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Abstract

In this paper, we present new results on balancing, cobalancing, (a, b)-type balancing

and (a, b)-type cobalancing numbers as well as establish some new identities.

1. Introduction and Notation

A positive integer n is called by Behera et al. a balancing number [1], if there exists

a positive integer r, which is called the balancer of n, such that:

1 + 2 + · · · + (n− 1) = (n + 1) + (n + 2) + · · · + (n + r) . (1)

Panda [4] sets n = 1 as the first balancing number and r = 0 as its corresponding

balancer. Panda et al. [5] define cobalancing numbers as the solutions to the

diophantine equation:

1 + 2 + · · · + n = (n + 1) + (n + 2) + · · · + (n + r) , (2)

where r is the cobalancer of n.
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Throughout this paper, we denote by Bm, Rm, bm and rm, the mth
balancing

number, the mth
balancer, the mth

cobalancing number and the mth
cobalancer,

respectively. These numbers have already been extensively investigated in several

papers.

2. Background

The present work is strongly connected to the theory of diophantine equations and

more specifically, to the integer solutions of the following equation in two variables:

x2 − 2y2
= u2 − 2v2, (3)

where u and v are integers. Note that for u = ±1 and v = 0, Equation (3) is Pell’s

equation. It is well known, that the form x2 − 2y2
is irreducible over the field Q of

rational numbers, but in the extension field Q(
√

2) it can be factored as a product

of linear factors (x + y
√

2)(x − y
√

2). Using the norm concept for the extension

field Q(
√

2), Equation (3) which has ξ = u+ v
√

2 as solution, can be written in the

form:

N(x + y
√

2) = N(ξ). (4)

It is easily checked that the set of all numbers of the form x + y
√

2, where x and

y are integers, form a ring, which is denoted Z[
√

2]. The subset of units of Z[
√

2],

which we denote U forms a group. It is easy to show that α ∈ U if and only if

N(α) = ±1 [2]. Applying Dirichlet’s Theorem of units via subtle calculations, we

can show that U = {±
�
1 +

√
2
�m

, m ∈ Z}. Since

N
��

1 +

√
2

�m�
= N

��
1 +

√
2

��m
= (−1)

m, (5)

we obtain

N(α) = +1 ⇔ α =

�
1 +

√
2

�2m
, m ∈ Z, (6)

and

N(α) = −1 ⇔ α =

�
1 +

√
2

�2m+1
, m ∈ Z. (7)

For any α ∈ U with N(α) = 1, Equation (4) becomes

N(x + y
√

2) = N(αξ).

Thus, all integral solutions of Equation (3) have take the form:

x + y
√

2 = ξ
�
1 +

√
2

�2m
, m ∈ Z. (8)



INTEGERS: 13 (2013) 3

3. Preliminary Results

From (1) we have

r2
+ (2n + 1) r − n (n− 1) = 0. (9)

The discriminant ∆ of Equation (9) with respect to r is ∆ = 8n2
+ 1. Then

r =
− (2n + 1) +

√
8n2 + 1

2
· (10)

Since r is a positive integer, 8n2
+1 is a perfect square, i.e., 8n2

+1 = u2, with u odd.
Therefore

2n2
=

�
u− 1

2

��
u + 1

2

�
· (11)

Letting A =
u− 1

2
, we get from (10) and (11)

r = A− n, (12)

and

n2
=

A (A + 1)

2
= 1 + · · · + A. (13)

Consequently, n2
is a triangle number (see also [1]).

Case 1. If A is even, then from (13) we have n2
=

A
2 (A + 1) . Letting a =

A
2 , we

get

n2
= a (2a + 1) . (14)

Since a and 2a + 1 are coprime, they are both necessarily perfect squares. Hence,

from (12) and (14), we get

a = d2,

r = 2d2 − n,

n = d
�

2d2 + 1. (15)

Case 2. If A is odd, we obtain from (13) that n2
=

�
A+1

2

�
A· Letting a =

A+1
2 , we

get

n2
= a (2a− 1) . (16)

Since a and 2a − 1 are coprime, they are necessarily both perfect squares. Hence,

from (12) and (16), we get

a = d2,

r = 2d2 − n− 1,

n = d
�

2d2 − 1. (17)
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Now we are in a position to formulate our result as follows:

Theorem 1. Let n be a positive integer. The number n is a balancing number if
and only if there exists a proper divisor d of n (except for n = 1) for which 2d2

+ 1

or 2d2 − 1 is a perfect square. The pair (n, r) of each balancing with its cobalancer
is then explicitly given by

(n, r) =






�
d
√

2d2 + 1, 2d2 − n
�

if 2d2
+ 1 is a perfect square,

�
d
√

2d2 − 1, 2d2 − n− 1
�

if 2d2 − 1 is a perfect square.

Table 1 summarizes the 10 first balancing numbers based on Theorem 1.

d 2d2 − 1 2d2
+ 1 n r

1 1 1
√

1 = 1 0

2 9 2
√

9 = 6 2

5 49 5
√

49 = 35 14

12 289 12
√

289 = 204 84

29 1681 29
√

1681 = 1189 492

70 9801 70
√

9801 = 6930 2870

169 57121 169
√

57121 = 40391 16730

408 332929 408
√

332929 = 235416 97512

985 1940449 985
√

1940449 = 1372105 568344

2378 11309769 2378
√

11309769 = 7997214 3312554

Table 1.

Remark 1. Theorem 1 proves that no prime number could be a balancing number.

This result was also obtained by Panda et al., who showed that Bm = PmQm,

where Pm and Qm are the mth
Pell number and the mth

associated Pell number

respectively [6].

4. An Explicit Formula for Balancing Numbers and Some New Identities

A quick glance at Table 1 seems to indicate that the balancing numbers are alter-

natively odd and even (see also [8]), while the balancer numbers are even. In the

present section we prove this indication in a more explicit form. Indeed, from (15)

and (17), we have both, �n

d

�2
− 2d2

= 1, (18)

and �n

d

�2
− 2d2

= −1. (19)
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Letting x =
n
d and y = d, Equations (18) and (19) become the Pell equations

x2 − 2y2
= 1, (20)

and

x2 − 2y2
= −1, (21)

respectively. According to (6) and (7), all the solutions to Equations (20) and (21)

are given by

x +

√
2y =

�
1 +

√
2

�2m

=

2m�

i=0

�
2m

i

�
2

i/2

=

�
m�

i=0

�
2m

2i

�
2

i

�
+

√
2

�
m−1�

i=0

�
2m

2i + 1

�
2

i

�
, (22)

and

x +

√
2y =

�
1 +

√
2

�m

=

m�

i=0

�
m

i

�
2

i/2

=




�m/2��

i=0

�
m

2i

�
2

i



 +

√
2




�(m−1)/2��

i=0

�
m

2i + 1

�
2

i



 ,

respectively, with m a positive integer.

Substituting x by
n

d
and d by y, we get after identification

B2m−1 = n = yx =

�
m−1�

i=0

�
2m− 1

2i + 1

�
2

i

��
m−1�

i=0

�
2m− 1

2i

�
2

i

�
,

and

B2m = n = yx =

�
m−1�

i=0

�
2m

2i + 1

�
2

i

��
m�

i=0

�
2m

2i

�
2

i

�
.

for m ≥ 1.

Since both
�m−1

i=0

�2m−1
2i+1

�
2

i
and

�m−1
i=0

�2m−1
2i

�
2

i
are odd, the balancing numbers

of the subsequence {B2m−1}m≥1 are odd as well. Similarly, since
�m−1

i=0

� 2m
2i+1

�
2

i

is even, the balancing numbers of the subsequence {B2m}m≥1 are even. Hence,

according to Theorem 1, we have proved the following theorem.
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Theorem 2. For any positive integer m ≥ 1, (B2m, R2m) is an even-even pair and
(B2m−1, R2m−1) is an odd-even pair and we have

B2m−1 =

�
m−1�

i=0

�
2m− 1

2i + 1

�
2

i

��
m−1�

i=0

�
2m− 1

2i

�
2

i

�
,

R2m−1 = 2

�
m−1�

i=0

�
2m− 1

2i + 1

�
2

i

�2

−B2m−1 − 1,

and

B2m =

�
m−1�

i=0

�
2m

2i + 1

�
2

i

��
m�

i=0

�
2m

2i

�
2

i

�
,

R2m = 2

�
m−1�

i=0

�
2m

2i + 1

�
2

i

�2

−B2m·

Now let us rewrite Equation (9) as (2 (r + n) + 1)
2 − 2 (2n)

2
= 1. Letting x =

2 (r + n) + 1 and y = 2n, we find Pell’s equation (20) again. By identification,

according to (22), we get

n =
y

2
(23)

=
1

2

m−1�

i=0

�
2m

2i + 1

�
2

i

= m +

m−2�

i=0

�
2m

2i + 3

�
2

i

=

m−2�

i=−1

�
2m

2i + 3

�
2

i,

and since x = 2r + y + 1, we get

r =
x− y − 1

2
(24)

= −n +
x− 1

2

= −n +
1

2

�
−1 +

m�

i=0

�
2m

2i

�
2

i

�

= −n +

m�

i=1

�
2m

2i

�
2

i−1

= −n +

m−1�

i=0

�
2m

2i + 2

�
2

i·
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We have thus proved, via the above discussion, the following theorem.

Theorem 3. For m ≥ 1, the balancing number Bm and its balancer number Rm

are given by

Bm =

m−2�

i=−1

�
2m

2i + 3

�
2

i and Rm = −Bm +

m−1�

i=0

�
2m

2i + 2

�
2

i·

The following identities on binomial coefficients are a direct consequence of both

Theorem 2 and Theorem 3.

Corollary 2. For m ≥ 1, we have

2m−2�

i=−1

�
4m

2i + 3

�
2

i
=

�
m−1�

i=0

�
2m

2i + 1

�
2

i

��
m�

i=0

�
2m

2i

�
2

i

�
,

2m−3�

i=−1

�
4m− 2

2i + 3

�
2

i
=

�
m−1�

i=0

�
2m− 1

2i + 1

�
2

i

��
m−1�

i=0

�
2m− 1

2i

�
2

i

�
,

2m−1�

i=0

�
4m

2i + 2

�
2

i
= 2

�
m−1�

i=0

�
2m

2i + 1

�
2

i

�2

=

�
m�

i=0

�
2m

2i

�
2

i

�2

− 1,

2m−2�

i=0

�
4m− 2

2i + 2

�
2

i
= 2

�
m−1�

i=0

�
2m− 1

2i + 1

�
2

i

�2

− 1 =

�
m−1�

i=0

�
2m− 1

2i

�
2

i

�2

·

Remark 2. In [8], Ray establishes an other interesting formula for Bm using the

generating function g (z) =
z

1− 6z + z2
. He gets

Bm =

�m−1
2 ��

i=0

(−1)
i
�

m− i− 1

i

�
6

m−2i−1·

From this Remark and Theorem 3, we obtain the new identity in the following

Corollary.

Corollary 3. For m ≥ 1, we have

m−2�

i=−1

�
2m

2i + 3

�
2

i
=

�m−1
2 ��

i=0

(−1)
i
�

m− i− 1

i

�
6

m−2i−1·
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5. An Explicit Formula for Cobalancing Numbers

From (2), we have

r2
+ (2n + 1) r − n (n + 1) = 0, (25)

which, when solved for r gives

r =
− (2n + 1) +

√
8n2 + 8n + 1

2
· (26)

Since r is positive, 8n2
+ 8n + 1 is a perfect square, i.e.,

8n2
+ 8n + 1 = u2, with u odd. (27)

Therefore,

2n (n + 1) =

�
u− 1

2

��
u + 1

2

�
· (28)

Letting A =
u− 1

2
, we get from (26) and (28)

r = A− n,

and

n (n + 1) =
A (A + 1)

2
= 1 + · · · + A. (29)

Consequently, n (n + 1) is a triangle number (see also [8]).

Letting x = 2 (n− r) + 1 and y = 2r, Equation (25) leads again to the above Pell’s

equation (20). It follows from (23) and (24), that

r =
y

2
= Bm,

and

n =
x + y − 1

2

=
x− y − 1

2
+ y

= Rm + 2r.

The above discussion proves the following theorem.

Theorem 4. For m ≥ 1, the cobalacing number bm and its cobalancer rm are given
by: bm = 2Bm−1 + Rm−1 and rm = Bm−1, with B0 = R0 = 0.
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m bm = 2Bm−1 + Rm−1 rm = Bm−1

1 0 0

2 2 1

3 14 6

4 84 35

5 492 204

6 2870 1189

7 16730 6930

8 97512 40391

9 568344 235416

10 3312554 1372105

Table 2.

Table 2 summarizes the 10 first cobalancing numbers with there cobalancers, based

on Table 1 and Theorem 4.

The following corollary is a direct consequence of Theorem 3 and Theorem 4.

Corollary 4. For m ≥ 1, we have

bm+1 =

2m�

i=1

�
2m

i

�
2
� i−2

2 � and rm+1 =

m−2�

i=−1

�
2m

2i + 3

�
2

i·

An immediate consequence of Theorems 2 and 4 is the following (see also [5]).

Corollary 5. Every cobalancing number is even. Thus, no odd prime number could
be a cobalancing number.

6. New Formulas for (a, b)-Type Balancing and (a, b)-Type Cobalancing

Numbers

Panda [7] defines sequence balancing and sequence cobalancing numbers as follows:

Definition 1. Let {un}n≥1 be a sequence of real numbers. The number un is

called a sequence balancing number if there exists a natural number r such that

u1 + u2 + · · · + un−1 = un+1 + un+2 + · · · + un+r.

Similarly, the number un is called a sequence cobalancing number if

u1 + u2 + · · · + un = un+1 + un+2 + · · · + un+r,

for some natural number r.
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Kovács et al. [3] extend the concept of balancing numbers to arithmetic progres-

sions as follows:

Definition 2. Let a, b be nonnegative coprime integers. If for some positive

integers n and r, we have

(a + b) + · · · + (a(n− 1) + b) = (a(n + 1) + b) + · · · + (a(n + r) + b), (30)

then we say that an + b is an (a, b)-type balancing number.

Similarly, an + b is an (a, b)-type cobalancing number if

(a + b) + · · · + (an + b) = (a(n + 1) + b) + · · · + (a(n + r) + b), (31)

for some natural number r.

Let B(a,b)
m , R(a,b)

m , b(a,b)
m and r(a,b)

m denote the mth
(a, b)-type balancing number,

the mth
(a, b)-type cobalancing number, the mth

(a, b)-type balancer and the mth

(a, b)-type cobalancer, respectively.

6.0.1. (a, b)-Type Balancing Numbers

From (30), we have

an (n− 1) + 2b (n− 1)− 2arn− ar (r + 1)− 2br = 0,

which, via straightforward calculations, is equivalent to

(2a (n− r − 1) + a + 2b)2 − 2 (a (2r + 1))
2

= (a + 2b)2 − 2a2. (32)

Letting x = 2a (n− r − 1) + a + 2b, y = a (2r + 1) , u = a + 2b and v = a, Equation

(25) becomes:

x2 − 2y2
= u2 − 2v2, (33)

which has from (8), the integral solutions in the form:

x + y
√

2 =

�
u + v

√
2

��
1 +

√
2

�2m
, m ≥ 0. (34)

From (22), we obtain

x + y
√

2 =

�
u

m�

i=0

�
2m

2i

�
2

i
+ 2v

m−1�

i=0

�
2m

2i + 1

�
2

i

�

+

√
2

�
v

m�

i=0

�
2m

2i

�
2

i
+ u

m−1�

i=0

�
2m

2i + 1

�
2

i

�
.
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After identification, we get

2a (n− r − 1) + a + 2b = (a + 2b)
m�

i=0

�
2m

2i

�
2

i
+ 2a

m−1�

i=0

�
2m

2i + 1

�
2

i,

and

a (2r + 1) = a
m�

i=0

�
2m

2i

�
2

i
+ (a + 2b)

m−1�

i=0

�
2m

2i + 1

�
2

i.

Therefore

n = 1 + r +
a + 2b

a

m−1�

i=0

�
2m

2i + 2

�
2

i
+

m−1�

i=0

�
2m

2i + 1

�
2

i,

and

r =

m−1�

i=0

�
2m

2i + 2

�
2

i
+

a + 2b

a

m−2�

i=−1

�
2m

2i + 3

�
2

i·

From Theorem 3 and Theorem 4, we obtain

n = 1 + r +
a + 2b

a
(Bm + Rm) + 2Bm

= 1 + r +
a + 2b

a
(bm+1 − rm+1) + 2rm+1

= 1 + r +
a− 2b

a
rm+1 +

a + 2b

a
bm+1

= 1 + r + rm+1 + bm+1 +
2b

a
(bm+1 − rm+1) ,

and

r = Bm + Rm +
a + 2b

a
Bm

= bm+1 − rm+1 +
a + 2b

a
rm+1

= bm+1 +
2b

a
rm+1.

Since n and r are positive integers and a and b are coprime, 2bm+1 and 2rm+1

should be both divisible by a. This discussion proves the following theorem.

Theorem 5. Let
�
b/a
ϕ(m), r/a

ϕ(m)

�
denote the mth pair of cobalacing number and its

cobalancer such that 2b/a
ϕ(m) and 2r/a

ϕ(m) are both divisible by a. Then we have

B(a,b)
m = 1 + r/a

ϕ(m) +
2 (a + b)

a
b/a
ϕ(m),
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and
R(a,b)

m = b/a
ϕ(m) +

2b

a
r/a
ϕ(m)·

Example 1. Let a = 9. The first pair

�
b/9
ϕ(1), r

/9
ϕ(1)

�
of cobalancing number and its

cobalancer both divisible by 9 is (b1, r1) = (0, 0). Hence

B(9,b)
1 = 1 and R(9,b)

1 = 0.

According to Corollary 4 and using Maple, the second pair

�
b/9
ϕ(2), r

/9
ϕ(2)

�
of cobalancing

number and its cobalancer both divisible by 9 is (b13, r13) = (655869060, 271669860).

Thus

B(9,b)
2 = 1 + r13 +

2 (9 + b)

9
b13 = 1583407981 + 145748680 b,

and

R(9,b)
2 = b13 +

2b

9
r13 = 655869060 + 60371080 b.

6.1. (a, b)-Type Cobalancing Numbers

From (31), we have

an (n + 1) + 2bn− 2arn− ar (r + 1)− 2br = 0,

which, via straightforward calculations, is equivalent to

(a (2n− 2r + 1) + 2b)2 − 2 (2ar)2 = (a + 2b)2 . (35)

Then, from (8) and (22), we obtain

a (2n− 2r + 1) + 2b = (a + 2b)
m�

i=0

�
2m

2i

�
2

i,

i.e.,

n = r +
a + 2b

2a

m�

i=1

�
2m

2i

�
2

i

= r +
a + 2b

a

m−1�

i=0

�
2m

2i + 2

�
2

i,
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and

r =
a + 2b

2a

m−1�

i=0

�
2m

2i + 1

�
2

i

=
a + 2b

a

m−2�

i=−1

�
2m

2i + 3

�
2

i.

Hence, from Corollary 4, Theorem 3 and Theorem 4, we get

r =
a + 2b

a
rm+1,

and

n = r +
a + 2b

a
(Rm + Bm)

=
a + 2b

a
rm+1 +

a + 2b

a
(bm+1 − rm+1)

=
a + 2b

a
bm+1·

Since n and r are positive integers and a and b are coprime, then 2bm+1 and 2rm+1

should be both divisible by a. Hence we have proved the following theorem.

Theorem 6. Let
�
b/a
ϕ(m), r

/a
ϕ(m)

�
denote the mth pair of cobalacing number and its

cobalancer such that 2b/a
ϕ(m) and 2r/a

ϕ(m) are both divisible by a. Then we have

b(a,b)
m =

a + 2b

a
b/a
ϕ(m) and r(a,b)

m =
a + 2b

a
r/a
ϕ(m)·

Example 2. For a = 9, we have b(9,b)
1 = r(9,b)

1 = 0, and according to Example 1,

we get

b(9,b)
2 =

9 + 2b

9
b13 = 72874340 (9 + 2b) ,

and

r(9,b)
2 =

9 + 2b

9
r13 = 30185540 (9 + 2b) .
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[3] T. Kovács, K. Liptai, P. Olajos, On (a,b)-balancing numbers, Publ. Math. Debrecen (ac-

cepted).

[4] G. K. Panda, Some fascinating properties of balancing numbers, to appear in “Applications

of Fibonacci Numbers” Vol. 10, Kluwer Academic Pub., 2006.

[5] G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math.

Sciences, 8 (2005), 1189–1200.

[6] G. K. Panda and P. K. Ray, Some links of balancing and cobalancing numbers with Pell and

associated Pell numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 6(1), (2011), 41–72.

[7] G. K. Panda, Sequence balancing and cobalancing numbers, Fibonacci Quart. 45 (2007), 265–

271.

[8] P. K. Ray, Balancing and cobalancing numbers, Ph. D. Thesis, Submitted to National Institute

of Technology, Rourkela, India, August, 2009.


