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Abstract
By congruentially identifying formal power series with polynomials and then inves-
tigating symmetric properties of those polynomials we prove theorems on infinite
families of Ramanujan-type congruences for a restricted partition function. The
function p(n,m) enumerates the partitions of n into exactly m parts. Our divis-
ibility results are modulo prime powers for p(n,m) and are established for both
variables n and m simultaneously.

1. Introduction

Recent papers, [2] and [3], establish several surprising infinite families of Ramanujan-
type congruences for the restricted partition function p(n, m). In [3], results modulo
prime powers are given while [2] regards consecutive values of p(n, m) each of which
is congruent to an odd prime. Here p(n,m) enumerates the partitions of n into
exactly m parts.

The primary goal of this paper is to combine the results of [2] and [3]. In doing
so we will establish infinite families of Ramanujan-type divisibility properties of
p(n, m) across both variables n and m simultaneously. We will conclude this paper
with a theorem that presents an infinite family of these congruences in a striking
fashion. For example:

Example 1. For j > 0 and 2 <t <5 we have p(3004,¢) =0 (mod 25).

We note that when ¢t = 3 and 4 the above congruence holds modulo 53.
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2. Statement of Theorems

A result of Y. H. Kwong from [5] reveals that {p(n, m)},,>0 is periodic modulo prime
powers £< for certain values of m. We will establish infinite families of congruences
that cluster near the beginning and end of the period of {p(n, m) (mod £*)},>0. The
clusters consist of consecutive values of p(n,m) and become ever more numerous
for larger values of m. Our first theorem comes from congruentially identifying
generating functions with polynomials.

We require the following definition.

Definition 2. lcm(m) is the least common multiple of the numbers from 1 to m.

Theorem 3. Let ¢ be an odd prime and let integers j, «, t, o be such that j > 0, o >
2
1, 2<t</{ and1 -+t <o <t. Then
p(lem({ — 1) - €45+ 0,t) =0 (mod £°). (1)
For 2 <t < ¢, Theorem 3 gives us exactly tz% — 1 consecutive values of p(n,t),
each of which is divisible by ¢.

Example 4. Set £ = 5 and o = 2 in (1) so that for the number of parts ¢ with
2
2<t<bandl-Ft<o<t:

e For t =4 we have —5 < 0 < 4 and so p(12j - 5% + 0,4) = 0 (mod 52);
e For t =3 we have —2 < ¢ < 3 and so p(12j - 5% + 7,3) = 0 (mod 52);
e For t =2 we have 0 < o < 2 and so p(12j - 52 4+ 0,2) =0 (mod 52).

The following corollary is a combination of Theorem 3 with ¢ = 0 and a result
from [3]. This corollary displays an infinite family of Ramanujan-type congruences
for a two variable restricted partition function across both variables simultaneously.

Corollary 5. Let £ be an odd prime and let integers j, , t be such that 7 > 0, a >
1, 2 <t </{. Then

p(lem(¢ — 1) - £%4,t) =0 (mod £%). (2)
Example 6. Set { =7 and o =2 in (2) so that for 2 <t < 7:
p(29405,7) = 0 (mod 49);
p(29407,6) = 0 (mod 49);
p(29407,5) = 0 (mod 49);
p(29405,4) = 0 (mod 49);
p(29405,3) = 0 (mod 49);
p(29405,2) = 0 (mod 49)

Some but not all of the above congruences hold modulo higher powers of 7.
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3. Background Material

The methods of proof for these theorems come from congruentially identifying gen-
erating functions with polynomials and then investigating symmetry properties of
these polynomials. A detailed study regarding the congruential identification of gen-
erating functions to polynomials and symmetric properties of them can be found in
[1] and [3]. Results regarding the periodicity of generating functions can be found
in [4], [5], [6], and [7].

The following lemma due to Y. H. Kwong is crucial for our results.

Lemma 7. ([5]) For a nonnegative integer t, the sequence {p(n,t) (mod £*)},>¢
is periodic with minimum period lem(£ — 1)0% so long as

t

s

> o) 5] <e
6>0

where ¢ is Buler’s totient function.

Remark 8. [3] Given a nonnegative integer ¢, let d be any of the natural numbers
that are multiples of lem(t) and let % be a primary factor of d. Set K(¢,t,d) =
Y550 (%) 5] Whenever K(£,¢,d) < ¢ we will say that Kwong’s Criterion is
satisfied. Moreover, when ¢ is such that 2 < ¢ < £ and d = lem(¢ — 1)¢* we have

K t,d=t-1<{/, (3)
and Kwong’s Criterion is satisfied.

Lemma 7 tells us that modulo 5 the coefficients of the generating function for
p(n,4) are periodic with period lem(4) - 5 = 60. However, in congruentially identi-
fying generating functions with polynomials it may be the case that the number of
terms in the polynomial is less than what is expected. For example:

Example 9. We have

& Coin - q4(1 _ q60) _ q4(1 _ q12)5
n;)[p(n’zl) Pl =80l = T = @

=¢'(l+q+ - +d")A+C++d" )0+ P+ + )0+ +¢°)(1—¢'?)  (mod 5)

The period of 60 gives us information on 60 terms in this sequence, yet the
polynomial in the far right side of Example 9 is of degree 54 and has exactly 51
terms. The ‘absent’ terms from the polynomial correspond to terms of the sequence,
equivalently, coefficients of the generating function, that are zero modulo 5.

So that the partition theoretic information found in the generating function does
not vanish when re-expressed as a polynomial, we will embellish our polynomial by
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including additional terms, each of which has coefficient zero. We will call these
additional terms periodic terms, we will call this embellished polynomial a periodic
polynomial, and we will take the periodic terms into consideration when determining
the degree of the periodic polynomial. It is these periodic terms that give us our
results.

Theorem 10 establishes how we congruentially identify generating functions with
polynomials without any loss of desired partition theoretic information. The state-
ment of the following theorem has been slightly modified from its appearance in [3]
to streamline our procedures.

Theorem 10. ([3]) Given an odd prime £ and t such that 2 < t < {, let d =
lem(¢ —1)¢*. Then the generating function for the difference between the number of
partitions of n into exactly t parts and the number of partitions of n —d into exactly
t parts is congruent modulo £* to a periodic polynomial, A(q; ¥, t,d), of degree d with
exactly d terms, including periodic terms:

o0 t1 _ d
S (o, 1) — pln — 1)) " = ng)‘” — A(g0,t,d) (mod (). (4)
n=0 ) t
Example 11. We have
5 o)~ pla— 60,9 = L) = 4 54,60

n=0
=0 +0¢* +0¢° + [¢"(A+ g+ + ¢ A+ + -+ ¢ )1+ +¢° +¢°)
(1+¢*+¢®) (1 — ¢'?)] + 0¢°® + 0¢°° + 0¢°" + 0¢°® + 0¢°® + 0¢°°  (mod 5).

Remark 12. Compare Example 11 to Example 9.

4. Proof of Theorem 3

Proof. Let d = lem(£—1)¢* be as in Remark 8 so that Kwong’s Criterion is satisfied.
Lemma 7 tells us that the sequence {p(n,t) (mod £%)},>¢ is periodic with minimum
period lem(¢ — 1)¢*. However, the rational function ¢*(1 — ¢%)/(¢;q); identifies
modulo /¢ with a standard polynomial of degree d — t22—_t with d — % + 1 terms:

¢'(1—q% ¢, t+1 t+2 d—t=t_ d—t2=t
qu +qT F2¢ 4 g ++¢" 7 (mod £%). (5)

From the right-hand side of (4) in Theorem 10 we have that A(q; ¢, t,d) is a periodic
polynomial and has d terms, including those that are periodic. The difference in
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number of terms between A(g; ¢,t,d) and the left-hand side of 6 is simply tz% —1.

The first ¢ — 1 and last ﬁT_t terms of A(q;¢,t,d) are periodic terms:
A(g; b,t,d) = 0g +0¢° + - +0¢" " +¢" +¢"+ 4 (6)

t2 ¢ 2 ¢ 2 ¢
+q¢m 7 g 40t T 4 0g% T 4 0g.

Since {p(n,t) (mod %)}, >¢ is periodic with period d for 2 <t < ¢, we have, for
1— £ <o < ¢, that p(lem(£ — 1)£*j + 0,t) = 0 (mod £°). O

Example 13 is a re-expression of Example 4.

Example 13. Set / =5 and a = 2, with 2 <t < 4 to obtain the following;

00 o . q4(1 _ q300)
T;Lzo(m) p(n =300, 4)l¢" = = —5—

= A(q;5,4,300) = 0g + 0g> + 0¢® + ¢* + - - -
g 1 06%% 1 002% 1 0¢2°7 + 0g2% + 0¢%° 4+ 04°°  (mod 25),

where the coefficient a, on ¢" corresponds to p(3005 + 7, 4) and so for —5 <o < 3
we have that p(3005 + 0,4) =0 (mod 25);

oo o . q3(1—q300)
;[p(mfi) p(n = 300,3)]¢" = —r——

= A(¢;5,3,300) = 0g +0¢° + ¢* + - - - +¢*7 + 0¢*% + 0¢**? + 04 (mod 25),

where the coefficient a, on ¢" corresponds to p(300j + 7,3) and so for —2 < o < 2
we have that p(300j 4+ ¢,3) =0 (mod 25);

e e} 2 300
1—
S [p(n,2) — p(n — 300,2)] " = LL—0T)
= ()2
= A(¢;5,2,300) = 0q + ¢* + - — ¢**® — ¢*% + 0¢°*°  (mod 25),

where the coefficient a, on ¢" corresponds to p(3005 + r,2) and so for 0 < o < 1 we
have that p(3005 4+ 0,2) =0 (mod 25).

5. Proof of Corollary 5

We need the following result to complete the proof of Corollary 5.
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Theorem 14. [3] For { an odd prime, j >0, and 0 < k < 5—73 and o > 1,
p(lem(¢ — 1)0%j — k£,£) =0 (mod £%). (7)
Theorem 14 gives us K_Tl Ramanujan-type congruences for each /.

Proof. Corollary 5 follows immediately from Theorem 3 by fixingo =0for2 <t < ¢
and setting k = 0 in Theorem 14. U

6. Concluding Remarks

There are many more results regarding Ramanujan-type congruences for p(n,m)
and other integer partition functions to be gained from this line of inquiry. Con-
tinued study of the symmetry properties of the polynomial A(g;?,t,d) will yield
additional Ramanujan-type congruences for p(n, m) which cluster in the middle of
the periods of {p(n,t) (mod £%)},>0. No combinatorial proofs for any of these
theorems are yet known.
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