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Abstract
Let A = (a;5), i =1,2,..., 5 =0,1,2,..., be an infinite matrix with elements
a;; =0 or 1; p(n,k; A) the number of partitions of n into k parts whose number
y; of parts which are equal to i belongs to the set Y; = {j :a,; =1},i=1,2,....
The universal theorem on partitions states that

ZZp (n, k; A) uFt" = H a; ju’t¥
n=0k=0 i=1 \j=0

In this paper, we present a generalization of this result. We show that this gener-
alization remains true when a; ; are indeterminate. We also take into account the
bi-partite and multi-partite situations.

1. Introduction

Let A = (a;;), i =1,2,..., j =0,1,2,... be an infinite matrix with elements
a;; =0 or 1; p(n,k; A) the number of partitions of n into k parts whose number
y; of parts which are equal to i belongs to the set Y; = {j :a,; =1}, i=1,2,....
The universal theorem on partitions states that

i < Y p(n,k; A) uk> th = ﬁ iamujtij : (1)
k=0

n=0 =1 \ j=0
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see for instance [2] and [3].

In Section 2, we will provide an extension of the above identity and show that it
remains true when a; ; are indeterminate. In Section 3, we will present an equivalent
version in terms of complete Bell polynomials when a; o =1, i > 1.

Similarly, a partition of an ordered pair (m,n) # (0,0), of nonnegative integers,
is a non-ordered collection of nonnegative integers (x;,y;) # (0,0), i = 1,2,...,
whose sum equals (m,n). Given a partition of (m,n), let k; ; be the number of
parts which are equal to (¢,75), i =10,1,2,...,m, j =0,1,2,...,n, (i,5) # (0,0),

such that .
Zszlj =m, Z]Zk i = 1. (2)
=0 7=0

7=0 i=0
For a partition of (m,n) into k parts, we add

m n

SN iy =k (3)

i=045=0

Let p(m,n) be the number of partitions of the bi-partite number (m,n) with
p(0,0) = 1 and p(m,n, k) be the number of partitions of (m,n) into k parts with
p(0,0,0) = 1. The universal bipartition theorem states that

F (t,u,w) = Z <mz+npmnk' )tmu"— HH (1 — wt'u) 1; (4)

m,n>0 Jj=0i=
(#,5)#(0, 0)

see [2, p. 403, pb. 24]. A generalization of identity (4) is dealt with in Section 4.
Section 5 is devoted to the concept of multipartition.

2. Generalized Universal Partition Theorem

Theorem 1. Let X = (z;,), 1=1,2,..., 7=0,1,2,..., be an infinite matriz of
indeterminates; w (n, k) the set of all nonnegative integer solutions of

and 7 (n) = Ujp_, 7 (n,k) be the set of all nonnegative integer solutions of ki +

2ks + - - - + nk, = n. For every solution ki, ko, ..., ky,, we set
n ]{: X Z T kll‘g ko * n,kn-
w(n,k)
Then

Gt,u; X) = i ( " p(n,k;X)uk> t" = ﬁ imi,jujtij
£ 4

n=0 =0
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Proof. We have

t u; X ZZ Z L1,k T2,ko " " xmknukl-‘r‘“—&-kntk1+2k2+n_+nkn
n=0k=0 \7(n,k)

Since these sums apply for all k =0,1,...,nand n =0,1,..., it follows that

G (t,u; X) ZZ Z (kal (ut)kl) (x27k2 (utz)k2> (znykn (ut”)k")

n=0k=0 \7(n,k)

M

Z (kal (ut)kl) (x27k2 (th)kQ) (In,kn (ut")k")

n=0 \x(n)

(Z{Elkl ut ) (Zl’gkz ut >
k1=0 ko=0
00 00 .
= H Zmi’j (’U/tl)] 3
7=0

i=1

which is the required expression. O
For z;; = a;; with¢ =1,2,..., 7 = 0,1,2,..., in Theorem 1, we obtain the

universal theorem on partitions. For z; ; = ,lzj w1th i=1,2,..., 7=0,1,2,.

Theorem 1, we obtain:

Corollary 2. Let A = (a;;), ¢ = 1,2,..., j = 0,1,2,..., be an infinite matric
with elements a; ; = 0 or 1 and c(n,k; A) the number of permutations of a finite
set Wy, of n elements, that are decomposed into k cycles such that the number of
cycles of length i belongs to the set Y; = {j :a;,; =1}. Then

>SS etmk Ayt < T (S, (1) 4

n=0k=0 i=1 \ j=0

For z; ; = %(Z,)ja”, zze€C,i=1,2,..., 7=0,1,2,..., in Theorem 1, we

obtain a remarkable identity according to the partial Bell polynomials:

Corollary 3. Let A = (a;;), ¢ = 1,2,..., j =0,1,2,..., be an infinite matriz
with elements a; ; =0 or 1 and

zl ks Zn \
Bn,k;A (2:17227"'7 E I Y A1,ky " Anky, -
k‘l Tl'

(n,k)
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Then we obtain

o n m 00 00 Qi 4 J
5o Busin (rosa oz = T 2% ()

n=0k=0 i=1 \ j=0

Remark 4. Fora; ; =1,i=1,2,... and j=0,1,..., Corollary 3 gives

o n R i
ZZB"J“ (21,22, ..., 2n) U ] = exp uZzlz—' ,
i=1

n=0k=0

which is the definition of the partial Bell polynomials By, (21, ..., 2z,). See [, 3, 4].

3. Connection With the Complete Bell Polynomials

Recall that the complete Bell polynomials A, (1,2, ...) are defined by

ZAn(xl,wg,...)m:exp me% .
n=k m=1

See [1, 3, 4].

In this section, we provide another formulation of Theorem 1 according to the
complete Bell polynomials. We determine the generating functions of the sequences
(p(n,k; X)),, and (p(n,k; X)), , where X = (2;;), i =1,2,..., j=0,1,2,..., is
an infinite matrix with indeterminates x; ; such that z; o = 1 for every ¢ > 1.

Theorem 5. Let q,u be indeterminate. Then, for n > 1, we have

oo . . 1
S X)g = —An (1 (6 X) p2 (@ X) - pn (45 X)) (5)
Jj=n '
n ' . 1
D i X)u = = Ay (o1 (X)), 00 (;X) .. o (w5 X)), (6)
Jj=0 '
where - .
; n\ u
n (¢ X) = n (1) ¢ n (u; X) == n! A\ 7 T
on (¢; X) ;b (1) g™ and oy (u; X) n%bk(k) 1
with

n

bo (i) = > (=D (k= 1)!By s (Vi 1, 2052, g, )
k=1
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Proof. From Theorem 1, we get

oo n 0o ) i\J
G(gu; X):= ZZp(n,k;X) uFq" = exp Zln Z 'x” . )
n=0k=0 i=1 J=1

Using the following known expansion (see [2, Theorem 11.17])

ln<1+ngk'> Z q

with ¢, =Y 1_; (=)t (k- !Bk (91,92, .. ), we obtain

G (q,u; X) = exp (ZZbk L ) exp Zuk—TZbk (i) qki>

i=1k=1

k

L+ Ak (1 (GX) s p (6:0) T
k=1 ’

Il
2

On the other hand, we have

G(qu; X) = Zanquq Z(ankX )

n=0k=0 k=0

The first identity follows from identification, where as the second identity follows
from the expansion

G (g, u; X) = Z(ankX )

i=1 j=1

M8
\M8
S
|3
N————
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>
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An(al (U;X)aUQ (’U,,X),,O’n(’u,X))

I
_|_
NE

3
Il
—
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Corollary 6. Let a and q be two indeterminates. We then have

1 1 1 o, 1
- — 1) —a® —n! _ — g\
An(l—q a,...,(n 1)'<1—q" o >) n(l—q” a) J:ll (1 q)

and

Ap | A —a)u,...,(n—1)! Zku"/k — (au)" =n!(pn (u) — aupp_1 (u)),

where p, (u) == > p(n,j)u’.

7=0
Proof. We put in identity (5) z10=1, z1;=¢ 7 (1 —a) for j > 1and z; ; = ¢/

for i > 2, j > 0, and use identity B, (1!,2!,3!,...) = EZ:B: (Z) (Lah numbers).
We obtain

bpy()=(n-D'(1=-a")g " b,@)=n—-Dlg7"™, i>2,
) = Yo (0 = (0= 1) (2 - "),
p(n,k; X)=qF Z 14+q7* Z (1-a)

w(n,k), k1=0 w(n,k), k1>1
Y it Y
w(n—k,k) m(n—1,k—1)

:q_k[p(n—k,k)+(1—a)p(n—l,kj—l)],
where p (n, k) is the number of partitions of n into k parts, which satisfy

Thus, we obtain

drGmX)d =" (D pGn)d —ad p(i-1ln-1)¢
j=n Jj=n j=n
1

which gives the first identity.
For the second identity, we take z10 =1, 1, =1—a for j>1and z;; =1 for
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i >2, 7 >0, in relation (6) to get
bp()==mn -1l (a"=1), by (1) =(n—-1), i>2,
() = 13 () 5 = — n = DY )+ (= DI
o (wX)=nl) b ()77 =—(n Hou n Y ku™"

p(nk; X) =p(n.k) —ap(n -1,k 1),

thus .
> p(nj; X)w! = py (u) — aupp_q (u),
j=0
which provides the second identity. O]

4. Generalized Universal Bipartition Theorem

In this section, we provide a generalization of identity (4) and deduce some known
identities. Let us start with the following example: how do we partition (2, 3) into
different parts? Let p (2,3, k) be the number of partitions of the bi-partite number
(2,3) into k parts, k = 1,...,5 and p(2,3) be the total number of partitions of
(2,3). We have

(2,3)
————————————————————————————— p(2,3,1) =1
(0,1) 4+ (2,2) = (0,2) + (2,1) = (0,3) + (2,0) = (1,0) + (1,3) = (1,1) + (1,2)
fffffffffffffffffffffffffffff p(2,3,2) =
(0,1) 4+ (0,1) + (2,1) = (0,1) + (0,2) + (2,0) = (0,1) + (1, 1) + (1,1) =
(0,1) 4+ (1,0) + (1,2) = (0,3) + (1,0) + (1,0)
————————————————————————————— p(2,3,3)=5
(0,1)+ (0,1) + (0,1) + (2,0) = (0,1) + (0,1) + (1,0) + (1,1) =
(0,1) + (1,0) + (1,0) 4+ (0,2)
————————————————————————————— p(2,3,4)=3
(0,1) 4+ (0,1) +(0,1) + (1,0) + (1,0)
————————————————————————————— p(2,3,5) =
p(2,3)=>p(2,3,k)=1+5+5+3+1=15.
k=1
Theorem 7. Let X = (z;;s), 1,5,5=0,1,2,..., be a sequence of indeterminates
with 0,5 = 0, IL(m,n, k) the set of all nonnegative integers k; ; satisfying (2) and
(8) and 11 (m,n) := Zi;ﬂ II(m,n, k) the set of all nonnegative integers satisfying

(2). For every partition of the bi-partite number (m,n) into k parts, we set

p(m,n, k; X) == Z HH%MJ

II(m,n,k) 1=0j=0
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Then we have

F (t,u,w; X) : Z(ninpmnkx ) H(Zx”swtm).

m,n>0 i+j5>1

Proof. We have

m—+n
F(t,u,w; X) = Z (Zp(m,n,k;X)wk> "

m,n>0 k=0
asg SR ININED O D oY SNIND SIP o ML
— § E E 0 j=0 =0 i=0 0 0
= tt i= uJ (3 wz j= HHJ"%]: 1 P
m,n>0 k=0 \II(m,n,k) i=05=0

m o n

S S (T i, (wtiu?)™

m,n>0 II(m,n) \¢=0j=0

> k
H Z Li,j,kij (wti“j> "

i+j>1 \ ki ;=0

O

Corollary 8. Let A= (aijs), ,j,s=0,1,2,..., with a; j s =0 or 1 for (i,j) #
(0,0) and let p (m,n, k; A) be the number of partitions of (m,n) into k parts whose
number y; ; of parts which are equal to (i,j) belongs to the setY; j = {s: a; s =1},
i, j=0,1,2,..., (i,§) # (0,0). Then

m+n o0
F (t,u,w; A) Z (Zp m,n, k; A)w >tmu” = H (Zai,jys (wtiuj)s> .
m,n>0 i+j>1 \s=0

Forz, ;s =1foralli,j,s=0,1,2,..., (4,7) # (0,0), Theorem 7 becomes:

Corollary 9. Let p(m,n) be the number of partitions of the bi-partite number
(m,n) with p(0,0) = 1 and p (m,n, k) the number of partitions of (m,n) into k
parts, with p (0,0,0) = 1. Then

e

m,n>0 i+j>1
Remark 10. Let (y;,), ¢, = 0,1,..., be a sequence of indeterminates and let
S
Tijs = % (%J') ,1,7=0,1,2,..., we have

p(m,nk; X) = Z ﬁﬁ

k. .
“ o Am,n,k
! z'j  mln!
II(m,n,k) t=05=0 b
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where
Am,n,k = Am,n,k (yO,la Y1,05--- 7ym,n) )
and

m—+n m . n
F(t,u,w; X) = Z (ZAmnkw>%%.

m,n>0

From Theorem 7, we obtain
1 VRTANE
P = T (55 (o) ) =ow o X owib
i+j>1 \ki ;20 7 i+j>1

From the two expressions of F (t,u;w, X), we retrieve the exponential partial bi-
partitional polynomials:

m-+n £m oyn
k
> > A (40,1910 -+ » Ymyn) @ o A > yz,] ,j, ;

m,n>0 k=0 i+j5>1

see [2, pp: 454-457].

5. Universal Multipartition Theorem

More generally, a multipartition of order r of n = (ng,...,n,), different from
0 = (0,...,0), of nonnegative integers, is a non-ordered collection of nonnegative
integers (:cl(»l), . ,xgr)> , 4 = 1,2,..., whose sum equals n. In a partition of an

r-partite number n, let k; := k;, ;. be the number of ordered r numbers that are
equal to i=(i1,...,4,) € {0,1,2,...,n1} x ---x {0,1,2,...,n.}, (41,...,%,) # 0,

such that
Z"‘Zijkil,...,ir:nja j:17"'77" (7)
i1=0  i,=0

For the partition of n into k parts, we add

Z ikzlir =k. (8)

i1=0 i =0

Let p (n) be the number of partitions of the r-partite n with p (0) =1 and p (n, k)
the number of partitions of the r-partite number n into k parts, with p (0,0) = 1.

Theorem 11. Let X = (x35), i=(i1,...,4) €N, 1#0,s=0,1,2,..., be a
sequence of indeterminates with r + 1 indices, with xo s = 0, I (n, k) the set of all
nonnegative integers ki, . ;. satisfying (7) and (8) and II (n) := Un1+ T (n, K)
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10

the set of all nonnegative integers solutions of (7). For every partition of n into k

parts, we set
n
5> Lo
(n,k) i=0
Then

F(t,w; X) = Z(Zp ) =11 (le (wth) )

n>0 i-1>1

where t® ==t ..., n-1:=n;4+---+n,,n>0&n; >0,...,n,. >0.

T o9

Proof. We have the following

F(t,w;X)zZ(

n>0

-1

=]

HM

p(n,k;X)wk> "

0

n>0k=0 \II(n,k

—zz(nxl )

n>0 II(n) \i=0

-

and exploiting zg o = 0, the last expression becomes

H ZI‘LM (wti)ki = H in7ki (wti)k

i>0 \ k>0 i1>1 \ k>0

For z; s =a;s € {0,1} forallie N",i# 0, s =0,1,2,..., we obtain:

Corollary 12. Let A = (ais), i€ N,i#0, s =0,1,2,..., with a;s = 0 or
1 and p (n, k; A) be the number of partitions of n into k parts whose number y; of
parts which are equal to i belongs to the setYi = {s:ais =1}, 1€ N",i# 0. Then

Fltyuwi ) z<zpnm ) " T (e (ot

n>0 i-1>1 \s>0

For z;, =1forallie N",i#0,5=0,1,2,..., we obtain:
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Corollary 13. Let p (n) be the number of partitions of the r-partite number n with

p(0) =1 and p (n, k) the number of partitions of the r-bipartite number n into k
parts, with p (0,0) = 1. Then

Z( | p(n’k)wk> = I (1 —wt)

n>0 \k= i1>1
Consequently
Yoyt =T (1-+) .
n>0 i1>1
Remark 14. If we take t; = --- = t,. = t, we obtain
. _('i+'r'71) n .
S REREED ) 3 (D DRI ) P
i>1 n>0k=0 \ni++n,.=n
SIS SFNEIE
n>0 \ni+---+n.=n
and more generally, for nonnegative integers aq,...,a, and t; = t**,... t, = t°,
we obtain
ICEREREES ol (D SR I8
1>1 n>0 \aini+-+ar,n,.=n
where

aini+-+arn,
pa(@)= 3 pmk)t,
k=0
and where f (n,r) is the number of solutions of the integer equation

ainy +asng + -+ + a,n, = n.
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