈β xg(t) = k by definition, parts a) and b) follow

from their analogues in Lemma 2. There remains the uniqueness.
Let {h} be any basis of β. Since g and h generate Ck, there is an integer s ∈ (0, k)

coprime to k such that g = sh. For all a ∈ Ck we have a = xg(a)g = (sxg(a))h,
meaning that the h-coordinate xh(a) of a is the least positive remainder of sxg(a)
modulo k. In particular xh(g) = sxg(g) = s for each of the µ terms equal to g, due
to 0 < s < k. Hence sµ ≤ k as

�
t∈β xh(t) = k. Now let t �= g be any term. Because

xg(t) ≤ µ−1 by b), we obtain 0 < sxg(t) ≤ s(µ−1) < sµ ≤ k; thus xh(t) = sxg(t).
So the last equality holds for all terms, implying

�
t∈β xh(t) = s

�
t∈β xg(t). Both

sums are equal to k, and hence s = 1, i.e., h = g.

Remark 6. The proof of Theorem 1 in [6] yields a little more than stated. If an
abelian group G with order k ≥ 3 contains a minimal zero-sum sequence α of length
≥ �k/2�+2 then G is isomorphic to the cyclic group Ck and α has a basis {g} with
basis element g a term of α.

It proves essential that the basis remains unchanged under slight modifications
of the sequence. With our approach, this observation is indispensable.

Lemma 7. Let β be a minimal zero-sum sequence with length � ≥ �k/2� + 2 and

basis {g} in the cyclic group Ck, k ≥ 3. Two of its terms are replaced by two or more

group elements so that the obtained sequence β
� is a minimal zero-sum sequence.

Then {g} is a basis of β
�.

Proof. Let γ be the sequence of g-coordinates of the terms that are not replaced.
The minimality of β

� implies k − xg(u) /∈ Σ(γ) for every newly-added term u.
Otherwise there is a subsequence of β

� with sum zero in which only u is a newly-
added term. However u is not the unique new term, so β

� is not minimal contrary
to the assumption.

We have |γ| = � − 2 ≥ �k/2�; thus γ �= ∅ as k ≥ 3. Next, S(γ) ≤ k − 2
since

�
t∈β xg(t) = k and the 2 deleted g-coordinates are positive. Observe that

2|γ| > S(γ) because 2 �k/2� > k − 2 for k ∈ N. So γ is behaving by Lemma 3,
with sumset Σ(γ) = {1, . . . , S(γ)}. Now the conclusion k − xg(u) /∈ Σ(γ) for a new
term u takes the form k − xg(u) > S(γ). It suffices to note that k − xg(u) �= 0, by
the minimality of β

� again.
If the replaced terms are both equal to g then S(γ) = k−2, and k−xg(u) > S(γ)

implies that all new terms are also equal to g. Then the change clearly yields the
original sequence and the claim is trivial. So suppose that at most one of the
replaced terms is equal to g.

Let β
� have basis {h}; the basis exists by Lemma 5 as |β�| ≥ � ≥ �k/2�+ 2. One

has g = sh where s ∈ (0, k) and (s, k) = 1. The multiplicity µ of g in β satisfies
µ ≥ 2� − k (Lemma 5a). Since the replaced terms are not two g’s, β

� has at least



INTEGERS: 12 (2012) 6

µ− 1 terms equal to g. For each one of them we obtain xh(g) = s like in the proof
of Lemma 5, and hence s(µ− 1) < k in view of

�
t∈β� xh(t) = k. The inequality is

strict because β
� has other terms apart from these µ− 1.

Let p ≥ 2 group elements replace the 2 removed terms of β. Then |β�| = �+p−2,
so the multiplicity of h in β

� is at least 2(�+ p− 2)−k = 2p+(2�−k− 4) ≥ 2p− 1.
As 2p−1 > p for p ≥ 2, β has a term h that is not replaced. We have xg(h) ≤ µ−1
(Lemma 5b). Then sxg(h) ≤ s(µ − 1) < k by the previous paragraph. Therefore
xh(h) = sxg(h), and now xh(h) = 1 implies h = g.

One cannot relax the condition � ≥ �k/2� + 2 in Lemma 7. For odd k > 5 set
β = g

(k−3)/2(2g)
�

k−1
2 g

�
. This is a minimal zero-sum sequence with |β| = �k/2�+1

and basis {g} (there is no other basis by direct inspection). Replace (2g) and
�

k−1
2 g

�

by
�

k+1
2 g

�3 to obtain β
� = g

(k−3)/2
�

k+1
2 g

�3, which is a minimal zero-sum sequence
with length �k/2� + 2. However β

� has basis {k+1
2 g}, not {g}. It is also essential

that exactly two terms of β are changed. Let β = g
(k−3)/2(x1g)(x2g)(x3g) where

k > 5 is odd and xi > 0 satisfy x1 + x2 + x3 = k+3
2 . Here |β| = �k/2� + 2 and β

has basis {g}. Replacing (x1g)(x2g)(x3g) by
�

k+1
2 g

�3 yields β
� = g

(k−3)/2
�

k+1
2 g

�3

again. We saw that β
� has basis {k+1

2 g} �= {g} although |β�| = |β| = �k/2�+ 2.
Lemma 7 is sufficient for the main argument in C2 ⊕ C2k if we deal only with

sequence lengths � ≥ k + 5. However the limit cases � = k + 4 with k even and
� = k + 3 with k odd need additional care.

Lemma 8. Let β be a minimal zero-sum sequence with length � ≥ �k/2� + 2 and

basis {g} in the cyclic group Ck, k ≥ 3. Three of its terms are replaced by two group

elements u and v so that the obtained sequence β
� is a minimal zero-sum sequence.

Suppose that {g} is not a basis of β
�. Then the next conditions are satisfied:

k > 3; k is odd; � = (k + 3)/2; the replaced terms are all equal to g. (1)

Furthermore one of the following holds true for β, u and v:

a) β = g
3(2g)(k−3)/2 and xg(u), xg(v) are even integers greater than 3,

with xg(u) + xg(v) = k + 3;

b) β = g
(k+1)/2

�
k−1
2 g

�
and xg(u) = xg(v) = k+3

2 .

Proof. If k = 3 then |β| = 3 and β
� is a 2-term minimal zero-sum sequence in C3.

Such a sequence has basis {g} where g is any nonzero element of C3. Hence k > 3.
Let γ be the sequence of g-coordinates of the unchanged terms. Like in the proof

of Lemma 7 the minimality of β
� implies k − xg(u) /∈ Σ(γ) and k − xg(v) /∈ Σ(γ).

Next, S(γ) ≤ k − 3 and |γ| = �− 3 ≥ �k/2�−1; thus γ �= ∅ as k > 3. Observe that
2|γ| ≥ S(γ) because 2(�k/2�−1) ≥ k − 3 for k ∈ N. By Lemma 3 γ is behaving or
has one of the forms γ = 2s, γ = 1s−1(s + 1) where s = |γ| = �− 3.
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In every case
�

t∈β� xg(t) = S(γ) + xg(u) + xg(v) is divisible by k as S(β�) = 0.
Now S(γ) ∈ (0, k) and xg(u), xg(v) ∈ (0, k] yield

�
t∈β� xg(t) ∈ (0, 3k). Because�

t∈β� xg(t) �= k (since {g} is not a basis of β
�), it follows that

�
t∈β� xg(t) = 2k.

If γ is behaving then Σ(γ) = {1, 2, . . . , S(γ)}. Like in the proof of Lemma 7
k − xg(u) /∈ Σ(γ) yields k − xg(u) > S(γ). We use xg(u) �= k here, which is due to
the minimality of β

�; likewise xg(v) �= k. Now k − xg(u) > S(γ) and 0 < xg(v) < k

yield 0 < S(γ) + xg(u) + xg(v) =
�

t∈β� xg(t) < 2k, which is false.
Hence 2|γ| = S(γ) as 2|γ| > S(γ) implies that γ is behaving (Lemma 3). So

all inequalities in the chain 2|γ| = 2(� − 3) ≥ 2(�k/2�−1) ≥ k − 3 ≥ S(γ) are
equalities. This leads to all conditions (1) except the first one, which was already
established. Next, s = � − 3 = (k − 3)/2, so γ = 2(k−3)/2 or γ = 1(k−5)/2

�
k−1
2

�
.

The equalities
�

t∈β� xg(t) = S(γ) + xg(u) + xg(v) = 2k and S(γ) = k − 3 give
xg(u) + xg(v) = k + 3. Hence xg(u), xg(v) > 3 due to xg(u), xg(v) ∈ (0, k).

If γ = 2(k−3)/2 then β = g
3(2g)(k−3)/2 as the 3 replaced terms are equal to g.

Also Σ(γ) = {2x | 1 ≤ x ≤ k−3
2 }, so the conditions k − xg(u), k − xg(v) /∈ Σ(γ)

and xg(u), xg(v) > 3 imply that xg(u), xg(v) are even integers in [4, k − 1], with
sum k + 3. The conclusions lead to case a).

Likewise if γ = 1(k−5)/2
�

k−1
2

�
we obtain β = g

(k+1)/2
�

k−1
2 g

�
, and in addition

Σ(γ) = {1, . . . , k−5
2 }∪ {k−1

2 , . . . , k−3}. Therefore k− xg(u), k− xg(v) /∈ Σ(γ) yield
xg(u), xg(v) ∈ {1, 2, k+3

2 }. So xg(u) = xg(v) = k+3
2 in view of xg(u), xg(v) > 3, and

the outcome is case b).
The sequences β

� obtained in a) and b) are indeed minimal zero-sum sequences,
and {g} is not a basis of either one.

Lemma 8 is stated with the general length condition � ≥ �k/2� + 2, but it is
present only for the sake of the limit cases � = �k/2�+ 2, with k even and odd. Its
part concerning lengths � > �k/2�+ 2 is a trivial consequence of Lemma 7. Indeed
then |β�| ≥ �k/2�+ 2, so β

� has a unique basis by Lemma 5. On the other hand β

can be obtained from β
� by removing 2 terms and adding 3. Hence Lemma 7 shows

that β and β
� have the same basis.

3. Factorizations

Let α be a minimal zero-sum sequence in a group G and H a subgroup of G. Since
S(α) = 0 ∈ H, one can partition α into subsequences with sums in H, H-blocks.
Replacing each block by its sum gives a minimal zero-sum sequence over H. Call
the new sequence an H-factorization of α if its blocks are minimal in the sense
that their projections onto the factor group G/H under the natural homomorphism
are minimal zero-sum sequences. The terms of a factorization are the sums of its
blocks, but for flexibility of speech we sometimes call terms the blocks themselves.
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Factorizations are meaningful if they provide information about the original se-
quence. In the case of the group G = C2 ⊕ C2k an appropriate choice for H is the
subgroup 2G = {2x : x ∈ G}. The key circumstance is that 2G is cyclic of order k

and the factor group G/2G is isomorphic to C2 ⊕ C2. Henceforth let U, V,W de-
note the three proper cosets of 2G. Then G/2G = {2G,U, V,W} and the relations
2U = 2V = 2W = 2G, U +V = W,V +W = U,W +U = V , U +V +W = 2G hold.
There are three kinds of minimal zero-sum sequences in G/2G, of lengths 1, 2 or 3.
They consist of: the zero element 2G; two equal nonzero elements; all three nonzero
elements. Hence the 2G-factorizations of a minimal zero-sum sequence α in G have
terms of three kinds: one term of α from 2G; a sum of two terms from the same
proper 2G-coset, a pair ; a sum of three terms from the three proper 2G-cosets, a
triple. The terms of α in 2G are terms of every 2G-factorization, its trivial terms.
The nontrivial terms of a 2G-factorization are its pairs and triples; call them also
blocks. For brevity let us sometimes write factorization instead of 2G-factorization.

We consider mostly 2G-factorizations with a maximum number of pairs and call
them standard . It follows from the properties of C2⊕C2 that a zero-sum sequence α

in G = C2 ⊕ C2k either has an even number of terms in all three proper 2G-cosets
or an odd number of terms in each one of them. In the even case the standard
factorizations are obtained by dividing completely into pairs the terms outside 2G;
there are no triples. In the odd case a standard factorization has exactly one triple,
the remainder consists of pairs and terms of α from 2G. Hence the number t of
triples in a standard 2G-factorization of α is 0 or 1, and t depends only on α, not
on a particular standard factorization.

For the rest of the section fix a minimal zero-sum sequence α with length

|α| ≥ 2 �k/2�+4 in G = C2⊕C2k, k ≥ 3. Let α have d terms in 2G, and

let t ∈ {0, 1} be the number of triples in a standard 2G-factorization of α.

The length condition means |α| ≥ k + 4 if k is even and |α| ≥ k + 3 if k is odd.
The next lemma establishes a foundation for everything that follows.

Lemma 9. Every standard 2G-factorization of α has length ≥ �k/2�+ 2, a unique

basis and at least 3− t nontrivial terms equal to its basis element.

Proof. Let β be a standard 2G-factorization. Exactly d + 3t terms of α are not in
pairs of β. Hence |β| = d + t + 1

2 (|α|− d− 3t) and so

2|β| = |α| + d− t. (2)

Observe that 2|β|−k ≥ 3. Otherwise |α| ≥ k+3, d ≥ 0 and t ≤ 1 imply |α| = k+3,
d = 0 and t = 1. However |α| = k + 3 can hold only for k odd (by the length
condition), in which case |α| is even; but then (2) is not true with d = 0, t = 1.
Hence 2|β|−k ≥ 3 indeed, and so |β| ≥ �k/2�+2. Because β is a minimal zero-sum
sequence in the cyclic group 2G of order k, the conclusions of Lemma 5 apply.
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Therefore β has a unique basis {g} with g a generator of 2G and at least 2|β|− k

terms equal to g. Let p of these be trivial and q nontrivial. Then p + q ≥ 2|β|− k

and (2) yield q ≥ 2|β|− k− p = (|α|− k) + (d− p)− t. So the length condition and
d ≥ p lead to q ≥ 3− t.

In what follows we deal repeatedly with overlapping blocks. These are two differ-
ent blocks of a standard factorization that contain terms of α from the same proper
2G-coset. We say that such blocks overlap. They can be two pairs of terms of α

from the same proper 2G-coset or a pair and a triple.
Our approach rests entirely on the fact that “slightly different” factorizations

share the same basis. More exactly it is crucial that changes of the following two
kinds leave intact the basis of a standard factorization β.

A. Two overlapping blocks B1, B2 of β are replaced in a natural way by two new
blocks to yield another standard factorization. More specifically let B1 be a pair
and B2 a triple, say B1 = u1u2 and B2 = uvw where u1, u2 ∈ U and u ∈ U ,
v ∈ V,w ∈ W . Replacing B1 and B2 by the pair uu2 and the triple u1vw produces a
new standard factorization β

�. In the other case B1 and B2 are pairs, say B1 = u1u2,
B2 = u

�
1u

�
2 with u1, u2, u

�
1, u

�
2 ∈ U . Then a new standard factorization β

� is obtained
by removing B1 and B2 and adding the pairs u1u

�
1 and u2u

�
2.

B. Three pairs u1u2, v1v2, w1w2 of β with terms of α from the three proper 2G-
cosets are replaced by the triples u1v1w1 and u2v2w2. We use this change only in
the case t = 0. The new factorization β

� is not standard since it has 2 triples; call it
non-standard . Since β

� is obtained from β by removing 3 terms and adding 2 new
ones, Lemma 9 implies |β�| = |β|− 1 ≥ �k/2�+ 1.

For both changes A and B, the 2G-factorizations β and β
� are minimal zero-

sum sequences in the cyclic group 2G ∼= Ck, k ≥ 3. Furthermore |β| ≥ �k/2� + 2
(Lemma 9). A change A removes 2 terms of β and adds 2 new ones to yield β

�. By
Lemma 7 then the basis {g} of β is also a basis of β

�.
The same conclusion is needed for changes B. Here we rely on Lemma 8 as β

� is
obtained from β by removing 3 terms and adding 2 new ones. The lemma does serve
the purpose whenever at least one of conditions (1) is not satisfied. In particular
|α| ≥ k + 4 readily gives 2|β| > k + 3 in view of (2) and t = 0. Hence the third
condition (1) does not hold for β, implying that {g} is a basis of β

�.
So for |α| ≥ k+4 certain knowledge about cyclic groups is enough to ensure that

the basis of β is a basis of β
�, under both changes A and B. We mean Lemma 7 for

|α| ≥ k + 5 (see the remark after the proof of Lemma 8) and Lemma 8 for the limit
case |α| = k + 4 with k even. But the issue about change B remains unresolved for
|α| = k + 3 with k odd, due to the exceptions in Lemma 8. Still, changes B do not
affect the basis even in this more subtle limit case. However proving so requires also
“non-cyclic” considerations. We present them in the next lemma. For uniformity
it is stated for an arbitrary change B.
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Lemma 10. Suppose that t = 0. Let β be a standard 2G-factorization with ba-

sis {g}, and let u1u2, v1v2, w1w2 be pairs of β with ui ∈ U , vi ∈ V , wi ∈ W ,

i = 1, 2. Replace them by the triples u1v1w1 and u2v2w2 to obtain a non-standard

2G-factorization β
�. Then {g} is a basis of β

�.

Proof. Suppose on the contrary that {g} is not a basis of β
�, which is obtained

from β by removing 3 terms and adding 2 new ones. Both β and β
� are minimal

zero-sum sequences in 2G ∼= Ck, k ≥ 3, and β has length ≥ �k/2�+ 2 (Lemma 9).
Hence Lemma 8 applies. First, conditions (1) are satisfied, namely:

k > 3; k is odd; |β| = (k + 3)/2; u1 + u2 = v1 + v2 = w1 + w2 = g.

In addition one of the next alternatives holds for β, xg(u1v1w1) and xg(u2v2w2):

a) β = g
3(2g)(k−3)/2 and xg(u1v1w1) > 3, xg(u2v2w2) > 3;

b) β = g
(k+1)/2

�
k−1
2 g

�
and xg(u1v1w1) = xg(u2v2w2) = k+3

2 .

Henceforth we usually write xg(u1u2), xg(uvw) instead of xg(u1+u2), xg(u+v+w).
With t = 0 identity (2) turns into 2|β| = |α| + d. Since |α| ≥ k + 3 and d ≥ 0,

the equality |β| = (k + 3)/2 holds only if d = 0 (and |α| = k + 3 with k odd). So
β has only nontrivial terms (as d = 0), and all of them are pairs (as t = 0). Since
k > 3, in each of the cases a), b) β has a term �= g. In other words a pair of β

has sum �= g. Let w
�
1w

�
2 be such a pair and we may assume w

�
1, w

�
2 ∈ W . Clearly

w
�
1w

�
2 is different from the pairs u1u2, v1v2, w1w2. In a) the only term of β different

from g is 2g, in b) such a term is only k−1
2 g. So denote xg(w�

1w
�
2) = p where p = 2

in the first case and p = k−1
2 in the second. Since w

�
1 + w

�
2 �= g = w1 + w2, one of

w
�
1, w

�
2 is different from one of w1, w2. Let w

�
1 �= w2.

Replace the pairs w1w2, w
�
1w

�
2 of β by w1w

�
1, w2w

�
2. This change A gives a stan-

dard factorization β
�� with basis {g} like β. So

�
t∈β xg(t) =

�
t∈β�� xg(t) = k, im-

plying xg(w1w
�
1)+xg(w2w

�
2) = xg(w1w2)+xg(w�

1w
�
2) = p+1. Hence xg(w1w

�
1) ≤ p.

Next, replace the pairs u1u2, v1v2, w1w
�
1 of β

�� by the triples u1v1w1, u2v2w
�
1. The

result is a non-standard factorization δ obtained from β
�� by removing 3 terms and

adding 2 (a change B). Furthermore w1 + w
�
1 �= w1 + w2 = g, so the 3 replaced

terms are not all equal to g. Hence the last of the conditions (1) in Lemma 8 is not
satisfied, implying that δ has basis {g} as well as β

��. It follows that

xg(u1v1w1) + xg(u2v2w
�
1) = xg(u1u2) + xg(v1v2) + xg(w1w

�
1) = xg(w1w

�
1) + 2.

Because xg(w1w
�
1) ≤ p, this implies xg(u1v1w1) ≤ p + 1.

Since p = 2 in a) and p = k−1
2 in b), we obtain xg(u1v1w1) ≤ 3 in the first

case and xg(u1v1w1) ≤ k+1
2 in the second. However xg(u1v1w1) > 3 in a) and

xg(u1v1w1) = k+3
2 in b). The contradiction ends the proof.
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Once Lemma 10 is available, one can summarize:

Let β be a standard 2G-factorization, and let β
� be obtained from β by

a change A or a change B. Then the basis of β is a basis of β
�.

Now we are ready to approach the main argument.

Lemma 11. There exist a term a of α and a standard 2G-factorization β such that

a �∈ 2G, {2a} is a basis of β and β contains a pair aa.

Proof. Let β be a standard 2G-factorization of α in which the multiplicity of the
basis element g is a minimum. Suppose in addition that β has two overlapping
blocks each with sum g. Then the conclusion follows directly. Indeed let two
different blocks B1, B2 of β have sum g each and contain terms of α from the same
proper 2G-coset, say U . One of B1, B2 is a pair; let B1 = u1u2 with u1, u2 ∈ U . As
for B2, it contains a term u ∈ U and either B2 = uu

� with u
� ∈ U (if B2 is a pair)

or B2 = uvw with v ∈ V,w ∈ W (if B2 is a triple). We show that u1 and u2 are
equal. So if a ∈ U is their common value then 2a = u1 + u2 = g is a basis element
of β. Hence the term a satisfies the requirements together with β.

Let B2 = uvw be a triple. The case of a pair B2 = uu
� is analogous. Replace

the blocks u1u2, uvw of β by the blocks u1u, u2vw (a change A). The new standard
factorization has basis {g} as well as β. Since u1+u2 = u+v+w = g, the minimum
choice of β implies u1+u = u2+v+w = g. Hence u2 = u, and u1 = u by symmetry.
Thus u1 = u2 and the claim follows.

So having two overlapping blocks each with sum g in β is a sufficient condition
for the conclusion to hold. This condition can be ensured if t = 1. Exactly one
nontrivial term of β is a triple uvw, the remaining ones are pairs. By Lemma 9 β

has at least 3 − t = 2 nontrivial terms g. One of them is the sum of a pair u1u2,
say with u1, u2 ∈ U . We may assume u1 �= u2. If u + v + w = g then u1u2 and uvw

overlap and the sufficient condition is satisfied. If u + v + w �= g let u �= u1 without
loss of generality. Swap u and u1 to obtain a new standard factorization β

�, with
the triple u1vw and the pair uu2 instead of uvw and u1u2. This is a change A, so
β
� has basis {g}. Since u1 + u2 = g, u + v + w �= g and u + u2 �= u1 + u2 = g, the

minimal choice of β implies u1 +v +w = g. Moreover the multiplicity of g in β
� is a

minimum as g occurs the same number of times in β and β
�. Since the triple u1vw

of β
� has sum g, we are back to the previous case. This is because β has one more

pair P with sum g except u1u2, unaffected by the change and also present in β
�.

Hence u1vw and P overlap, and we are done with the case t = 1.
Let t = 0, so that all nontrivial terms of β are pairs. Now Lemma 9 provides at

least 3− t = 3 nontrivial terms g. Let each of the pairs u1u2, v1v2, w1w2 have sum
equal to g. We may assume that they represent all three proper 2G-cosets or else
there are overlapping blocks each with sum g again. So let ui ∈ U , vi ∈ V , wi ∈ W ,
i = 1, 2, and u1 + u2 = v1 + v2 = w1 + w2 = g. We show that the terms in one of
the three pairs are equal, which is enough to complete the proof.



INTEGERS: 12 (2012) 12

Replace u1u2, v1v2, w1w2 by the triples uivjwm and u3−iv3−jw3−m, with arbi-
trary i, j,m ∈ {1, 2}. Since t = 0, this is a change B. By Lemma 10 {g} is a basis
of the obtained non-standard factorization β

�. The same is true for β, therefore

xg(uivjwm) + xg(u3−iv3−jw3−m) = xg(u1u2) + xg(v1v2) + xg(w1w2) = 3

for all i, j,m ∈ {1, 2}. Hence xg(uivjwm) ∈ {1, 2} for i, j,m ∈ {1, 2}. It follows
that in each pair u1u2, v1v2, w1w2 the two terms are equal or differ by g. Let e. g.
u1 �= u2 and u1 − u2 = g. Since u1 + u2 = g, we obtain 2u2 = 0. So if the terms in
a pair are different then one of them has order 2. Suppose that u1 �= u2, v1 �= v2,
w1 �= w2. Then α contains an order-2 element of G from each proper 2G-coset.
However this is impossible. In all C2 ⊕ C2k has 3 elements of order 2, their sum
is 0. For k even not every proper 2G-coset contains such an element. For k odd
the conclusion means that all order-2 elements are terms of α, contradicting the
minimality of the sequence.

The proof of the characterization theorem is based almost exclusively on the next
lemma. In a sense the lemma is an alternative formulation of the main result.

Lemma 12. There exists a term a of α with the following properties:

a �∈ 2G and ord(a) = 2k; (3)
α has a 2G-factorization β such that

�
t∈β xa(t) = 2k; (4)

0 < xa(u) < k for u ∈ α with u ∈ �a�; (5)
0 < xa(v + w) ≤ k for v, w ∈ α with v, w �∈ �a�, v �= w. (6)

The assumption v �= w in (6) means that v and w are distinct terms of α; formally
v ∈ αw

−1. Otherwise v and w may be equal as group elements.

Proof. Let us remark that the a-coordinate xa(v+w) in (6) is well defined, provided
that �a� is an index-2 subgroup of G. The latter will be justified shortly.

Fix a term a of α and a standard 2G-factorization β with the properties stated in
Lemma 11: a �∈ 2G, {2a} is a basis of β and β contains a pair aa. We show that a

meets the requirements. Clearly ord(a) = 2k because 2G ∼= Ck is a proper subgroup
of �a�, generated by g = 2a. Hence a satisfies (3). Let a ∈ U , then �a� = 2G ∪ U is
an index-2 subgroup of G, with proper coset V ∪W .

Claim 1 . If δ is an arbitrary standard 2G-factorization of α with basis {g} then�
t∈δ xa(t) = 2k and xa(t) ∈ (0, k − 1] for each term t ∈ δ.

Claim 2 . If δ is an arbitrary non-standard 2G-factorization of α with basis {g} then�
t∈δ xa(t) = 2k and xa(t) ∈ (0, k + 1] for each term t ∈ δ.

In both claims
�

t∈δ xg(t) = k, so the g-coordinate xg(t) of each t ∈ δ satisfies
k ≥ xg(t) + |δ|− 1. By Lemma 9 and the subsequent discussion |δ| ≥ �k/2�+ 2 in
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Claim 1 and |δ| ≥ �k/2�+ 1 in Claim 2. This yields 2xg(t) ∈ (0, k − 1] in the first
case and 2xg(t) ∈ (0, k + 1] in the second.

Because t = xg(t)g = xg(t)(2a) = (2xg(t))a and 2xg(t) ∈ (0, 2k) holds in either
case, the a-coordinate of t is xa(t) = 2xg(t). Hence

�
t∈δ xg(t) = k can be written

as
�

t∈δ xa(t) = 2k. Furthermore xa(t) ∈ (0, k− 1] in Claim 1 and xa(t) ∈ (0, k +1]
in Claim 2, which completes the justification of the claims. Note that in Claim 2
the equality xa(t) = k + 1 holds only if k is odd and |δ| = k+1

2 .

Claim 1 applies to the fixed standard factorization β, and hence
�

t∈β xa(t) = 2k
and condition (4) holds. For (5) and (6) we apply repeatedly the two claims to suit-
ably chosen factorizations. Most of them are obtained from β through changes A,
only the last one uses a change B.

A term t ∈ α from 2G ⊂ �a� is a term of β, and hence xa(t) ∈ (0, k−1] by
Claim 1. Take a term u ∈ U ⊂ �a�. If u = a then 0 < xa(u) = 1 < k. If u �= a let B

be the block of β that contains u. Recall that β has a pair aa. Interchange u from B

with an a from such a pair (a change A) to obtain a standard factorization δ. It has
the same basis {g} as β. Hence Claim 1 applies to δ, which contains a pair au; so
xa(au) ∈ (0, k−1]. In other words u+a = sa with 0 < s < k, implying xa(u) ∈ (0, k)
(as u �= 0). Condition (5) is justified.

We pass on to (6). Let v1, v2 be terms of α in V . If v1v2 is a pair of β we
refer to Claim 1 right away to obtain xa(v1v2) ∈ (0, k−1]. Let v1, v2 belong to
the blocks B1, B2 of β, B1 �= B2. Suppose for instance that B1, B2 are the pairs
v1v

�
1, v2v

�
2. Replace them by the pairs v1v2, v

�
1v
�
2 (a change A). Now v1v2 is a

pair in a new standard factorization with the same basis {g}, so Claim 1 yields
xa(v1v2) ∈ (0, k−1] again. We proceed similarly if one of B1, B2 is a triple. The
case of two terms w1, w2 ∈ W is symmetric.

Now let v, w be terms with v ∈ V , w ∈ W . In the case t = 1 there is a
triple T = u

�
v
�
w
� in β. If v is not in T , swap v and v

�; do the same with w and w
�

if needed. Then swap u
� and one a from a pair aa (such pairs are unaffected by

the previous changes). After these changes A now avw is a triple in a standard
factorization with the same basis {g}. Hence xa(avw) ∈ (0, k−1] by Claim 1. This
readily yields xa(vw) ∈ (0, k).

Finally we justify (6) in the case v ∈ V , w ∈ W , t = 0. Let v and w be in the
pairs vv

� and ww
�. Remove these pairs from β together with a pair aa, then add

the triples avw and av
�
w
�. This is a change B; the new factorization β

� is non-
standard, and Lemma 10 ensures that {g} is a basis of β

�. Hence Claim 2 yields
xa(avw) ∈ (0, k+1], which leads to xa(vw) ∈ (0, k].

It is not hard to see that the inequality xa(v+w) ≤ k in (6) can turn into equality
only if |α| = k + 3, with k odd and d = t = 0. Otherwise (6) can be strengthened
to 0 < xa(v + w) < k.
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4. The Characterization Theorem

For readers’ convenience we reproduce the statement of the main result.

Theorem 13. Let G = C2 ⊕ C2k where k ≥ 3, and let α be a sequence in G with
length � ≥ 2�k/2�+ 4. Then α is a minimal zero-sum sequence if and only if there
exist a term a of α with order 2k, a basis {e, a} of G containing a, with ord(e) = 2,
and a representation α =

��
j=1(yje + zja) of α with yj ∈ {0, 1}, zj ∈ Z, so that:

(i)
��

j=1 yj is even;

(ii) 0 < zj < k if yj = 0 (1 ≤ j ≤ �) and
0 < zi + zj ≤ k if yi = yj = 1 (1 ≤ i < j ≤ �);

(iii)
��

j=1 zj = 2k.

Proof. Sufficiency: By (i) and (iii) S(α) =
���

j=1 yj

�
e +

���
j=1 zj

�
a = 2ka = 0,

and hence α is a zero-sum sequence. Let β|α be a nonempty zero-sum subsequence;
without loss of generality let β =

�p
j=1(yje+zja) where 0 < p ≤ �. Clearly β has an

even number of terms �∈ �a�, i.e., with yj = 1. Let them be a1, . . . , a2m, m ≥ 0. Since
a2i−1 + a2i = (z2i−1 + z2i)a for 1 ≤ i ≤ m and aj = zja for 2m < j ≤ p, we obtain
0 = S(β) =

��p
j=1 zj

�
a. The sum

�p
j=1 zj is nonempty and can be partitioned

into pairs of summands z2i−1 + z2i with 1 ≤ i ≤ m and single summands zj with
2m < j ≤ p. Hence

�p
j=1 zj is positive by condition (ii), which gives z2i−1 +z2i > 0

and zj > 0 respectively. Since
�p

j=1 zj is divisible by ord(a) = 2k, this implies�p
j=1 zj ≥ 2k. Suppose that β is proper; then its complementary subsequence is

nonempty and has an even number of terms �∈ �a� by (i). Hence the same argument
yields

��
j=p+1 zj ≥ 2k; however then (iii) is violated. Therefore α is a minimal

zero-sum sequence.
Note that the reasoning uses only the inequalities zj > 0 and zi+zj > 0 from (ii);

zj < k and zi + zj ≤ k are not needed.
Necessity: Suppose first that α generates G. Choose a term a ∈ α with the

properties from Lemma 12. By (3) �a� is an index-2 subgroup of G. If a ∈ U then
�a� = 2G ∪ U and the proper �a�-coset C = V ∪ W contains an even number of
terms of α. Such terms exist as α generates G. By (6) the sum of every two terms
b, c ∈ C can be expressed as b + c = pa with 0 < p ≤ k. Choose b and c so that
p is a minimum. Without loss of generality let c − b = qa with 0 ≤ q ≤ k. Then
2c = (p + q)a and 0 < p + q ≤ 2k. Note that p + q is even as 2c ∈ 2G; thus setting
p + q = 2r gives 2c = 2ra where 0 < r ≤ k. The group element e = c− ra ∈ C has
order 2, and b = e + (r− q)a, c = e + ra. Also {e, a} is a basis of G. We prove that
it serves our purpose.

Denote α =
��

j=1 aj with a1 = b, a2 = c. Define y1 = 1, z1 = r − q; then
y1e + z1a = b = a1. For each j > 1 let yj , zj be the standard coordinates of aj
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in the basis {e, a}, i.e., the unique pair of integers yj , zj such that yj ∈ {0, 1},
zj ∈ [0, 2k) and aj = yje + zja. In particular y2 = 1, z2 = r. By definition yj = 1
if and only if aj �∈ �a�. So condition (i) holds as α has an even number of terms in
the proper coset C. We proceed to show that:

zj = xa(aj) if yj = 0 (1 ≤ j ≤ �); (7)
zi + zj = xa(ai + aj) if yi = yj = 1 (1 ≤ i < j ≤ �). (8)

Then properties (5) and (6) from Lemma 12 will imply condition (ii).
If yj = 0 then aj = zja and 0 < zj < 2k (0 ≤ zj < 2k by definition and zj �= 0

since clearly aj �= 0). Thus (7) holds. Next, yi = yj = 1 implies ai +aj = (zi +zj)a,
and hence the inequality 0 < zi + zj ≤ 2k would suffice to establish (8).

Consider a term aj with yj = 1 and j �= 1, 2. Then aj ∈ C and in addition
both sums a1 + aj = (r − q + zj)a, a2 + aj = (r + zj)a belong to the progression
{pa, (p + 1)a, . . . , (k − 1)a, ka} = P . This is due to (6) and the minimum choice
of p. Now 0 ≤ zj < 2k gives r − q ≤ r − q + zj < r − q + 2k; on the other hand
r − q > −k as r > 0 and q ≤ k; also r − q + 2k < 2k + p as p + q = 2r and r > 0.
Hence −k < r−q +zj < p+2k, showing that a1 +aj ∈ P only if p ≤ r−q +zj ≤ k.
This implies 2r = p + q ≤ r + zj ≤ k + q ≤ 2k, and hence a2 + aj ∈ P only if
p ≤ r + zj ≤ k.

In summary p ≤ r− q + zj and r + zj ≤ k yield r ≤ zj ≤ k− r whenever yj = 1,
j �= 1, 2. Recalling z1 = r − q, z2 = r, we observe that zj ≥ r for yj = 1, j �= 1.
Hence zi + zj ≥ (r − q) + r = 2r − q = (p + q)− q = p > 0 whenever yi = yj = 1,
i �= j. Furthermore z1 ≤ z2 = r ≤ k and zj ≤ k − r < k for yj = 1, j �= 1, 2;
therefore zi + zj ≤ 2k for yi = yj = 1, i �= j. We proved 0 < zi + zj ≤ 2k for
yi = yj = 1, i �= j, which implies (8) and completes the justification of (ii).

We also use (7) and (8) to verify condition (iii). More exactly, let us show that
if β is an arbitrary 2G-factorization of α then

�
t∈β xa(t) =

��
j=1 zj . It suffices

to check that for each term t ∈ β, which is the sum of 1, 2 or 3 terms of α, the
coordinates zj of the summands forming t add up to xa(t).

If t = aj is a term of α in 2G ⊂ �a� then zj = xa(aj) by (7). If t = ai + aj

with ai, aj ∈ V or ai, aj ∈ W , then xa(t) = xa(ai + aj) = zi + zj by (8). If
t = ai + aj with ai, aj ∈ U ⊂ �a�, then (7) gives xa(ai) = zi, xa(aj) = zj . On
the other hand property (5) in Lemma 12 implies xa(t) = xa(ai) + xa(aj) (as
0 < xa(ai), xa(aj) < k). Hence xa(t) = zi + zj . Last, let t = am + ai + aj with
am ∈ U , ai ∈ V , aj ∈ W . Then xa(am) = zm and xa(ai + aj) = zi + zj by (7)
and (8) respectively. On the other hand, properties (5) and (6) from Lemma 12
imply 0 < xa(am)+xa(ai +aj) < 2k and so xa(t) = xa(am)+xa(ai +aj). Therefore
xa(t) = zm + zi + zj and the claim follows.

Finally take a 2G-factorization β of α such that
�

t∈β xa(t) = 2k. Such a fac-
torization exists by property (4), Lemma 12. By the above

�
t∈β xa(t) =

��
j=1 zj ,

and hence
��

j=1 zj = 2k and condition (iii) is established.
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We are left with the case where α generates a proper subgroup H of G = C2⊕C2k.
Then |H| ≤ |G|/2 = 2k and H contains all terms of α. Now we use Remark 6.
Since |α| ≥ k + 3 > |H|/2 + 2, the remark implies that H is cyclic and that α

has basis {a} with basis element a term a ∈ α that generates H. On one hand
ord(a) ≥ |α| ≥ k + 3 because α is minimal and entirely contained in H = �a�;
on the other hand ord(a) = |H| ≤ 2k. Since ord(a) divides the exponent 2k and
k < ord(a) ≤ 2k, we obtain ord(a) = 2k.

If α =
��

j=1 aj then
��

j=1 xa(aj) = 2k by the definition of a basis. Then
� ≥ k + 3 implies xa(aj) ∈ (0, k) for all j. Since a ∈ G has maximum order, there
is a basis {e, a} of G containing a, with ord(e) = 2. (One can take any order-2
element e that is not in �a�.) For j = 1, . . . , � set yj = 0, zj = xa(aj). Then
aj = yje + zja, j = 1, . . . , �, and (i)–(iii) hold trivially. The proof is complete.

Easy examples show that none of the conditions (i)–(iii) in Theorem 13 follows
from the other two, so each one is essential. Likewise the coordinates zj cannot
be defined simply as standard coordinates with respect to a basis. One must allow
“exceptional” z-coordinates like z1 in the proof. They can be negative or zero;
consequently the purpose of condition (ii) is to admit at most one non-positive z-
coordinate. By the last remark in Section 3 the inequality 0 < zi + zj ≤ k in (ii) is
not strict only because of the limit case � = k + 3, with k odd. For � ≥ k + 4 it can
be strengthened to 0 < zi + zj < k.

The characterization cannot be extended to shorter sequences over G = C2⊕C2k,
k ≥ 3. Let {e, b} be a basis of G with ord(e) = 2, ord(b) = 2k. The following
sequences are minimal zero-sum sequences in G that do not have a representation
with the properties from Theorem 13:

For length � = k + 2 with arbitrary k ≥ 3: α = (2b)k−1(−b)e(e + 3b); (9)
For length � = k + 3 with even k ≥ 4: α = (3b)3(e + 2b)k−1(e− 7b). (10)

The justification uses the (trivial) observation that if
��

j=1(yje + zja) is any rep-
resentation of a sequence like in Theorem 13 then the coordinates zj satisfy rela-
tions (7) and (8) that surfaced in the proof.

The next example shows that for length � = k + 3 with odd k ≥ 3 the inequality
0 < zi + zj ≤ k in (ii) cannot be improved to 0 < zi + zj < k:

α = b
k−1(e + b)2e(e + (k − 1)b). (11)

Let us remark that in all three examples (9)–(11) the sequence generates G.

Remark 14. Theorem 13 yields as a by-product the least length of a minimal
zero-sum sequence in C2 ⊕ C2k (k ≥ 3) that guarantees a term of maximum order.
This length is k + 4 since there are minimal zero-sum sequences of length k + 3
without terms of order 2k, at least for some values of k. For example such is the
sequence (10) for k divisible by 2 · 3 · 7 = 42.
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As a straightforward application of the characterization theorem let us consider
the direct and inverse Davenport problems for C2 ⊕ C2k. Both of them are solved
for a long time now. The value of the Davenport constant for all groups of rank 2
was determined independently by Olson [5] and Kruyswijk (see [9]). The inverse
problem for C2 ⊕ C2k was solved by Gao and Geroldinger [2]. Needless to say,
neither result is used in the proof of Theorem 13.

Corollary 15. The Davenport constant of G = C2 ⊕ C2k is equal to 2k + 1. Each

minimal zero-sum sequence of length 2k + 1 in G has one of the following forms:

a) a
2k−1

uv where a ∈ G has order 2k and u, v ∈ G are such that u, v �∈ �a� and

u + v = a;

b) a
p
e(e+a)2k−p where {e, a} is a basis of C2⊕C2k with ord(e) = 2, ord(a) = 2k

and p ∈ [3, 2k − 3] is an odd integer.

Proof. The cases k = 1 and k = 2 can be checked directly. Let α be a minimal
zero-sum sequence of length � ≥ 2�k/2� + 4 in G = C2 ⊕ C2k, k ≥ 3. Then
it satisfies the description in Theorem 13. If all terms of α belong to �a� then
clearly � ≤ 2k. Otherwise there is an even number of terms not in �a�, let their
z-coordinates be z1, . . . , z2m with z1 = min1≤i≤2m zi. Only z1 can be non-positive
among all z-coordinates. Fix an i ∈ {2, . . . , 2m} and regard the sum z1 + zi > 0 as
a single summand in the equality

��
j=1 zj = 2k. Then the sum

��
j=1 zj contains

� − 1 positive integer summands adding up to 2k, therefore � − 1 ≤ 2k. Because
� − 1 = 2k is known to be possible, the reasoning yields D(C2 ⊕ C2k) = 2k + 1.
Moreover �−1 = 2k if and only if all summands are 1’s, and z1+zi = 1 in particular.
The latter must hold for each i ∈ {2, . . . , 2m}. Now it is not hard to infer that a)
and b) are the only outcomes for the inverse Davenport problem.

5. Concluding Remarks

Let us mention implications of the approach to higher-rank groups of the form
G = C

r−1
2 ⊕ C2k, with r > 2. Here the subgroup 2G is cyclic of order k and the

factor group G/2G ∼= C
r
2 is an elementary 2-group again. Hence the same general

idea applies. One can derive a certain structural conclusion like with rank 2. There
are predictable complications in the proof since the structure of G/2G ∼= C

r
2 for

large r is more involved than the one of C
2
2 . For similar reasons (as G/ �a� ∼= C

r−1
2 )

the structural result does not provide straightforward consequences with the same
ease as Theorem 13. For example the Davenport problems do not obtain immediate
solutions like with r = 2 above. They are only reduced to other problems of a certain
kind. However we believe that the restatement is not trivial. The new problems do
need separate treatment, yet there is a cautious hope that they are accessible. Here
is an example of what can be achieved for rank 5.
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It is a basic fact that, for a general abelian group G = Cn1 ⊕ · · · ⊕ Cnr with
1 < n1| · · · |nr, the Davenport constant D(G) is at least

�r
j=1(nj − 1)+1 = D∗(G).

For G = C
r−1
2 ⊕C2k with r ∈ {2, 3, 4} it is known that the equality D(G) = D∗(G)

holds. Of particular interest is the case r = 5 with k odd, where an example shows
that D(G) > D∗(G). For r = 5 the outlined approach solves the direct Davenport
problem. The outcome is:

D(C4
2 ⊕ C2k) =

�
2k + 4 = D∗(G) if k is even;
2k + 5 = D∗(G) + 1 if k is odd.

About the inverse problem for r = 5, it is curious that several essentially different
longest minimal zero-sum sequences turn up in the case k even—but there is a
unique one in the case k odd. We hope to address these questions elsewhere.
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