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Abstract
We investigate an impartial combinatorial game: Toppling Towers. We will give
genera of some positions, and provide all tame positions. Furthermore, all positions
which are both tame and P-positions for board sizes of 2×m are shown.

1. Introduction

By a game we mean an impartial combinatorial game, and we restrict our attention
to classical impartial games. The theory of such games can be found in [4] and [5].

Given any game G, we say informally that a P-position is any position u of G

from which the previous player can force a win, that is, the opponent of the player
moving from u can force a win. An N-position is any position v of G from which
the next player can force a win, that is, the player who moves from v can force a
win. The set of all P-positions of G is denoted by P, and the set of all N-positions
by N . By Op(u) we denote all the options of u, i.e., the set of all positions that can
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be reached in one move from the position u. It is clear to see that for each position
u of G,

u ∈ P if and only if Op(u) ⊆ N , (1)
and

u ∈ N if and only if Op(u) ∩ P �= ∅. (2)

Indeed, the player I, beginning from an N-position, will move to a P-position
which exists by Eq. (2), and the player II has no choice but to go to an N-position,
by Eq. (1). In other words, the set of all positions of every game can be partitioned
uniquely into its subsets P and N .

Recall that the P-positions and N-positions of a game are not “symmetrical”.
A position in P requires that all its options are in N , which is a relatively rare
event. Singmaster [6,7] proved that “almost all” positions are N-positions. This
fact may partially explain why a winning strategy of a game is normally given by
characterizing its P-positions rather than its N-positions.

There are two rules in an impartial combinatorial game: normal play convention

and misère play convention. Under the normal play convention, a player loses if
she has no options. Under the misère play convention, a player wins if she has
no options. The Sprague-Grundy theorem [2] stated that an impartial game under
normal play convention is equivalent to a Nim heap of a certain size. However,
there is not a similar result under misère play convention. The traditional tool for
the analysis of an impartial game under misère play convention is the genus symbol
or the misère Grundy value, which was developed by Conway ([4, Chapter 13] and
[5, Chapter 12]).

The Toppling Towers game is played as follows: Given an n ×m board, along
with the placement of k ≤ n ×m towers on the board. On her turn, a player can
“topple” a tower in one of the four cardinal directions. Upon falling, the tower then
also topples all contiguous towers in the direction in which it was toppled. Towers
that have been toppled are then removed from the board. Under the normal play
convention, a player loses if she has no towers to topple. Under the misère play
convention, a player wins if she has no towers to topple.

Allen [1] investigated 1×m board in Toppling Towers game, and proved that

Γ(
�
❅❅��

�n) =
�

1031
, if n = 1,

n
n(n⊕2)

, if n > 1. (3)

Moreover, Allen [1] obtained the following results: Let

G =
�
❅❅��

�i1 +
�
❅❅��

�i2 + · · ·+
�
❅❅��

�in +
m�

k=1

❅❅�� ,

where ij ≥ 2 for j ∈ {1, 2, · · · , n}, and let v = 0 if m ≡ 0 mod (2), v = 1 if
m ≡ 1 mod (2). Then

G ∈ P under the misère play convention ⇔ i1 ⊕ i2 ⊕ · · ·⊕ in ⊕ v = 0. (4)
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Thus all P-positions of the 1×m board in Toppling Towers game under the misère
play convention have been determined completely.

Allen [1] also investigated 2 ×m board in Toppling Towers game. However, we
find that she gave some inaccurate conclusions on tame position for this board size.
By means of the theory of genus, we revise some conclusions of [1] in section 3. To
do this, section 2 will present more genera of some positions, and give all positions
which are both tame and P-positions for board sizes of 2×m.

2. The Genera of Some Positions

Definition 1. Let S be any finite subset of Z≥0 = {n ∈ Z | n ≥ 0}. We define the
minimum excluded value of S by the smallest nonnegative integer not in S. It will
be denoted by mex(S). In particular, mex(∅) = 0.

Definition 2 ([1]). Given nonnegative integers n and m, their Nim sum, denoted
by n⊕m, is defined by the exclusive or of their binary representation. Equivalently,
the Nim sum of n and m can be determined by writing each of them as a sum of
distinct powers of two, and then canceling any power of two which occurs an even
number of times.

Definition 3 ([1]). Given a game G. We define

G+(G) =
�

0, if G has no options,
mex{G+(G�)|G� is an option of G}, else,

and

G−(G) =
�

1, if G has no options,
mex{G−(G�)|G� is an option of G}, else.

Definition 4 ([1]). The genus of a game G, denoted by Γ(G), is defined by the list
of the form g

g0g1g2g3···, where





g = G+(G),
g0 = G−(G),

gn = G−(G +
n�

i=1
T) (n ∈ Z≥1),

and T denotes a Nim heap with 2 tokens.

Definition 5([1]). For a game G, we say that the genus of G, g
g0g1g2g3···, stabilizes

if there exists an integer N ∈ Z≥0 such that for any integer n ≥ N , gn+1 = gn ⊕ 2.
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Let G be an impartial game. Then the genus of G stabilizes ([1, Theorem 2.1.5]).
If Γ(G) = g

g0g1g2g3··· stabilizes at gN , i.e., gN+1 = gN ⊕ 2, then the digits in
the superscript of Γ(G) alternate between gN and gN+1 ([1, Lemma 2.1.4]). Thus
we abbreviate the genus symbol Γ(G) = g

g0g1g2g3··· to Γ(G) = g
g0g1g2g3···gN (gN⊕2).

Recently, Allen [8] also examined the periodicity of the genus sequences of the heaps
of finite quaternary games.

How is the genus Γ(G) of G calculated? Lemma 7 gives a kind of method. Lemma
6 presents some properties of operation ⊕, which are used in the proofs of the main
results. Lemma 6 can be obtained by the properties of Nim sum, while Lemma 7 is
a result which was proved in [4].

Lemma 6. Given a, b ∈ Z≥0
and a ≥ b. We have

(1) a = b ⇔ a⊕ b = 0.
(2) a− b � a⊕ b � a + b.

(3) a⊕ b = 1 ⇔ a− b = 1 and a ≡ 1 mod (2).
(4) (i) If a ≡ 1 mod (2) and b ≡ 0 mod (2), then a⊕ b ≡ 1 mod (2).

(ii) If a ≡ 1 mod (2) and b ≡ 1 mod (2), then a⊕ b ≡ 0 mod (2).
(iii) If a ≡ 0 mod (2) and b ≡ 0 mod (2), then a⊕ b ≡ 0 mod (2).

(5) a⊕ 1 = a + 1 if a is even, a⊕ 1 = a− 1 if a is odd.

Lemma 7 ([4]). Suppose that G is a game with options Ga, Gb, Gc, Gd, · · · such

that

Γ(Ga) = a
a0a1a2a3···

,

Γ(Gb) = b
b0b1b2b3···

,

Γ(Gc) = c
c0c1c2c3···

,

Γ(Gd) = d
d0d1d2d3···

,

.

.

. .

Then Γ(G) = g
g0g1g2g3···

, where

g = mex{a, b, c, d, · · · },
g0 = mex{a0, b0, c0, d0, · · · },
g1 = mex{g0, g0 ⊕ 1, a1, b1, c1, d1, · · · },
g2 = mex{g1, g1 ⊕ 1, a2, b2, c2, d2, · · · },

.

.

.

gn = mex{gn−1, gn−1 ⊕ 1, an, bn, cn, dn, · · · }.

Berlekamp [4] proved the following results: Given an impartial game G with
genus Γ(G) = g

g0g1g2g3···. Then

under the normal play convention, G ∈ P ⇔ g = 0, (5)

and
under the misère play convention, G ∈ P ⇔ g0 = 0. (6)
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Thus, the genus of a game G is the perfect tool to determine the outcome class
of G under the normal play convention, or under the misère play convention. In the
literature, when this is the only information which is sought, the genus of a game
is abbreviated to g

g0 . However, we will not use this convention as we are interested
in whether a game is tame or not which cannot be determined by the base g and
the first superscript g0 of the genus.

Definition 8 ([1]). Given an impartial game G under the misère play convention.
G is tame if the following conditions hold: (1) Γ(G) ∈ {0120

, 1031
, k

k(k⊕2)|k =
0, 1, 2, · · · }; (2) For every option G

� of G, G
� is tame. An impartial game G is wild

if it is not tame.
Since a tower can only effect contiguous towers, we see that a Toppling Towers

game can be thought of as the disjunctive sum of each of the contiguous components,

ignoring any empty squares. For example, if G=
��❅❅❅❅��

❅❅�� , then we think of this game

as the disjunctive sum of the games G1= ��❅❅❅❅�� and G2 = ❅❅�� .
How is the genus of the disjunctive sum of two games G1 and G2 calculated?

Lemma 9 gives partial result.

Lemma 9 ([5]). Let G and H be two tame games. Then G + H is also a tame

game and

Γ(G + H) =






Γ(H), if Γ(G) = 0120
,

0120
, if Γ(G) = Γ(H) = 1031

,

(n⊕ 1)(n⊕1)(n⊕3)
, if Γ(G) = 1031

, Γ(H) = n
n(n⊕2)

,

(n⊕m)(n⊕m)(n⊕m⊕2)
, if Γ(G) = n

n(n⊕2)
, Γ(H) = m

m(m⊕2)
.

For n ∈ Z≥0, by G =
�
❅❅��

�n we represent a row of n towers, and by
�
��❅❅
❅❅��

�n
we

represent two rows of n towers stacked on top of each other. Similarly, we also

have the meanings of
� �n

,
�
��❅❅

�n
, and

�

❅❅��

�n
.

Theorem 10. Let G=

�
��❅❅

�a
��❅❅
❅❅��

�
��❅❅

�b
with a, b ∈ Z≥0

. Then

Γ(G) =
�

m
m0(m0⊕2)
0 , if a ≡ 0 mod 2 and b ≡ 0 mod 2,

((a + b + 1)⊕ 1)((a+b+1)⊕1)((a+b+1)⊕3)
, else,

where m0 = f(a, b) is a unique nonnegative integer depending on both a and b.

Moreover, m0 ∈ {2, · · · , a + b + 2}.
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Proof. It follows from [1, Theorem 4.3.2] that G is tame. Thus

Γ(G) ∈ {0120
, 1031

, k
k(k⊕2)|k = 0, 1, 2, · · · }.

It follows from [1, Proposition 4.3.3] that for a = 0 and b ≥ 0,

Γ(G) = Γ
��

��❅❅
�0

��❅❅
❅❅��

�
��❅❅

�b�
= (b + 2)(b+2)((b+2)⊕2)

. (7)

By [1, Proposition 4.3.4], for a = 1 and b ≥ 0, we have

Γ(G) = Γ
��

��❅❅
�1

��❅❅
❅❅��

�
��❅❅

�b�
= ((b + 2)⊕ 1)((b+2)⊕1)((b+2)⊕3)

. (8)

It is sufficient to consider a ≥ 2 and b ≥ 2. We proceed by the induction on
k = a + b.

For k = 4, we have a = b = 2. It follows from [1, Appendix B] that Γ(G) = 220,
which shows the base case.

Suppose that the conclusions of Theorem 10 are true for all k < n. We now
prove that the conclusions are also true for k = n. We distinguish four cases: (i)
a ≡ 1 mod (2) and b ≡ 1 mod (2), (ii) a ≡ 1 mod (2) and b ≡ 0 mod (2), (iii)
a ≡ 0 mod (2) and b ≡ 1 mod (2) and (iv) a ≡ 0 mod (2) and b ≡ 0 mod (2).

All options of G are listed as follows:

G →






Ai =
� �i�

��❅❅
�a−i

��❅❅
❅❅��

�
��❅❅

�b
for 1 ≤ i ≤ a,

Bj =
� �a

❅❅��

� �j�
��❅❅

�b−j
for 0 ≤ j ≤ b,

C =
�
��❅❅

�a
��❅❅

�
��❅❅

�b
,

Dx =
�
��❅❅

�a
��❅❅
❅❅��

�
��❅❅

�b−x� �x
for 1 ≤ x ≤ b,

Ey =
�
��❅❅

�a−y� �y

❅❅��

� �b
for 0 ≤ y ≤ a,

Fz =
�
��❅❅

�z �
��❅❅

�a−z−1
��❅❅
❅❅��

�
��❅❅

�b
for 1 ≤ z ≤ a− 1,

H =
��a ��b

,

I =
��a ��b

,

Ju =
��a ��b−u−1��u

for 1 ≤ u ≤ b− 1.
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(i) a ≡ 1 mod (2) and b ≡ 1 mod (2).
In this case, (a + b + 1)⊕ 1 = a + b. In order to prove

Γ(G) = ((a + b + 1)⊕ 1)((a+b+1)⊕1)((a+b+1)⊕3) = (a + b)(a+b)((a+b)⊕2)
,

by Lemma 7, we need only to prove the following two facts:

Fact I For any η ∈ {0120
, 1031

,m
m(m⊕2)|m = 2, 3, · · · , a + b − 1}, there exists an

option G
� of G such that Γ(G�) = η;

Fact II There is no option G
� of G such that Γ(G�) = (a + b)(a+b)((a+b)⊕2).

Proof of Fact I.
• Consider Ey. If y = a, then Γ(Ea) = Γ(❅❅��) = 1031 by Eq. (3). If y = a − 1,

then Γ(Ea−1) = Γ(❅❅��+❅❅��) = 0120 by Lemma 9 and Eq. (3). If 0 ≤ y ≤ a−2, then

Γ(Ey) = Γ((❅❅��)a−y + ❅❅��) = ((a− y)⊕ 1)((a−y)⊕1)((a−y)⊕3)
.

Note that 0 ≤ y ≤ a− 2, thus (a− y)⊕ 1 ranges from 2 to a by Lemma 6(5).
• Consider Dx. By the induction hypothesis, we have

Γ(Dx) = ((a + b− x + 1)⊕ 1)((a+b−x+1)⊕1)((a+b−x+1)⊕3)
.

Note that if x = 1, then (a + b− x + 1)⊕ 1 = a + b + 1. The fact 2 ≤ x ≤ b means
a + 1 ≤ (a + b− x + 1)⊕ 1 ≤ a + b− 1, thus (a + b− x + 1)⊕ 1 ranges from a + 1
to a + b− 1 by Lemma 6(5). �

Proof of Fact II.
• Consider Ai. By the induction hypothesis, we have

Γ(Ai) = ((a + b− i + 1)⊕ 1)((a+b−i+1)⊕1)((a+b−i+1)⊕3)
.

If i = 1, then (a+b−i+1)⊕1 = a+b+1. If i = 2, then (a+b−i+1)⊕1 = a+b−2.
If 3 ≤ i ≤ a, by Lemma 6(2), then

(a + b− i + 1)⊕ 1 ≤ (a + b− i + 1) + 1 ≤ a + b− 1 < a + b.

• Consider Bj . If j = b, then Γ(Bb) = 1031
. If j = b− 1, then Γ(Bb−1) = 0120. If

j = 0, then
Γ(B0) = (b− 1)(b−1)((b−1)⊕2)

.

If 1 ≤ j ≤ b− 2, then

Γ(Bj) = ((b− j)⊕ 1)((b−j)⊕1)((b−j)⊕3)

with (b− j)⊕ 1 ≤ b− j + 1 ≤ b < a + b.
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• Consider C. It follows from Eq. (3) that Γ(C) = (a + b + 1)(a+b+1)((a+b+1)⊕2).

• Consider Fz. Let Fz1 =
��z

and Fz2 =
��a−z−1��b

. Then

Γ(Fz) = Γ(Fz1)+Γ(Fz2). Note that Γ(Fz1) = z
z(z⊕2). By the induction hypothesis,

the fact b ≡ 1 mod (2) means

Γ(Fz2) = ((a− z + b)⊕ 1)((a−z+b)⊕1)((a−z+b)⊕3)
.

It follows from Lemma 7 that

Γ(Fz) = (z ⊕ (a− z + b)⊕ 1)(z⊕(a−z+b)⊕1)(z⊕(a−z+b)⊕3)
.

Recall that a + b ≡ 0 mod (2), and for any z ∈ {1, 2, · · · , a− 1}, z ⊕ (a− z + b) ≡
0 mod (2). Thus the fact z⊕(a−z+b)⊕1 ≡ 1 mod (2) implies z⊕(a−z+b)⊕1 �=
a + b, i.e., Γ(Fz) �= (a + b)(a+b)((a+b)⊕2).
• Consider H. Γ(H) = Γ((❅❅��)a + ❅❅�� + (❅❅��)b) = (a⊕ b⊕ 1)(a⊕b⊕1)(a⊕b⊕3). The

given conditions a ≡ 1 mod (2) and b ≡ 1 mod (2) imply that a⊕b ≤ a+b−2 < a+b.
Thus a⊕ b⊕ 1 ≤ a + b− 2 + 1 = a + b− 1 < a + b.
• Consider I. Γ(I) = Γ((❅❅��)a + (❅❅��)b) = (a ⊕ b)(a⊕b)(a⊕b⊕2). It is easy to see

that a⊕ b ≤ a + b− 2 < a + b.

• Consider Ju. Let Ju1 =
��a ��b−u−1

and Ju2 =
��u

. Then Γ(Ju) = Γ(Ju1) +

Γ(Ju2). It is easy to see that Γ(Ju2) = u
u(u⊕2). By the induction hypothesis, the

fact a ≡ 1 mod (2) means

Γ(Ju1) = ((a + b− u)⊕ 1)((a+b−u)⊕1)((a+b−u)⊕3)
.

It follows from Lemma 7 that

Γ(Ju) = ((a + b− u)⊕ 1⊕ u)((a+b−u)⊕1⊕u)((a+b−u)⊕3⊕u)
.

Note that a+b ≡ 0 mod (2), and (a+b−u)⊕u ≡ 0 mod (2) for any u ∈ {1, 2, · · · , b−
1}. Thus the fact (a+ b−u)⊕1⊕u ≡ 1 mod (2) implies (a+ b−u)⊕1⊕u �= a+ b,
i.e., Γ(Ju) �= (a + b)(a+b)((a+b)⊕2).

The above analysis shows that for any option G
� of G, Γ(G�) �= (a+b)(a+b)((a+b)⊕2).

The proof of Fact II is completed. �

Cases (ii) and (iii) can be proved similarly.

For Case (iv), we have a ≡ 0 mod (2) and b ≡ 0 mod (2).
In order to prove Γ(G) = m

m0(m0⊕2)
0 for m0 ≤ a + b + 2, by Lemma 7, we need

only to prove the following two facts:

Fact I There exist two options G1 and G2 of G such that Γ(G1) = 0120 and
Γ(G2) = 1031.
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Fact II For any option G
� of G, if Γ(G�) = n

n0(n0⊕2)
0 , then n0 < a + b + 2.

Proof of Fact I : Consider Bj . If j = b, then Γ(Bb) = 1031
. If j = b − 1, then

Γ(Bb−1) = 0120. �

Proof of Fact II :
• Consider Ai. If i ≡ 0 mod (2), then a − i ≡ 0 mod (2). By the induction

hypothesis, there exists an integer m0 ∈ {2, 3, · · · , a− i + b + 2} such that Γ(Ai) =
m

m0(m0⊕2)
0 . Note that m0 ≤ a− i + b + 2 ≤ a + b + 1 < a + b + 2.
If i ≡ 1 mod (2), then a− i ≡ 1 mod (2). By the induction hypothesis,

Γ(Ai) = ((a− i + b + 1)⊕ 1)((a−i+b+1)⊕1)((a−i+b+1)⊕3)
.

It follows Lemma 6(2) that (a− i + b + 1)⊕ 1 ≤ a− i + b + 1 + 1 < a + b + 2.
• Consider Bj . If j = b, then Γ(Bb) = 1031

. If j = b− 1, then Γ(Bb−1) = 0120. If
0 ≤ j ≤ b− 2, then

Γ(Bj) = ((b− j)⊕ 1)((b−j)⊕1)((b−j)⊕3)
.

It follows Lemma 6(2) that (b− j)⊕ 1 ≤ b− j + 1 ≤ b + 1 < a + b + 2.
• Γ(C) = (a + b + 1)(a+b+1)((a+b+1)⊕2).
• Dx, 1 ≤ x ≤ b, is similar to Ai, 1 ≤ i ≤ a.
• Consider Ey. If y = a, then Γ(Ea) = 1031

. If y = a− 1, then Γ(Ea−1) = 0120.
If 0 ≤ y ≤ a− 2, then

Γ(Ey) = ((a− y)⊕ 1)((a−y)⊕1)((a−y)⊕3)
.

It follows Lemma 6(2) that (a− y)⊕ 1 ≤ a− y + 1 ≤ a + 1 < a + b + 2.

• Consider Fz. Let Fz1 =
��z

and Fz2 =
��a−z−1��b

. Then

Γ(Fz) = Γ(Fz1) + Γ(Fz2). Note that Γ(Fz1) =
�

1031
, if z = 1,

z
z(z⊕2)

, if z > 1.
If z ≡ 0 mod (2), then a− z − 1 ≡ 1 mod (2). By the induction hypothesis,

Γ(Fz2) = ((a− z + b)⊕ 1)((a−z+b)⊕1)((a−z+b)⊕3)
.

It follows from Lemma 9 that

Γ(Fz) = (z ⊕ (a− z + b)⊕ 1)(z⊕(a−z+b)⊕1)(z⊕(a−z+b)⊕3)
.

Note that z ⊕ (a− z + b)⊕ 1 ≤ a + b + 1 < a + b + 2.
If z ≡ 1 mod (2), then a−z−1 ≡ 0 mod (2). By the induction hypothesis, there

exists an integer m0 ∈ {2, 3, · · · , a−z−1+b+2} such that Γ(Fz2) = m
m0(m0⊕2)
0 . It

follows from Lemma 9 that Γ(Fz) = (m0 ⊕ z)(m0⊕z)(m0⊕z⊕2). Note that m0 ⊕ z ≤
(a− z − 1 + b + 2)⊕ z ≤ a + b + 1 < a + b + 2.
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• Γ(H) = (a⊕ b⊕ 1)(a⊕b⊕1)(a⊕b⊕3), and a⊕ b⊕ 1 ≤ a + b + 1 < a + b + 2.
• Γ(I) = (a⊕ b)(a⊕b)(a⊕b⊕2), and a⊕ b ≤ a + b < a + b + 2.

• Consider Ju. Let Ju1 =
��z

and Ju2 =
��a ��b−u−1

. Then

Γ(Ju) = Γ(Ju1) + Γ(Ju2). Note that Γ(Ju1) =
�

1031
, if u = 1,

u
u(u⊕2)

, if u > 1.
If u ≡ 0 mod (2), then b− u− 1 ≡ 1 mod (2). By the induction hypothesis,

Γ(Ju2) = ((a− u + b)⊕ 1)((a−u+b)⊕1)((a−u+b)⊕3)
.

It follows from Lemma 9 that

Γ(Ju) = ((a + b− u)⊕ 1⊕ u)((a+b−u)⊕1⊕u)((a+b−u)⊕3⊕u)
.

Note that (a + b− u)⊕ 1⊕ u ≤ a + b + 1 < a + b + 2.
If u ≡ 1 mod (2), then b−u−1 ≡ 0 mod (2). By the induction hypothesis, there

exists an integer m0 ∈ {2, 3, · · · , a−u−1+b+2} such that Γ(Ju2) = m
m0(m0⊕2)
0 . It

follows from Lemma 9 that Γ(Ju) = (m0 ⊕ u)(m0⊕u)(m0⊕u⊕2). Note that m0 ⊕ u ≤
(a + b− u− 1 + 2)⊕ u ≤ a + b + 1 < a + b + 2. �

The proofs of Theorem 10 are completed.

3. Tame Positions in Toppling Towers Game

Theorem 11. Let G1=
��❅❅
❅❅��

��❅❅
❅❅��

and G2=
��❅❅❅❅��

❅❅����❅❅ . Then G1 and G2 are tame

and Γ(G1) = 002
, Γ(G2) = 1031

.

Proof. G1 has two options up to symmetry: A =
❅❅��

��❅❅
❅❅��

and B =
❅❅��❅❅��

. We now

calculate Γ(A). A has three options: A1 =
❅❅��❅❅��

, A2 = ��❅❅ and A3 =
❅❅��

��❅❅ .

By Eq. (3), we have Γ(A1) = Γ(B) = 220 and Γ(A2) = 1031. It follows Lemma
9 that Γ(A3) = Γ(❅❅��)+Γ(❅❅��) = 0120. By Lemma 7, we have Γ(A) = 331 and
Γ(G1) = 002. Note that the options A and B of G1 are tame. Hence, G1 is tame.

G2 has four options: C =
��❅❅❅❅��

❅❅�� , D =
��❅❅❅❅��

, E = ��❅❅
❅❅��

❅❅�� , and F =

��❅❅
❅❅�� . It follows from Lemma 9 and Eq. (3) that Γ(D) = 220, Γ(E) = Γ(A) =



INTEGERS: 12 (2012) 11

331, Γ(C) = Γ( ��❅❅❅❅�� )+Γ(❅❅��) = 331, and Γ(F ) = Γ(❅❅��) + Γ(❅❅��) = 0120. By Lemma
7, we have Γ(G2) = 1031. Note that the options C, D, E and F of G2 are tame.
Hence, G2 is tame.

Allen [1] proved that the game G defined by Theorem 12 is tame if and only
if n ≡ 0 mod (4). Theorem 12 obtains the explicit representation of Γ(G) which
contains Allen’s result.

Theorem 12. Let G = ��❅❅
��❅❅

�
��❅❅

�n
��❅❅
��❅❅

for n ∈ Z≥1
. Then

Γ(G) =






1031
, if n ≡ 0 mod (4),

1(n+4)31
, if n ≡ 1 or 3 mod (4),

(n + 4)0(n+2)((n+2)⊕2)
, if n ≡ 2 mod (4).

Proof. We proceed by the induction on n. Allen [1] determined the following four
genera, which show the base cases:

Γ
���❅❅
��❅❅

❅❅��❅❅��
❅❅��

�
= 1531, Γ

���❅❅
��❅❅

��2 �
= 6046,

Γ
���❅❅
��❅❅

��3 �
= 1731, Γ

���❅❅
��❅❅

��4 �
= 1031.

Suppose the conclusions of Theorem 12 are true for ∀ n < m. We now consider
n = m. All options of G, up to symmetry, can be listed as follows:

G →






A =
��❅❅

�
��❅❅

�m
��❅❅
��❅❅

,

Bi =
��❅❅

� �i�
��❅❅

�m−i
��❅❅
��❅❅

for 1 ≤ i ≤ m,

C =
��m

,

D =
��m

,

E =
��m

,

Fj =
��❅❅
��❅❅

�
��❅❅

�j �
��❅❅

�m−j−1
��❅❅
��❅❅

for 0 ≤ j ≤ �m−1
2 �.

The genus of each option of G can be determined:
• Γ(A) = a

a0a1a2a3··· = ((m + 2) ⊕ 1)((m+2)⊕1)((m+2)⊕3)
, by Lemma 9 and Eq.

(7).
• Γ(Bi) = b

bi0bi1bi2bi3···
i = ((m− i + 2)⊕ 1)((m−i+2)⊕1)((m−i+2)⊕3) for 1 ≤ i ≤ m,

by Lemma 9 and Eq. (7).
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• Γ(C) = c
c0c1c2c3··· = 0120

, by Lemma 9 and Eq. (3).
• Γ(D) = d

d0d1d2d3··· = (m + 3)(m+3)((m+3)⊕2)
, by Eq. (7).

• Γ(E) = e
e0e1e2e3··· = (m + 2)(m+2)((m+2)⊕2)

, by Eq. (7).

• Let F
�
j1 =

��❅❅
��❅❅

�
��❅❅

�j
and F

�
j2 =

��m−j−1
. It follows from Eq. (7) that

Γ(F �
j1) = (j + 2)(j+2)((j+2)⊕2)

,

Γ(F �
j2) = (m− j + 1)(m−j+1)((m−j+1)⊕2)

.

By Lemma 9, we have

Γ(Fj) = f
fj0fj1fj2fj3···
j = ((m− j + 1)⊕ (j + 2))((m−j+1)⊕(j+2))((m−j+1)⊕(j+2)⊕2)

for 0 ≤ j ≤ �m−1
2 �.

It is easy to see that all options A, B, C, D, E and F are tame, and none of the
genera for A, B, D, E and F is 1031. We distinguish the following three cases:

Case 1. m ≡ 0 mod (4).
In this case, G is tame by [1, Theorem 4.3.5]. Thus the genus

Γ(G) ∈ {0120
, 1031

, n
n(n⊕2)|n ∈ Z≥0}.

Let Γ(G) = g
g0g1g2g3···. We will prove that g = 1 and g0 = 0. Hence we have

Γ(G) = 1031.
In fact, m ≥ 1, m + 2 ≥ 3 and m + 3 ≥ 4. Thus

a = a0 = (m + 2)⊕ 1 = m + 3 �= 0 or 1,
d = d0 = m + 3 �= 0 or 1,
e = e0 = m + 3 �= 0 or 1.

Note that for 1 ≤ i ≤ m, we have m− i + 2 ≥ 2, and so

bi = bi0 = (m− i + 2)⊕ 1 ≥ 2.

It remains to examine Γ(Fj). Recall that 0 ≤ j ≤ �m−1
2 � = m−2

2 . We will prove
that for 0 ≤ j ≤ m−2

2 ,

fj = fj0 = (m− j + 1)⊕ (j + 2) �= 0 or 1.

In fact, if 0 ≤ j ≤ m−4
2 , by Lemma 6(2), we have

fj = fj0 = (j + 2)⊕ (m− j + 1) ≤ (m− j + 1) + (j + 2) = m + 3,

and
fj = fj0 = (j + 2)⊕ (m− j + 1) ≥ (m− j + 1)− (j + 2) ≥ 3.
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If j = m−2
2 , then j+2 = m+2

2 is odd, and m−j+1 = m+4
2 is even, and m+4

2 −m+2
2 =

1. It follows from Lemma 6 that (m+2
2 ⊕ m+4

2 ) �= 0 or 1.
Note that c = 0 and c0 = 1. By Lemma 7, we have

g = mex{a, bi(1 ≤ i ≤ m), c, d, e, fj(0 ≤ j ≤ m−2
2 )} = 1,

g0 = mex{a0, bi0((1 ≤ i ≤ m)), c0, d0, e0, Fj0((0 ≤ j ≤ m−2
2 ))} = 0.

Case 2. m ≡ 1 or 3 mod (4).
In this case, G is wild by [1, Theorem 4.3.5]. The genus of each option of G can

be determined:

Subase 2.1. Γ(A) = a
a0a1a2a3··· = (m + 1)(m+1)((m+1)⊕2); Γ(C) = c

c0c1c2c3··· =
0120; Γ(D) = d

d0d1d2d3··· = (m + 3)(m+3)((m+3)⊕2).

Subase 2.2. Consider Bi. Γ(B1) = (m + 2)(m+2)((m+2)⊕2). For 2 ≤ i ≤ m, we
have 2 ≤ (m− i + 2)⊕ 1 ≤ m. Thus

{Γ(Bi) = b
bi0bi1bi2bi3···
i |i = 1, 2, 3, · · · ,m}

= {220
, 331

, 446
, · · · ,m

m(m⊕2)
, (m + 2)(m+2)((m+2)⊕2)}.

Subase 2.3. Consider Fj . Note that 0 ≤ j ≤ �m−1
2 � = m−1

2 . We will prove that
for every integer j ∈ {0, 1, · · · ,

m−1
2 },

Γ(Fj) �= 113 or (m + 4)(m+4)((m+4)⊕2)
.

In fact, if 0 ≤ j ≤ m−5
2 , by Lemma 6, we have

fj = fj0 = (j + 2)⊕ (m− j + 1) ≤ (j + 2) + (m− j + 1) = m + 3,

and
fj = fj0 = (j + 2)⊕ (m− j + 1) ≥ (m− j + 1)− (j + 2) ≥ 4.

If j = m−3
2 , by Lemma 6, we have

2 ≤ fj = fj0 = (j + 2)⊕ (m− j + 1) =
m + 1

2
⊕ m + 5

2
≤ m + 3.

If j = m−1
2 , then fj = fj0 = (j + 2)⊕ (m− j + 1) = m+3

2 ⊕ m+3
2 = 0.

We now prove that Γ(G) = 1(m+4)31
. Let Γ(G) = g

g0g1g2g3··· and

M = {a, bi(1 ≤ i ≤ m), c, d, e, fj(0 ≤ j ≤ m−1
2 )},

M0 = {a0, bi0(1 ≤ i ≤ m), c0, d0, e0, fj0(0 ≤ j ≤ m−1
2 )},

M1 = {g0, g0 ⊕ 1, a1, bi1(1 ≤ i ≤ m), c1, d1, e1, fj1(0 ≤ j ≤ m−1
2 )},

M2 = {g1, g1 ⊕ 1, a2, bi2(1 ≤ i ≤ m), c2, d2, e2, fj2(0 ≤ j ≤ m−1
2 )},

M3 = {g2, g2 ⊕ 1, a3, bi3(1 ≤ i ≤ m), c3, d3, e3, fj3(0 ≤ j ≤ m−1
2 )},

... .
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By Lemma 7, we have
(g) 0 = c ∈M and 1 /∈M. Thus g = mex(M) = 1.
(g0) 0 = fm−1

2 0 ∈ M0, 1 = c0 ∈ M0, m + 1 = a0 ∈ M0, m + 3 = e0 ∈ M0,
m + 4 /∈M0, and

{bi0|i = 1, 2, 3, · · · ,m} = {2, 3, 4, · · · ,m,m + 2} ⊂M0.

Thus g0 = mex(M0) = m + 4.
(g1) Note that Γ(Bi) = b

bi0bi1bi2bi3···
i = ((m − i + 2) ⊕ 1)((m−i+2)⊕1)((m−i+2)⊕3)

.

For i = m− 1, Γ(Bi) = 220, and thus b(m−1)1 = 0 ∈M1. For i = m, Γ(Bm) = 331,
and thus bm1 = 1 ∈ M1. Moreover, 2 = c1 ∈ M1 and 3 /∈ M1. Thus g1 =
mex(M1) = 3.

(g2) 0 = c ∈M2 and 1 /∈M2. Thus g2 = mex(M2) = 1.
(g3) For i = m − 1, Γ(Bm−1) = 22020···, thus b(m−1)3 = 0 ∈ M3. For i = m,

Γ(Bm) = 33131···, so bm3 = 1 ∈ M3. 2 = c3 ∈ M3 and 3 /∈ M3. Thus g3 =
mex(M3) = 3.

... .
Hence Γ(G) = 1(m+4)31

.

Case 3. m ≡ 2 mod (4).
In this case, G is wild by [1, Theorem 4.3.5]. The genus of each option of G can

be determined:

Subase 3.1. Γ(A) = a
a0a1a2a3··· = (m + 3)(m+3)((m+3)⊕2); Γ(C) = c

c0c1c2c3··· =
0120; Γ(D) = d

d0d1d2d3··· = (m + 3)(m+3)((m+3)⊕2).

Subase 3.2. Consider Bi. For 1 ≤ i ≤ m, we have 2 ≤ (m− i + 2)⊕ 1 ≤ m + 1.
Thus

{Γ(Bi)|i = 1, 2, 3, · · · ,m} = {220
, 331

, 446
, · · · , (m + 1)(m+1)((m+1)⊕2)}.

Subase 3.3. Consider Fj . Note that 0 ≤ j ≤ �m−1
2 � = m−2

2 . We will prove that
for every integer j ∈ {0, 1, · · · ,

m−2
2 }, Γ(Fj) /∈ {002

, (m + 4)(m+4)((m+4)⊕2)}.
In fact, if 0 ≤ j ≤ m−4

2 , by Lemma 6, we have 3 ≤ (j +2)⊕ (m− j +1) ≤ m+3.
If j = m−2

2 , then j + 2 = m+2
2 ≡ 0 mod (2), and m − j + 1 = m+4

2 ≡ 1 mod (2),
and m+4

2 − m+2
2 = 1. It follows from Lemma 6 that m+2

2 ⊕ m+4
2 = 1.

We can determine Γ(G) = (m + 4)0(m+2)((m+2)⊕4) by the same method as Case
2.

Allen [1, Corollary 4.3.6] stated that for G =
�
��❅❅

�n
��❅❅
❅❅��

�
��❅❅

�4m
��❅❅
��❅❅

with n,m ∈

Z≥0, G is tame. Let Gn =
�
��❅❅

�n
��❅❅
❅❅��

��❅❅
��❅❅

. Then Gn is obtained by letting m = 0 in
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G. It follows from [1, Appendix B] that Γ(G1) = 5146, so G1 is wild. For n ≥ 2,
Gn has an option G1. It follows from the definition of wild position that Gn is
wild. Thus Corollary 4.3.7, Corollary 4.3.8 and Theorem 4.3.9 of [1] are inaccurate
conclusions. We will revise them, and give our new results.

Denote by T the set of all tame positions of 2×m board in the Toppling Towers
game. Similarly, denote by W the set of all wild positions. Obviously, the set of all
positions of 2×m board in the Toppling Towers game can be uniquely partitioned
into T and W. Recall that the set of all positions of a game can be uniquely
partitioned into P and N .

It follows from Eqs. (5) and (6) that the outcome class (P or N ) of a position
G can be determined by its genus Γ(G) under both the normal and misère play
conventions.

Given a position G, how can we determine G ∈ T or G ∈W? By Definition 8, if
G has an option G

� which is wild, then G is wild. Allen [1, Example 2.2.2] proved
that all options of G being tame does not imply that G is tame. Lemma 13 gives
the answer to the case that G has only tame options.

Lemma 13 ([4]). Suppose G is a position with only tame options. Then G is wild

if and only if among the options of G, the following conditions hold: (1) G has

options with genera equal to one, but not both, of 0120
or 1031

; (2) G has options

with genera equal to one, but not both, of 002
or 113

.

Let

S = {u|u is a position of the 2×m board in the Toppling Towers game},
S

0 = {u ∈ S|u contains no in the up-down direction},
S

>0 = {u ∈ S|u contains at least one in the up-down direction},

S
>0
notsum = {u ∈ S

>0|u can not be considered as the disjunctive sum of two or
more positions},

S
>0
sum = {u ∈ S

>0|u can be considered as the disjunctive sum of two or
more positions}.

It is easy to see that the set S can be uniquely partitioned into two sets S
0 and

S
>0, by distinguishing that whether there exists a in the up-down direction or

not. Similarly, S
>0 can be uniquely partitioned into two sets S

>0
notsum and S

>0
sum. For

examples, H1 =
❅❅��

❅❅����❅❅��❅❅ ∈ S
>0
notsum, H2 =

❅❅�� ❅❅��
��❅❅��❅❅ ∈ S

>0
sum, since H2 =

❅❅��
��❅❅��❅❅ +❅❅�� .

For any position H ∈ S
>0
sum, H can be thought as the disjunctive sum of H1,H2, · · · ,

Hm, where Hi ∈ S
>0
notsum. If all of the components Hi are tame, then H is also

tame. Thus a key question is that how to determine the outcome class of the
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position G ∈ S
>0
notsum. Our Theorem 14 gives the answer to this question.

Theorem 14. Suppose that G ∈ S
>0
notsum is a position. Then G ∈ T if and only if

G ∈ {G1, G2, G3, G4}, where, up to symmetry,

G1 = ��❅❅
��❅❅��❅❅

��❅❅ ,

G2 =
��❅❅❅❅��

❅❅����❅❅ ,

G3 =
�
��❅❅

�n
��❅❅
❅❅��

�
��❅❅

�t
for all n, t ∈ Z≥0

,

G4 =
�
��❅❅

�n
��❅❅
❅❅��

�
��❅❅

�4m
��❅❅
❅❅��

�
��❅❅

�t
for all n, t ∈ Z≥0

and m ∈ Z≥1
.

Proof. (⇐) It follows from Theorem 11 that G1 and G2 are tame. By Theorem 10
or [1, Theorem 4.3.2], G3 is tame. We now consider G4:

If n = t = 0, then G4 = ��❅❅
❅❅��

�
��❅❅

�4m
��❅❅
❅❅��

. Thus G4 is tame by Theorem 12 or by
[1, Theorem 4.3.5].

If n + t > 0, without loss of generality, let n ≥ 1. Consider all options of G4.
Note that they are tame and G4 has options

G
�

4 =
� �n

❅❅��

� �4m

❅❅��

� �t

and

G
��

4 = ��❅❅
� �n−1

❅❅��

� �4m

❅❅��

� �t
.

It follows from Lemma 9 and Eq. (3) that Γ(G
�

4) = 0120 and Γ(G
��

4 ) = 1031. By
Lemma 13, G4 is tame.

(⇒) Firstly, we define the following four structures:

H1 =
�

��❅❅

�2
��❅❅
❅❅��

�
��❅❅

�1
,H2 = ��❅❅

��❅❅
��❅❅

��❅❅
��❅❅ ,H3 = ��❅❅

��❅❅��❅❅
��❅❅

��❅❅
��❅❅ ,

H4 =
��i

, where i ≡ 1 or 2 or 3 mod (4).

It follows from [1, Appendix B] that Γ(H1) = 5146, Γ(H2) = 5146 and Γ(H3) =
21520. By the definition of wild, H1, H2 and H3 are wild. By Theorem 12, H4 is
wild.

Secondly, it is enough to show that for any H ∈ S
>0
notsum and H /∈ {G1, G2, G3, G4},

H is wild. We say that a follower of position H is a new position which can be
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reached from H after a finite number of moves. We now prove that one of the
structures H1, H2, H3 and H4 must be a follower of H, and thus H is wild, by
Definition 8.

In fact, all of the positions in S
>0
notsum can be represented in the form K:

K =
�
��❅❅

�u1���❅❅
❅❅��

�t1�

❅❅��

�b1���❅❅
❅❅��

�t2���❅❅
�u2���❅❅

❅❅��

�t3 ��b2��t4

· · · · · ·
�
��❅❅

�uk
�
��❅❅
❅❅��

�t2k−1�

❅❅��

�bk
�
��❅❅
❅❅��

�t2k

, where
2k�
i=1

ti �= 0.

(1)
k�

i=1
ui = 0 or

k�
i=1

bi = 0. In this case, K has the form K1:

K1 =
�
��❅❅

�u1���❅❅
❅❅��

�t1���❅❅
�u2���❅❅

❅❅��

�t2 ��u3��t3

· · · · · ·
�
��❅❅

�uk
�
��❅❅
❅❅��

�tk

, where
k�

i=1
ti �= 0.

If there exists an integer j ∈ {1, 2, · · · , k} such that tj ≥ 3, then H3 is a follower
of H. If there exists an integer j ∈ {1, 2, · · · , k} such that tj = 2, then H �= G1

implies that H2 is a follower of H. If tj ≤ 1 and j = 1, 2, · · · , k, the facts H �= G3

and H �= G4 imply that H4 is a follower of H.

(2)
k�

i=1
ui �= 0 and

k�
i=1

bi �= 0. In this case, H must contain the structures

�
��❅❅

�u
and

��b
. Moreover, H ∈ S

>0
notsum implies that H must contain the structure

�
��❅❅

�u�
��❅❅
❅❅��

�t�

❅❅��

�b
, where u, b, t ≥ 1. If t ≥ 3, then H3 is a follower of H. If t = 2,

then H2 is a follower of H. If t = 1, then H �= G2 implies that H1 is a follower of
H.

Theorem 15. Let G
�
= ��❅❅

��❅❅��❅❅
��❅❅ , G

��
=

��❅❅❅❅��
❅❅����❅❅ and G

���
=

��4m
, where m ∈

Z≥1
. Suppose that G ∈ S

>0
notsum and G be a tame position. Then

(1) Under the normal play convention, G ∈ P if and only if G = G
�
.

(2) Under the misère play convention, G ∈ P if and only if G = G
�
, G

��
or G

���
.

Proof. It follows from Theorem 11 that Γ(G
�
) = 002 and Γ(G

��
) = 1031. By Theorem

12, we have Γ(G
���

) = 1031.
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(1) (⇐) By Theorem 14, G
� ∈ T . G

�
is a P-position under the normal play

convention by Eq. (5), i.e., G
� ∈ P.

(⇒) By Theorem 14, G ∈ T implies G ∈ {G1, G2, G3, G4}, where Gi(i = 1, 2, 3, 4)
is defined in Theorem 14. We will prove that G2, G3, G4 are N-positions under the
normal play convention, thus G /∈ {G2, G3, G4}.

It follows from Eq. (5) that G1 = G
�

is a P-position under the normal play
convention, and G2 = G

��
is an N-position under the normal play convention.

We now consider G3. Let Γ(G3) = g
g0g1g2g3···. If n + t = 0, then Γ(G3) =

Γ
�
��❅❅
❅❅��

�
= 220. Thus G3 is an N-position under the normal play convention by

Eq. (5), as g �= 0. If n + t > 0, without loss of generality, let n ≥ 1. In this

case, G3 has options G
�

3 = ��❅❅
��❅❅

and G
��

3 = . Note that Γ(G
�

3) = 0120 and

Γ(G
��

3 ) = 1031. By Lemma 7, G+(G3) = g �= 0 and G−(G3) = g0 �= 0. So G3

is an N-position under the normal play convention.
We now consider G4. Let Γ(G4) = g

g0g1g2g3···. If n + t = 0, then G4 = G
���

is an
N-position under the normal play convention by Eq. (5). If n + t > 0, without loss
of generality, let n ≥ 1. In this case, G4 has options G

�

4= and G
��

4= . Note that
Γ(G

�

4)=1031 and Γ(G
��

4 )=0120. By Lemma 7, G+(G4) = g �= 0 and G−(G4) = g0 �= 0.
Hence G4 is an N-position under the normal play convention.

(2) (⇐) G
�
, G

��
and G

���
are P-positions under the misère play convention by

Eq. (6). By Theorem 14, G
�
, G

��
and G

�� ∈ T . Thus G = G
�
, G

��
or G

��� ∈ T ∩ P.
(⇒) By Theorem 14, G ∈ T implies G ∈ {G1, G2, G3, G4}, where Gi(i = 1, 2, 3, 4)

is defined in Theorem 14.
Note that G1 = G

�
and G2 = G

��
are P-positions under the misère play conven-

tion by Eq. (6).
Consider G3. It follows from case (1) that G−(G3) �= 0. By Eq. (6), G3 is an

N-position under the misère play convention.
Consider G4. If n + t > 0, it follows from case (1) that G−(G4) �= 0, thus G4

is an N-position under the misère play convention. If n + t = 0, then G4 = G
���

.
Recall that G−(G4) = G−(G

���
) = 0, thus G

���
is a P-position under the misère play

convention by Eq. (6).
Thus G = G

�
, G

��
or G

���
.
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