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Abstract
In this paper we introduce a new game; in this game there are two players, who
play as rival pirate gangs. The goal is to gather more treasure than your rival. The
game is played on a graph and a player gathers treasure by moving to an unvisited
vertex. At the end of the game, the player with the most treasure wins.

We will show that this game is NP-hard, and we will also look at the structure
of this game under the disjunctive sum. We will show that there are cases where
this game behaves like a normal play game, and cases where it behaves like a misère
play game. We then leave an open problem about scoring play games in general.

1. Introduction

Coin-sliding games have been studied for many years, one of the best known is the
game Geography. This is a simple game that parents often tell their children to play
during long car journeys. The idea is that a person says the name of a country, and
the next person must name a country whose first letter is the same as the last letter
of the country just named. For example, Britain, Norway, Yugoslavia, America,
Argentina, Australia and so on.

The generalised version of this game is played on a directed graph, and players
take it in turns to move a coin to a previously unvisited neighbour. The game ends
when a player cannot move, and the last player to move is the winner.

Another game, simply titled “The Coin-Sliding Game”, was introduced in a paper
by Moews [14]. This is a game where the players have coins of various values, that
are placed on a vertical strip. The player then chooses to either move a coin down
the strip, or remove one of his opponents coins.

The players collect coins that are removed from the strip, either by sliding them
off it, or from removing them. At the end of the game the players add the values
of the coins that they have collected, and the player who has the most wins. In his
paper, Moews gave the solution to this game.
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Our game is played on an undirected graph, where players have multiple coins
placed on various vertices of the graph. These coins represent their pirate ships. The
remaining vertices are given a numerical value, and players gather points (treasure)
by moving onto those vertices. The player who gathers the most points (treasure)
wins.

The formal rules are given as follows:

1. The game is played on a finite simple graph, defined arbitrarily before the
game begins. Left has n ships, and Right has m ships.

2. Each ship has a pre-defined starting vertex.

3. Every node is numbered to indicate how much treasure there is at that node,
the players’ starting vertices are not numbered.

4. On a player’s turn he moves to an adjacent, unvisited vertex. The number of
points he gets, corresponds to the number on that vertex. A player may not
move a previously visited vertex, including the starting vertices.

5. The game ends when it is a player’s turn, and he is not adjacent to an unvisited
vertex.

6. The player who gathers the most treasure wins.

In this paper, first we will be examining the complexity of this game, and then
showing that there are variations of it which are comparable with normal and misère
play.

1.1. Scoring Play Combinatorial Game Theory

Scoring play combinatorial games have not been studied anywhere near as much as
their normal, and misere play counterparts. The first papers were written by Milnor
and Hanner [7, 13]. These were then followed up with papers with Ettinger [3, 4],
the first of which was published, while the second remains unpublished. Johnson
then did some follow up work subsequently [9].

All of them studied well-tempered scoring play games, that is games where the
game always lasts a fixed number of moves. However, in 2011 Stewart introduced
the most general theory for scoring play games [15]. This work was done entirely
independently of Milnor, Hanner and Johnson, and is based on the theories of
Berlkeamp, Conway and Guy [1, 2].

The idea behind this theory is very simple, consider the game tree given in
Figure 1.

On a typical game tree as shown in Figure 1, the nodes represent the positions of
a game, and edges represent possible moves for both players from those positions.
Left sloping edges are Left’s moves, and right sloping edges are Right’s moves.
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Figure 1: A typical game tree.

A scoring play game tree is exactly the same, but for one difference, the nodes
now have numbers on them which represent the score associated with that position.
The score is the difference between Left’s total points, and Right’s total points, at
that point in the game.
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Figure 2: A scoring play game tree.

Formally scoring play games are defined as follows.

Definition 1. A scoring play game G = {GL|GS |GR}, where GL and GR are
sets of games and GS ∈ R, the base case for the recursion is any game G where
GL = GR = ∅. GL = {All games that Left can move to from G},
GR = {All games that Right can move to from G}, and for all G there is an S =
(P,Q) where P and Q are the number of points that Left and Right have on G
respectively. Then GS = P − Q, and for all gL ∈ GL, gR ∈ GR, there is a
pL, pR ∈ R such that gLS = GS + pL and gRS = GS + pR.

By convention, we will take GS to be 0, unless stated otherwise. This is simply to
give games a “default” setting, i.e., if we don’t know what GS is, then it is natural
to simply let it be 0. We also write {.|GS |.} as GS , e.g. {{.|3|.}|4|{.|2|.}} would be
written as {3|4|2}. This simply for convenience and ease of reading.

For these games we also need the idea of a “final score”. That is the best possible
score that both players can get when they move first. Formally, this is defined as
follows.
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Definition 2. We define the following:

• GSL
F is called the Left final score, and is the maximum score –when Left moves

first on G– at a terminal position on the game tree of G, if both Left and Right
play perfectly.

• GSR
F is called the Right final score, and is the minimum score –when Right

moves first on G– at a terminal position on the game tree of G, if both Left
and Right play perfectly.

Our game Pirates and Treasure clearly falls under this theory, so we will be
referencing it –and using it– throughout the paper.

The paper “Scoring Play Combinatorial Game Theory” [15], discusses the struc-
ture of these games under the disjunctive sum, which is defined below. In this paper
it is shown that these games do not form a group, there is no non-trivial identity,
and almost no games that can be compared in the usual sense. However, these
games are partially ordered under the disjunctive sum, and do form equivalence
classes with a canonical form. The games can also be reduced using the usual rules
of domination and reversibility.

Definition 3. The disjunctive sum is defined as follows:

G+! H = {GL +! H,G+! H
L|GS +HS |GR +! H,G+! H

R},

where GS +HS is the normal addition of two real numbers.

We abuse notation by letting GL and GR represent the set of options and the
individual options themselves. The reader will also notice that we have used +!

and +. This is to distinguish between the addition of games (the disjunctive sum),
and the addition of scores.

Definition 4. We define the following:

• −G = {−GR|−GS |−GL}.

• For any two games G and H , G = H if G +! X has the same outcome as
H +! X for all games X .

• For any two games G and H , G ≥ H if H +! X ∈ O implies G +! X ∈ O,
where O = L≥, R≥, L> or R>, for all games X .

• For any two games G and H , G ≤ H if H +! X ∈ O implies G +! X ∈ O,
where O = L≤, R≤, L< or R<, for all games X .

• G ∼= H means G and H have identical game trees.

• G ≈ H means G and H have the same outcome.
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The reason that we need this, is because our game naturally splits up into mul-
tiple smaller components that are played independently of one another. So, the
disjunctive sum is the natural operator to use when analysing this game.

Finally we need to define the outcome classes of games. Before we can define
what the outcome classes are precisely, we first need the following definition.

Definition 5.

L> = {G|GSL
F > 0}, L< = {G|GSL

F < 0}, L= = {G|GSL
F = 0}.

R> = {G|GSR
F > 0}, R< = {G|GSR

F < 0}, R= = {G|GSR
F = 0}.

L≥ = L> ∪ L=, L≤ = L< ∪ L=, R≥ = R> ∪R=, L≤ = R< ∪R=.

Next we can use this to give the definition of outcome classes for scoring play
games. Note that scoring play games, unlike normal and misère play games have
five outcome classes.

Definition 6. The outcome classes of scoring games are defined as follows:

• L = (L> ∩R>) ∪ (L> ∩R=) ∪ (L= ∩R>)

• R = (L< ∩R<) ∪ (L< ∩R=) ∪ (L= ∩R<)

• N = L> ∩R<

• P = L< ∩R>

• T = L= ∩R=

1.2. An Example

In this section we will give an example of Pirates and Treasure, so that the reader
has a better idea for how this game is played. Consider the game shown in Figure
3, this Figure shows a typical Pirates and Treasure position, as well as, a sequence
of moves that the players could make.

In the diagrams L represents Left’s current position, R Right’s current position,
and the numbers represent the amount of treasure at that vertex. The number in
brackets will represent the current score, we also change numbered nodes to non-
numbered nodes once they have been visited. This indicates that the pirate has
gathered all of the available treasure at that particular node.

In this particular example, GSL
F = GSR

F = 2. Note that the winner is not related
to who moves last. If Left moves first then Right moves last, but Left wins. If Right
moves first then Left moves last, but again, Left wins.
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Figure 3: An example of Pirates and Treasure

2. Complexity

As always when studying a new game –or problem– like this, the very first question
we ask as a matter-of-course is “how hard is it?”. This is a very important question,
and as we will show it is NP-hard to determine the final score of this game, and it
remains NP-hard for various types of graphs.

Problem: Hamiltonian Path

Instance: A Graph G = (V,E).

Question: Does G contain a Hamiltonian Path?

This problem has been shown to be NP-complete [10]. We will be doing a reduc-
tion from Hamiltonian Path to our problem.

We define our problem as follows:

Problem: Pirates and Treasure

Instance: A Graph G = (V,E), weight w(v) ∈ Z+ for each v ∈ V , specified vertices
L and R.

Question: Can Left win moving first on G?

Theorem 7. Pirates and treasure is NP-hard.

Proof. To do this reduction we first start with a graph G and pick a vertex L on G.
The vertex L will be the starting position of player Left. We then give all remaining
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vertices on G value 1.

We add a path P to G, such that L is one of the end vertices. We then choose
the vertex R on P that is adjacent to L, and let it be the starting position of player
Right. P is chosen such that |P | = |V |. The reason we choose it this way is to
ensure that Left can win only by visiting every vertex of the graph G. That is,
Right has |V |−2 (subtracting the vertices L and R) vertices he can visit, while Left
has at most |V |− 1 (subtracting the vertex L).

By the rules of our game, Left cannot move on P , since the vertex R was once
occupied by Right. Likewise, Right cannot move onto G since he must move to
vertex L, and this was once occupied by Left.

If there is no hamiltonian path then Left can only visit at most |V | − 2 of the
vertices on G, meaning that Right is guaranteed to tie. If there is a hamiltonian
path, then Left will make the final move of the game and visit all |V |− 1 vertices,
while Right will only have visited |V |− 2 vertices.

Therefore, Left can win moving first, if and only if, there is a hamiltonian path
on G and the theorem is proven.

L RG

P

Figure 4: Reduction from Hamiltonian Path.

The problem Hamiltonian path remains NP-complete if G is planar, cubic, 3-
connected, or has no face with fewer than 5 edges [6]. It also remains NP-complete
if G is bipartite [11], or a grid graph [8].

Definition 8. A grid graph is the graph whose vertices correspond to the points
in the plane with integer coordinates, x-coordinates being in the range 1, . . . , n,
y-coordinates being in the range 1, . . . ,m, and two vertices are connected by an
edge whenever the corresponding points are at distance 1.

Another way of thinking about this, is that a grid graph is simply an induced
subgraph of a 2-dimensional grid.
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Theorem 9. Pirates and Treasure is NP-hard if G is either a planar or, a grid
graph.

Proof. The proof of this is almost identical to Theorem 7. Adding a path to the
outer face of a planar graph, is still a planar graph. Likewise for a grid-graph.
Therefore, we can use the same reduction method, and the theorem is proven.

For the remaining types of graphs, we must use a different proof technique. The
reason is that if we add a path, to say, a cubic graph, then the resulting graph is no
longer cubic. If we want to say that the game remains NP-hard for cubic graphs,
say, then the graph we use for our reduction must also be cubic. So we make the
following conjecture.

Conjecture 10. Pirates and Treasure is NP-hard ifG is either cubic, or 3-connected.

Since it is unlikely that this game is in NP, and this game is clearly in PSpace,
we also make this conjecture.

Conjecture 11. Pirates and Treasure is PSpace-complete.

3. The Game in General

Due to the fact that scoring games are not as nicely behaved as normal play games,
we must devise a new technique for studying them. The technique that we propose
is to restrict our set to only include those scoring games that represent a position
of the game we wish to analyse.

In some cases this makes the problem much simpler, as was shown by Stewart
in his paper on impartial scoring play games [16]. In this paper he looked only at
the set of impartial games, and in doing was able to devise a general strategy for
solving any scoring play octal game. Here we will attempt to do the same thing,
but for Pirates and Treasure.

The most obvious question to ask is, “will playing greedily always work?”. The
answer to that is “no”, as demonstrated in the following example.

Example 12. Consider the game in Figure 5.

If Left were playing greedily he would move to the neighbour with value 3. How-
ever, if he does so Right will move and get 4 points and therefore Left will lose.
Left’s best strategy is to move to the neighbour with value 1, Right still moves
and gets 4 points, but then Left can move again, get 4 points and win. So playing
greedily certainly does not always work.

Definition 13. PT = {G|G represents a position of Pirates and Treasure}

Theorem 14. For all G ∈ PT , if G +∼= 0 then G += 0.
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Figure 5: Playing greedily is not the best strategy.

Proof. First let P be a single edge, with one Right piece on it (note that P = {.|a|b}),
and let Left move first on G+! P , where G is any graph that has at least one Left
piece. The case where Right moves first will follow by symmetry. Note, PSL

F = a,
and we let a ≥ 0.

We will label the vertices of P , p1 and p2. We place the Right piece of p1 and
give p2 a value that is larger than the sum of all the values on G. Since G is a finite
graph, we can always do this.

Left moving first, must move on G, since he has no move on P . Right simply
moves to p2 and wins. Therefore (G+! P )SL

F < 0, i.e., G+!P +≈ P and the theorem
is proven.

This means that it is highly unlikely that we will be able to find any general
technique for solving different variations of this game.

3.1. Comparison with Normal Play

In this section we are aiming to show that it is possible to find a variation of Pirates
and Treasure that behaves very similarly to a normal play game. That is, best
strategy under normal play, corresponds to best strategy under scoring play. First,
Table 1 shows the sums of the four outcome classes under normal play.

G+H G ∈ P G ∈ L G ∈ R G ∈ N
H ∈ P P L R N
H ∈ L L L L, R, N , P L, N
H ∈ R R L, R, N , P R R, N
H ∈ N N L, N R, N L, R, N , P

Table 1: Outcome Class Table for Normal Play Games

Our aim, is to find a variation of Pirates and Treasure that gives an outcome
class table which looks like that one. By doing this, we are effectively demonstrating
that there is a non-trivial subset of scoring play games that exhibit the same “nice”
behavior of normal play games.

First we define the games PT x.
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Definition 15. PT x, is a subset of PT , where every node on the graph has value
x ∈ R, x > 0, and for all G ∈ PT x, GS = 0.

What the following theorems will show is that PT x exhibits behavior that is
almost identical to normal play. In all diagrams R represents a Right piece, and L
represents a Left piece.

Theorem 16. If G ∈ PT x, then G belongs to either L, R, N or T , i.e., there are
no P positions.

Proof. Whenever a player moves they gain x points. So the first player to move will
have an x point advantage over the second player. Since all nodes have value x, the
most the second player can do is bring the game back to a tie. Therefore when the
game ends, either the first player has won, or the game is a tie.

For a position G to be in P , the second player has to be able to win outright. But,
this is impossible, therefore there are no P positions, and the theorem is proven.

To show the similarities between this particular variation, and normal play, we
will be looking at the outcome class table. This is given in the following theorem.

Theorem 17. The outcome class table for PT x is given as follows:

G+! H G ∈ T G ∈ L G ∈ R G ∈ N
H ∈ T T L R N
H ∈ L L L L, R, N , T L, N
H ∈ R R L, R, N , T R R, N
H ∈ N N L, N R, N L, R,N , T

Table 2: Outcome Class Table for PTx

Proof. The proof of this will be split into five cases, and the remaining cases follow
by symmetry.

Case 1: G ∈ X , H ∈ T implies G+! H ∈ X , where X = L,R,N or T .

Since H ∈ T , this implies that the second player to move, must be the last player
to move. First assume that Left wins moving first on G, since the case where Right
wins moving first follows by symmetry. Again, Left winning on G implies that he
also moves last on G.

So when they play G +! H , Left will choose his winning move on G, and move
to GL +! H . If Right also moves on G, i.e., moves to GLR +! H , Left will respond
on G. When G is over, they must play H , which ends in a tie, and therefore Left
wins.

If Right chooses to move to GL +! HR, then Left will respond by moving to
GL +! HRL. Since H ends in a tie, we know that Left must move last on H , and
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therefore can force Right to move first on GL, which he loses. So if Left wins moving
first on G, then Left wins moving first on G+! H .

We know that neither Left nor Right can win moving second on any game G,
therefore the final case to consider is Left ties moving second on G. Left can tie
G+!H , by simply following Right’s moves, i.e., Left moves on the same component
as Right.

Since Right cannot win moving first or either G or H , Right will choose to move
to GR +! H , otherwise he may give Left an opportunity to win. If Left chooses to
move to GR +! HL, then Right can still force a tie by playing to GR +! HLR. In
other words, Left cannot change the parity of G +! H , and therefore the best he
can do is tie moving second on G+! H .

Case 2: G and H ∈ L implies G+! H ∈ L.
Left playing first on G+! H , simply makes his winning move on G or H . Then,

whichever component Right chooses to move on, Left will also move on. Since
we know that Left can move last on both G and H , he is guaranteed to keep his
advantage over Right and therefore win, moving first.

When Right moves first, Left can at least tie by playing the same strategy as
before (i.e., moving on the same component as Right). Therefore (G +! H)SL

F > 0
and (G+! H)SR

F ≥ 0, and we conclude that G+! H ∈ L.
Case 3: G ∈ L, H ∈ R implies G+! H ∈ X , where X = L,R,N or T .

x

L

x

R

x

R

x

L

+! ∈ T

x

L

x

R

R

x

+! ∈ R
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The case G ∈ L, H ∈ R implies G+! H ∈ L follows by symmetry.

Case 4: G ∈ L, H ∈ N implies G+! H ∈ L or N .

If G ∈ L and H ∈ N , then Left moving first on G +! H , can win by moving
G +! HL. The reason is that he will gain an x point advantage over Right, and
whichever component Right moves on, Left will move on. Since he moves last on
both G and H , playing this strategy will guarantee that he maintains his x point
advantage over Right.

Since Left can always win moving first on G+! H , whenever G ∈ L and H ∈ N ,
then we conclude that G +! H cannot be in R or T . To complete the proof, we
simply give an example of G+! H ∈ L and G+! H ∈ N .

L

x

R

L

x +! ∈ L

x

L

x

R

x

xL R
+! ∈ N

Case 5: G and H ∈ N implies G+! H ∈ X , where X = L,R,N or T .
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The case G ∈ L, H ∈ R implies G+!H ∈ L follows by symmetry. All remaining
cases follow by symmetry, and therefore the theorem is proven.

Theorem 18. We have G+! (−G) ∈ T for all G ∈ PT x.

Proof. To prove this, first consider Left moving first, since Right moving first will
follow by symmetry. Right can tie G+! (−G), simply by playing the “tweedle-dum,
tweedle-dee” strategy, i.e., whichever move Left makes, Right makes the identical
move in the opposite component. Since this will allow Right to move last on G+!

(−G), and therefore tie the game.

We know that Right cannot win moving second, because from Theorem 16, there
are no P positions. Therefore Right’s strategy can guarantee him a tie, and G +!

(−G) ∈ T . The theorem is proven.

The natural question to ask is, “are the sets PT x groups?” The answer to that
is “no.” The reason is that the games GL are GR are not in the set. We demand
that every game G ∈ PT x have GS = 0. But, gLS = x and gRS = −x, for all
gL ∈ GL and gR ∈ GR. So when a player moves, he is moving to something outside
of the set.
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However, what we have shown is that this particular variant of Pirates and
Treasures behaves very similarly to a normal play game. In fact the similarity goes
further than that. What we will attempt to convince the reader, although we have
no proof of this, is that a winning a strategy for Pirates and Treasure under normal
play, is identical to a “non-losing” strategy of a game in PT x.

Consider the game in Figure 6. If we played it under normal play, this game has
value {−1, 0|1} = {0|1} = 1

2 . Now consider the game in Figure 7. Under normal
play Right’s best move, moving first, is to move the Right piece on the left hand
graph down adjacent to the Left piece. This is exactly the same for scoring play.
Likewise, Left’s best move –moving first– is to move his piece up, so it is adjacent
to the Right piece, under both normal and scoring play.

x

L

x

R

Figure 6: One half?

x

L

x

R

R

x

Figure 7: An R position, under normal and scoring play.

In fact, if the reader is particularly vigilant, and checks the best strategies in the
examples given in the proof of Theorem 17, he/she will find that they are exactly
the same as the best strategies under normal play. So what we have shown is that
there is a non-trivial subset of scoring play games, that behaves very similarly to
normal play games.
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3.1.1. A Few Notes

There are several things we need to note about this idea. The first is that this will
not work on the set PT x ∪PT y, where x += y. It will also not work if GS += 0, i.e.,
before the players have moved the score is something other than zero. Finally, if we
let x = 0, then this game is trivial since every position is a T position.

The reader may feel that what we did, is simply changed the rules to “last player
to move wins.” However, we did not not change the rules of the game; all we did
was look at a particular case of the game. The real question is “are there any other
scoring games that fall into this set?” So we leave the following open problem.

Problem 19. Can we define, and classify, the set of scoring play games that behave
like a normal play game? If yes, which games lie in this set?

3.2. Comparison With Misère Play

In this paper we do not intend to say much about a comparison with misère play.
All we really are doing is giving examples to show that there are variations where
the winning strategy under scoring play is identical to the winning strategy under
misère play.

To show that it is very similar to misère play is much harder, given that the
general structure of misère games is not as “nice” as normal play. All we will be
doing is demonstrating that the last player to move does not win, i.e., he loses or
ties. Therefore, both players are trying not to move last, just like a misère play
game.

Definition 20. PT −x, is a subset of PT , where every node on the graph has value
x ∈ R, x > 0, and for all G ∈ PT −x, GS = 0.

Conjecture 21. For all G ∈ PT −x, if G +∼= 0 then G += 0.

The reason we make this a conjecture, is because we were unable to prove it.
There is a good reason for that. In [12], the authors used the game G in Figure 8
to prove a similar theorem for misère games.

The idea is that if we play G +H , where HL += ∅, then Right moving first will
move on G. Left has to move on H , as he has no move on GR, Right moves again
on G. We then let the string on Left moves on G be longer than the depth of H ,
and Left will be forced to move last.

While this worked for misère games, it would not work for Pirates and Treasure.
The problem is that there is no position in Pirates and Treasure, with a game tree
that has that general shape. Either a player can move from the start of the game,
or he cannot move at all. This makes proving the conjecture considerably more
challenging, and it will be beyond the scope of this paper.

We will also not be examining the outcome class table for these games either.
As far as a comparison to misère play, it is known that outcome of any two games
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G =

Figure 8: Game to show G += 0 under misère rules.

G and H are not related to their sum under misère play. Therefore, there is really
very little that the outcome class Table would tell us.

If were were playing this game under misère rules, not every position is repre-
sented. We know that moving last is bad, so showing that the outcome class Table
is also “bad” is not particularly interesting. So, this is why we will not be looking
at it in this paper.

To finish this section we will simply look at an example, and show that the
winning strategy under scoring play corresponds to the winning strategy under
misère play, and conjecture that this is always the case for these variations. Again,
this is not true if GS += 0, or if we examine a set PT −x ∪ PT −y, where x += y.

−x

L

−x

R

R

−x

L

−x

Figure 9: A T position under misère play.

Consider the game in Figure 9. If we played this game under misère rules, then
Left’s best move –moving first– would be to slide his piece, on the left hand graph,
down to the lower vertex. This is exactly the same as his best move under scoring
play rules. Likewise Right’s best move, under misère rules is either to move his
piece on the left hand graph down, or move his piece in the center graph up. Again,
these correspond to best strategy under scoring rules.

Also note that the difference in playing this game with negative values and posi-
tive values on the vertices, is very similar to the difference between playing it under
misère and normal play rules.
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We finish with one further problem:

Problem 22. If there is a variation of a scoring game that behaves like a normal
play game, will using negative values for the points players gain or lose on their
turns give a game that behaves like a misère play? If no, can we classify which
games have this property, and which do not?

4. Conclusion

We have introduced a new game, and shown that there are variations of this game
that exhibit behavior that is very similar to normal play, and variations that exhibit
behaviour that is very similar to misère play. This means that there are non-trivial
subsets of scoring play games that have this same behaviour. The question is
whether we can define these subsets precisely, and determine which scoring games
lie in them, and which do not? We hope that we have convinced the reader that
this is an interesting problem to pursue.
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