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Abstract
Long ago Roth conjectured that for any k -coloring of the positive integers the
equation x + x0 = n, x 6= x0 has a monochromatic solution in (x, x0) for more than
cM integers n up to M (where c is an absolute constant independent of k). Later
Erdős, Sárközy and T. Sós proved this conjecture with 1

2 � " in place of c. In this
paper we will prove a higher-dimensional generalization of this theorem by using a
higher-dimensional extension of the well known Hilbert cube-lemma. We will also
give bounds for the number of monochromatic solutions in higher dimension.

1. Introduction

K. F. Roth conjectured (see [2] and [6]) that for an arbitrary k-coloring of the
positive integers there are more than cM integers n  M such that the equation
x + x0 = n, x 6= x0, has a monochromatic solution in (x, x0). In [1] Erdős, Sárközy
and T. Sós proved this conjecture in the following form:

Theorem 1. For every k � 2 there exists a positive integer M0 (k) such that for any
M �M0 (k) and an arbitrary k-coloring of the set N, the number of positive integers
n  M for which there is a monochromatic solution of the equation x + x0 = n,
x 6= x0, is greater than M

2 � 3M1�2�k�1

The proof of this theorem was based on the density version of Hilbert’s cube
lemma (for the original coloring version see [7] ). Szemerédi proved that if we
consider a sequence of positive integers of positive density, then the sequence must
contain a so-called Hilbert d-cube or a�ne d-cube, i.e., for every d a set of the form
u+
Pd

i=1 "ivi, where "i=0 or 1 for every i. In [7] Hilbert used the coloring version of
this lemma in studying irreducibility of polynomials with integer coe�cients. Later,
Szemerédi gave the density version of this lemma (see [3] and [10]). This density
version of Hilbert’s cube lemma is generally called Szemerédi’s cube lemma. Erdős,
Sárközy and T. Sós used the following quantitative version of this lemma:
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Lemma 1. (Szemerédi’s cube lemma): If H is a subset of (1,M) for M large enough
and H has at least 3M1�2�d

elements, then H contains a Hilbert-cube.

Our first goal is to give a higher-dimensional generalization of Lemma 1. With
this generalization we will prove the following result:

Theorem 2. For fixed positive integers r, s, k, there is a positive integer m0 with
the following property: for any positive integer m > m0 and for any k-coloring of
the elements of the set (1,m)r there are at least

⇥
m
s

⇤r � 3 ·
�
2r�1mr

�1�2�ks+k�1

vectors ~x in (1,m)r, such that one can find pairwise distinct vectors ~x1, ~x2, · · · , ~xs

of the same color in (1,m)r, whose sum is ~x.

The special case r = 1 and s = 2 in Theorem 2 gives the result of Theorem 1.
After the proof of Theorem 2 we will study the number of solutions of the equation
~x + ~x0 = ~n, ~x 6= ~x0 for vectors ~n in (1,m)r, where ~x and ~x0 are monochromatic. We
will get the following result:

Theorem 3. For every positive real number ↵ and � with the property ↵r + �r 
1

22r+1k there is a positive integer m↵�, such that for every m > m↵� and for every
k-coloring of Nr the number of elements in (1,m)r having representations as a sum
of two monochromatic distinct vectors in more than �r

2 mr ways is more than ↵rmr.

One can observe that the result of Theorem 2 is asymptotically independent
of the number of the colors, if we fix r and s. In Theorem 3 we want to search
for an arbitrary k-coloring a “large number” of vectors with a “large number of
representations”. Here we will see that these “large numbers” already depend on
the number of the colors for fixed r and s. First we study only the case of two
summands, later we show a way of studying the case of more summands.

2. The Generalization of Hilbert’s Cube Lemma

Similarly to the original definition one can interprete d-cubes in the set of r-
dimensional vectors.

Definition 1. If ~u, ~v1, ~v2, · · · , ~vd are r-dimensional vectors, then the set of the sums
in the form ~u +

Pd
i=1 "i~vi , where "i=0 or 1 for every i, is an a�ne d-cube or a

d-dimensional Hilbert cube.

Lemma 2. If H is a subset of distinct vectors of (1,m)r and the set H has at least
3 ·
�
2r�1mr

�1�2�d

elements, then H contains an a�ne d-cube.

Proof. Our proof is a generalization of the proof given in [1]. We will define sets
H0,H1, · · · ,Hd and r-dimensional vectors ~v1, ~v2, · · · , ~vd in the following way:
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(i) H0 = H

(ii) Hj [
n
~b + ~vj |~b 2 Hj

o
is a subset of Hj�1 for every j = 1, 2, · · · , d

(iii)|Hj | � |H|2
j �

3 · 2r�1mr
��(2j�1)

We construct H0,H1, · · · ,Hd and ~v1, ~v2, · · · , ~vd recursively. Let H0 = H. As-
sume that 0  j  d � 1 and in the case j > 0 sets H0,H1, · · · ,Hj and vectors
~v1, ~v2, · · · , ~vj have been defined. Let F be the set of the vectors in (�(m� 1), (m� 1))r,
whose first nonzero coordinate is positive. Denote by f(Hj ,~h) the number of solu-
tions of the equation ~b� ~b0 = ~h, where ~b, ~b0 2 Hj and ~h 2 F .

Let L be the maximum value of the numbers f(Hj ,~h), where ~h 2 F and ~h 6=
~v1, ~v2, · · · , ~vj . For all r-dimensional vectors ~h we have f(Hj ,~h)  |Hj |. ClearlyP

~h2F f(Hj ,~h) =
�|Hj |

2

�
. We give an estimate for L. We can majorize f(Hj ,~h) by

|Hj |, if ~h 2 {~v1, ~v2, · · · , ~vj} and by L otherwise. Thus we get the estimate
✓
|Hj |
2

◆
 j |Hj | +

(2m� 1)r � 1
2

L < j |Hj | + 2r�1mrL.

Thus we have L � 1
2rmr

⇣
|Hj |2 � |Hj |� 2j |Hj |

⌘
= |Hj |

3·2r�1·mr

�
3
2 |Hj |� 3

2 � 3j
�
.

According to our assumption we have (for m large enough) the estimate

|Hj | � |H|2
j �

3 · 2r�1mr
��(2j�1) >

✓
3 ·
�
2r�1mr

�1�2�d
◆2j �

3 · 2r�1mr
��(2j�1)

= 3 ·
�
2r�1mr

�1�2j�d

> 3 ·
�
2r�1mr

�1�2�1

> 3 + 6d > 3 + 6j.

So we have |Hj |2
3·2r�1mr < L. By (iii) we get L > |H|2

j+1 �
3 · 2r�1mr

��(2j+1�1).
This means that the vector ~h can play the role of ~vj+1 and we are able to define
set Hj+1, too. Thus indeed we can define sets H0,H1, · · · ,Hd and r-dimensional
vectors ~v1, ~v2, · · · , ~vd recursively.

3. The Proof of the Generalization of Roth’s Problem

Here we give a proof of Theorem 2.

Proof. Assume to the contrary that there is an appropriate k-coloring for infinitely
many positive integers m, such that the number of vectors ~x with the given property
in (1,m)r is less than

⇥
m
s

⇤r � 3 ·
�
2r�1mr

�1�2�ks+k�1

. We will get a contradiction
via Lemma 2. Let S be the subset of (1,m)r, in which all the r coordinates of the
elements are divisible by s. Let S0 denote the set of those elements of S, which do
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not have a representation in the given form. According to our assumption we have
3 ·
�
2r�1mr

�1�2�ks+k�1

< |S0|. Now we can apply Lemma 2. In S0 one can find an
a�ne (ks�k+1)-cube, so that there are r-dimensional vectors ~u, ~v1, ~v2, · · · , ~vks�k+1

in (�(m� 1), (m� 1)))r, such that all the sums ~u +
Pks�k+1

i=1 "i~vi are in S0,where
"i=0 or 1 for every i. By the pigeonhole principle there are s vectors in the set�

1
s~u + ~vi, i = 1, 2, · · · , ks� k + 1

 
with the same color. We can assume without

loss of generality, that these vectors are ~v1, ~v2, · · · , ~vs. By the definition of the
Hilbert-cube the vector ~u +

Ps
i=1 ~vi =

Ps
i=1

�
1
s~u + ~vi

�
is an element of S0, which

contradicts the definition of S0.

4. On the Number of Representations as the Sum of Two Monochromatic
Distinct Vectors

In this section we study the number of representations, if the number of summands
is s = 2. Our goal is to prove Theorem 3. The key will be the following lemma:

Lemma 3. If for positive real numbers ↵ and � there exist infinitely many positive
integers m, such that there is a k-coloring of Nr, for which at most ↵rmr elements
of (1,m)r have representations as a sum of two monochromatic distinct vectors of
Nr in more than �r

2 mr ways, then ↵r + �r > 1
22r+1k .

Proof. Let be m a positive integer with the given property. Let a be the minimal
and b the maximal positive integer such that a

m � ↵ and b
m  �. In this case at most

ar elements of (1,m)r have representations as a sum of two monochromatic distinct
vectors in more than br

2 ways. Let f(~x) denote the number of representations of
~x = (x1, x2, · · · , xr, ) as the sum of two distinct vectors in (1, x1) ⇥ (1, x2) ⇥ · · · ⇥
(1, xr). Clearly f(~x) =

hQr
i=1(xi�1)

2

i
, because one can order the vectors of this set

(except at most one vector) into disjoint pairs such that each pair consists of two
distinct vectors with sum ~x. For all vectors ~x of the set (1,m)r let g(~x) denote the
number of representations of ~x as the sum of two distinct monochromatic vectors of
(1,m)r. Let mi be the number of vectors with the i-th color in

�
1,
⇥

m
2

⇤�r. ClearlyPk
i=1 mi =

⇥
m
2

⇤r and
Pk

i=1

�mi

2

�

P

~x2(1,m)r g (~x). We give an upper estimate for
the sum

P
~x2(1,m)r g (~x), too. If one can write the vectors ~v1, ~v2, · · · , ~vt(t  ar), in

more than br

2 ways as the sum of two monochromatic distinct vectors, then

tX
i=1

g (~vi) 
X

~x2(m�a+1,m)r

f (~x) .

Hence we have the following upper estimate:
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X
~x2(1,m)r

g (~x)  br

2
(m)r +

X
~x2(m�a+1,m)r

f(~x)

 br

2
mr +

1
2

mX
xr=m�a+1

· · ·
mX

x1=m�a+1

(x1 � 1) (x2 � 1) · · · (xr � 1)

=
br

2
mr+

1
2

m�1X
xr=m�a

· · ·
m�1X

x1=m�a

x1x2 · · ·xr =
br

2
mr+

1
2

✓
am� a2 + a

2

◆r

<
br

2
mr + (am)r.

Using the Cauchy-Schwarz-inequality we get

kX
i=1

✓
mi

2

◆
=

1
2

kX
i=1

m2
i �

1
2

hm
2

ir
� 1

2
k

 ⇥
m
2

⇤r
k

!2

� 1
2

hm
2

ir
.

By dividing by m2r we get

1
2k

✓
[m

2 ]r
k

◆2

� 1
2

⇥
m
2

⇤r
m2r

<
1
2brmr + 1

2 (am)r

m2r
.

If m tends to infinity, then the left-hand side is asymptotically 1
22r+1k and the right-

hand side is asymptotically 1
2�r + 1

2↵r. Clearly we have 1
2�r + 1

2↵r < ↵r + �r, and
hence ↵r + �r > 1

22r+1k .

With Lemma 3 we can easily prove Theorem 3. The proof can be done in the
following way:

Proof. Assume, for a contradiction, that there are positive numbers ↵ and � such
that ↵r+�r  1

22r+1k and for infinitely many positive integers m there is a k-coloring
of Nr such that the number of elements in (1,m)r having representations as a sum
of two monochromatic distinct vectors in more than �r

2 mr ways is at most ↵rmr.
This contradicts Lemma 3.

Remark. Let k0 be the maximal odd integer such that k � k0. We color the ele-
ments of Nr with at most k colors in the following way: if the sum of the coordinates
is 0 or 1 modulo k0, then we color this vector by the first color; the other vectors are
colored by the other k0�1 colors according to the other residue classes. In this case
there are at most 3 ·

⇥
m
k0

⇤
mr�1 vectors in (1,m)r, for which the number of represen-

tations as a sum of two distinct monochromatic vectors is at least 2 ·
⇥

m
k0

⇤
mr�1 (to

see this, one should only observe the vectors having the sum of coordinates equal
to 0, 1 or 2 modulo k0). Thus Theorem 2 cannot be improved significantly.
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5. Further Remarks

We studied in the last section only the case s = 2 (i.e., the number of addends is
two). We can do calculations in a similar way using the further asymptotic formulae
(see [9]). The method we use will not be combinatorially new, one needs only the
same technique, but with a little more work. Let us denote by p (n, s) the number of
partititons of n into exactly s not necessarily distinct parts and q (n, s) the number
of partititons of n into exactly s distinct parts. We formulate the relevant statements
of [9] in Lemma 4.

Lemma 4. p (n, s) ⇠ ns�1

(1·2·····(s�1))2·s and q (n, s) ⇠ ns�1

(1·2·····(s�1))2·s where n >> 1
and s = O(1).

We give only a sketch of how our methods generally work. Let H (x1, x2, · · · , xr)
denote the number of representations of the vector ~x = (x1, x2, · · · , xr) as a sum of s
distinct vectors in (1, x1)⇥(1, x2)⇥· · ·⇥(1, xr). Let mi be the number of vectors with
the i-th color in

�
1,
⇥

m
s

⇤�r. It is obvious that
Pk

i=1

�mi

s

�

P

~x2(1,m)r T (~x), where
T (~x) is the number of ways vector ~x can be written as a sum of s monochromatic
distinct vectors. A similar argument to that of Section 4 shows that we have to
majorize H (x1, x2, · · · , xr).

It is easy to verify that

q (x1, s)
Qr

i=2 (1 · 2 · · · · · s · q (xi, s))  H (x1, x2, · · · , xr)

 p (x1, s)
Qr

i=2 (1 · 2 · · · · · s · p (xi, s)) .

By Lemma 4 we get the conclusion that H (x1, x2, · · · , xr) is asymptotically equal
to

xs�1
1

(1 · 2 · · · · · (s� 1))2 · s

rY
i=2

 
1 · 2 · · · · s xs�1

i

(1 · 2 · · · · · (s� 1))2 · s

!
,

if s is fixed and xi � 1. With further calculation one can achieve analogous results
as formulated in Theorem 3.
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