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Abstract

Let G be an abelian group. A set A C G is a B,‘:—set if whenever a1 + -+ 4+ ap =
b1+ -+ by with a;,b; € A, there is an ¢ and a j such that a; = b;. If A is a By-set
then it is also a B,j—set, but the converse is not true in general. Determining the
largest size of a Bg-set in the interval {1,2,..., N} C Z or in the cyclic group Zy
is a well-studied problem. In this paper we investigate the corresponding problem
for B,j—sets. We prove nontrivial upper bounds on the maximum size of a B,‘:—set
contained in the interval {1,2,..., N}. For odd k > 3, we construct B,:'—sets that
have more elements than the By-sets constructed by Bose and Chowla. We prove
that any Bf-set A C Zy has at most (1 + o(1))(8N)/3 elements. A set A is a
Bj-set if whenever a1 + -+ 4+ ap = ag41 + - - + ag, with a; € A, there is an ¢ # j
such that a; = a;. We obtain new upper bounds on the maximum size of a Bj-set
A cC{1,2,...,N}, a problem first investigated by Ruzsa.

1. Introduction

Let G be an abelian group. A set A C G is a B,j -set if

a1 +--+ap=by+---+0b with ay,...,ar,b1,...,bp €A (1)
implies a; = b; for some ¢ and j. A set A is a By-set if (1) implies (a1,...,ax) is a
permutation of (b1,...,by). If A is a By-set then A is also a B} -set, but in general

the converse is not true. Often Bs-sets are called Sidon sets and have received much
attention since they were first studied by Erdés and Turdn [9] in 1941. Let Fj(N)
be the maximum size of a By-set A C [N] and let C,(N) be the maximum size of
a By-set ACZyn. If AC Zy is a Bg-set, then A is also a By-set when viewed as a
subset of Z. Thus, for any k > 2, Cy(N) < Fj(N).

Erd6s and Turdn proved Fy(N) < N'/2 4+ O(N'/*). Their argument was used by
Lindstrom [13] to show Fy(N) < N'/2 4 N¥/4 1+ 1. In 2010, Cilleruelo [5] obtained
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Fy(N) < NY24N1/4 + 3 as a consequence of a more general result. This is the best
known upper bound on F»(N). By counting differences a — b with a # b, it is easy
to prove Cy(N) < v/N + 1. There are several constructions of dense By-sets (see
[17], [2], [16]) that show Cy(N) > N'/2 for infinitely many N. These constructions
imply F5(N) ~+/N and limsup 0\2/%\[) =1.

For k > 3, bounds on Fj(N) and Ci(N) are not as precise. For each k > 2 and
prime power ¢, Bose and Chowla [2] constructed a By-set A C Zg_; with [A| = ¢

so that

(14 0(1))NY* < Fi(N).

The current upper bounds on Fj(N) and Cy(NN) do not match this lower bound for
any k > 3. If A C [N] is a By-set then each k-multiset in A gives rise to a unique sum
in {1,...,kN}. Therefore, (“1#¥71) < kN which implies Fx(N) < (k! - kN)Y/k.
Similar counting shows Cy(N) < (k!N)Y*. By considering differences one can
improve these bounds. We illustrate this idea with an example that is relevant to
our results. Let A C Zy be a By-set. There are (141)(JA| — 2) sums of the form
a1 + ay — a3 where a1, ay, and ag are distinct elements of A. Let A®) = {{z,y} :
x,y € A,x # y}. It is not hard to check that each n € Zx has at most one
representation as n = a; + ay — a3 with {a, a0} € A® and a3 € A\{a;,as}. This
implies (l’;‘l)(|A\ —2) < N so |A| < (2N)Y/? + 2. In general, for any k > 2

Ch(N) < (EJ' [Q !N)l/k +Ou(1), (2)

s (S oo

These bounds were first obtained by Jia [12] in the even case, and Chen [3] in
the odd case. The best upper bounds on Fj(N) are to due to Green [10]. For
every k > 2, (3) has been improved (see for example [10] or [4]), but there is no
value of k¥ > 3 for which (2) has been improved. This is interesting since all of the
constructions take place in cyclic groups and provide lower bounds on Cy(N). For
other bounds on By-sets the interested reader is referred to Green [10], Cilleruelo
[4], O’Bryant’s survey [14], or the book of Halberstam and Roth [11].

Now we discuss B -sets. Write F (N) for the maximum size of a B -set A C
[N], and C;f (N) for the maximum size of a B} -set A C Zy. Ruzsa [16] proved
that a set A C [IN] with no solution to the equation 1 + -+ +ax =y1 + -+ + Yk
in 2k distinct integers has at most (1 + o(1))k*>~'/*N'/* elements. Call such a set
a Bj-set and define F}(N) in the obvious way. Any B,:f—set is also a Bj-set so
that ;" (N) < Fy(N). Using the constructions of Bose and Chowla [2] and Ruzsa’s
Theorem 5.1 of [16], we get for every k > 3,

and

(1+0(1))NY* < F(N) < FF(N) < Ff(N) < (1+o(1)k* VEN/E,
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In this paper we improve this upper bound on F;(N) and Fj(N). We also
improve this lower bound on F; ,j (N) for all odd k > 3, and we prove a nontrivial
upper bound on C;' (N). We do not consider the case when k = 2. The reason
for this is that Ruzsa [16] proved Fy(N) < N'/2 4 4N'/4 411, and thus Fo(N) ~
FF(N) ~ Ff(N) ~ N'/2. In fact, a By-set is the same as a By -set.

Our first result is a construction which shows that for any odd k > 3, there is a
Bjf-set in [N] that has more elements than any known Bj-set contained in [N].

Theorem 1.1. For any prime power q and odd integer k > 3, there is a B,j-set
A C Zy(gr—1) with |A] = 2q.

Using known results on densities of primes (see [1] for example), Theorem 1.1
implies
Corollary 1.2. For any integer N > 1 and any odd integer k > 3,
EF(N) > (14 o(1))2' " VENE,

Green proved F3(N) < (1+0(1))(3.5N)"/3. We will use a Bose-Chowla Bs-set to
construct a Bf-set A C [2¢%] with |A| = 2¢ = (4 - 2¢°)'/3. Putting the two results
together we see that A is denser than any Bs-set in [2¢®] for sufficiently large prime
powers ¢q. Our construction and Green’s upper bound show that F5(N) and F3(N)
are not asymptotically the same.

The proof of Theorem 1.1 is based on a simple lemma, Lemma 2.1, which implies

2Ck(N) < CF(2N) for any odd k > 3. (4)

This inequality provides us with a method of estimating Ci(N) by proving upper
bounds on C; (N) for odd k. Our next theorem provides such an estimate when
k=3.

Theorem 1.3. If A C Zy is a Bf -set, then |A| < (14 0(1))(8N)'/3.
Theorem 1.3 and (4) imply
Corollary 1.4. If A C Zy is a Bz-set, then |A| < (14 0(1))(2N)"/5.

As shown above, there is a simpler argument that implies this bound. The novelty
here is that our results imply (2) for k = 3. It is important to mention that the error
term we obtain is larger than the error term in the bound C3(N) < (2N)Y/3 4 2.
We feel that any improvement in the leading term of Theorem 1.3 or (2) would be
significant.

In Z we obtain the following bounds for small k.

Theorem 1.5. (i) If A C [N] is a By -set, then |A| < (1+0(1))(18N)/3.
(ii) If A C [N] is a Bf -set, then |A| < (1 + o(1))(272N)'/4,
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Recall that Ruzsa [16] proved Fj(N) < (1 + o(1))k*~Y/kN'/* which implies
EF(N) < (1 +0(1)k?~/kEN/k For k > 5, we were able to improve this upper
bound on F lj (N) by modifying arguments of Ruzsa. Our method also applies to
Bj-sets. As a consequence, we improve the upper bound on Fj(N) for all £ > 3.
We state our result only for £ = 3 and for large k. For other small values of k the
reader is referred to Table 1 in Section 6.

Theorem 1.6. If A C [N] is a Bj-set, then |A| < (14 0(1))(162N)Y/3. If A C [N]
is a Bj-set, then

1
|A| < (Z + e(k)) k2N
where e(k) — 0 as k — oo.

We remark that Ruzsa’s upper bound on F}(N) is asymptotic to E2N'/F. Our
results do not rule out the possibility of F,j (N) being asymptotic to Fji (V).

Problem 1.7. Determine whether or not F (N) is asymptotic to F}'(N) for k > 3.

If A C [N]is a Bj-set, then the number of solutions to 2z1 + x2 + -+ + 21 =
Y1 + -+ Yk with 2, y; € Ais o(|A|F) (see [16]). A Bj-set allows solutions to this
equation with z1,...,2r_1,91,...,yx all distinct, but such a solution cannot occur
in a B; -set. If it were true that F;" (V) is asymptotic to Fy'(N), then this would
confirm the belief that it is the sums of &k distinct elements of A that control the size
of A and the lower order sums should not matter. Jia [12] defines a semi-By;-set to
be a set A with the property that all sums consisting of k distinct elements of A are
distinct. He states that Erdés conjectured [8] that a semi-By-set A C [N] should
satisfy |A| < (14 o(1))NY*. A positive answer to Problem 1.7 would be evidence
in favor of this conjecture.

At this time we do not know how to construct B, -sets or B}, -sets for any k > 2
that are bigger than the corresponding Bose-Chowla Bag-sets. We were able to
construct interesting Bj -sets in the non-abelian setting.

Let G be a non-abelian group. A set A C G is a non-abelian By-set if

aijas---ap = biby--- b with ai,bj €A (5)

implies a; = b; for 1 <i < k. If A C G is a non-abelian By-set, then every k-letter
word in |A| is different so |A|*F < |G|. Odlyzko and Smith [15] proved that there
exist infinitely many groups G such that G has a non-abelian By-set A C G with

Al = (1 +0(1)) (%)1/4. They actually proved a more general result that gives
constructions of non-abelian By-sets for all £ > 2. The case when k£ = 4 is the
only result that we will need. Define a non-abelian B,j—set to be aset A C G
such that (5) implies a; = b; for some i € {1,2,...,k}. As in the abelian setting,
a non-abelian Bj-set is also a non-abelian B,j—set but the converse is not true in

general. Using a construction of [15], we prove
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Theorem 1.8. For any prime p with p — 1 divisible by 4, there is a non-abelian
group G of order 48(p* — 1) that contains a non-abelian Bf -set A C G with

1

A= 51

Our result shows that there are infinitely many groups G such that G has a non-

1/4
abelian B} -set A with |A| = (%) + o(|G|/*). We conclude our introduction

with the following conjecture concerning B;}c—sets.

Conjecture 1.9. If £ > 4 is any even integer, then there exists a positive constant
¢, such that for infinitely many N,

EF(N) > (1+cx +o(1))NVE,

If Conjecture 1.9 is true with ¢, = 2'=%/% — 1 as in the odd case, then using
Green’s upper bound Fy(N) < (1+0(1))(7TN)*/4, we can conclude that Fy(N) and
Ff(N) are not asymptotically the same just as in the case when k& = 3. Our hope
is that a positive answer to Conjecture 1.9 will either provide an analogue of (4) for
even k > 4, or a construction of a B,;L—set that does not use Bose-Chowla Bj-sets.

2. Proof of Theorem 1.1

In this section we show how to construct B,j—sets for odd k > 3. Our idea is to take
a dense Bj-set A and a translate of A.

Lemma 2.1. If A C Zy is a By-set where k > 3 is odd, then
At :={a+bN:aec Abe{0,1}}
s a B;—set in Zon.

Proof. Let k > 3 be odd and suppose

k k
> ai+b:N =) c;+d;N (mod 2N) (6)

i=1 i=1

where a;,¢; € A, and b;,d; € {0,1}. Taking (6) modulo N gives

k k
Zai = Zci (mod N).
i=1 i=1
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Since A is a By-set in Zy, (a1,...,a;) must be a permutation of (c1,...,cx). If
we label the a;’s and ¢;’s so that a1 < ag < --- <ap and ¢y <cg < --- < ¢, then
a; = ¢; for 1 <i < k. Rewrite (6) as

k k
> biN =) dN (mod 2N).
i=1 i=1

The sums Zle b; and Zle d; have the same parity. Since k is odd and b;,d; €
{0, 1}, there must be a j such that b; = d;, so a; +b;N = ¢; +d; N (mod 2N). O

Let ¢ be a prime power, kK > 3 be an odd integer, and Ay be a Bose-Chowla
By-set with Ay C Zg_; (see [2] for a description of Ay). Let

Af ={a+0b(¢d" —1):a € A, be{0,1}}.

By Lemma 2.1, A;’ is a B,:'—set in Zg(gre—1y and |A¥| = 2|Ag| = 2q. This proves
Theorem 1.1.

3. Proof of Theorem 1.3

Let A C Zy be a By -set. If N is odd, then 2z = 2y (mod N) implies # = y (mod N).
If N is even, then 22 = 2y (mod N) implies ¢ = y (mod N) or = y+N/2 (mod N).
Because of this, the odd case is quite a bit easier to deal with and so we present
the more difficult case. In this section IV is assumed to be even. If N is odd,
then the proof of Theorem 1.5(i) given in the next section works in Zy. The only
modification needed is to divide by N instead of 3N when applying Cauchy-Schwarz.
For simplicity of notation, we write x = y rather than = y (mod N).
For n € Zy, define

f(n):#{({a,c},b) c A® ><A:nza—b+c,{a,c}ﬂ{b}:®}.

Recall that A®?) = {{x,y} : 2,y € A,z # y}. Thesum > f(n)(f(n) — 1) counts the
number of ordered pairs (({a,c},b), ({x, 2},y)) such that the tuples ({a,c},b) and
({z, z},y) are distinct, and both are counted by f(n). For each such pair we cannot
have {a, c} = {z, z}. Otherwise, the tuples would be equal. If (({a, c},b), ({z, z},v))
is counted by > f(n)(f(n) — 1), then a +y + ¢ = x + b+ 2. By the By property,
{a,y,c} N{z,b,z} # 0 so that {a,c} N{z,z} # 0 or b =y. The tuples are distinct,
so both of these cases cannot occur at the same time.
Case 1: {a,c}N{z,z} #0 and b+#y.

Without loss of generality, assume a = x. Cancel a from both sides of the
equation a — b+ ¢ = = — y + z and solve for ¢ to get ¢ = b — y + z. Here we are
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using the ordering of the tuples (({a,c},b), ({z,2},y)) to designate which element
is solved for after the cancellation of the common term.

If z = b, then ¢+ y = 2b and we have a 3-term arithmetic progression (a.p. for
short). The number of trivial 3-term a.p.’s in A is at most 2| A| since for any a € A,

a+a=2a=2(a+ N/2).

Next we count the number of nontrivial 3-term a.p.’s. By nontrivial, we mean that
all terms involved in the a.p. are distinct, and a + a = 2(a + N/2) is considered to
be trivial.

If p4 g = 2r is a 3-term a.p., then call p and g outer terms. Let p be an outer
term of the 3-term a.p. p + ¢ = 2r where p,q,r € A. We will show that p is an
outer term of at most one other nontrivial a.p. Let p + ¢’ = 27’ be another a.p.
with ¢’,7" € A and (gq,7,) # (¢, 7).

If r =1/, then p+¢q=2r =2r' = p+¢ so q=q'. Thisis a contradiction and
so we can assume that r = /.

Ifg=¢,then2r =p+q=p+q¢ =2r"sor =rorr =r+ N/2. Thus,
p+qg=2rorp+q=2r+N/2).

Now suppose 7 # r’ and g # ¢'. Since 2r — ¢ = p = 21’ — ¢’ we have by the By
property,

{r.d}n{r'.q} #0.
The only two possibilities are 7 = q or 7’ = ¢/, but in either of these cases we get a
trivial 3-term a.p. Putting everything together proves the following lemma.

Lemma 3.1. If A C Zy is a By -set, then the number of 3-term arithmetic pro-
gressions in A is at most 4|A|.

Given a fixed element a € A and a fixed 3-term a.p. ¢ +y = 2b in A, there are
at most 4! ways to form an ordered tuple of the form (({a,c},b), ({a,b},y)). The
number of ordered tuples counted by > f(n)(f(n) — 1) when {a,c} N {z,2z} # 0
and z = b is at most 4!|A| - 4/A| = 96| A|2. The first factor of |A| in the expression
41 A] - 3]A| comes from the number of ways to choose the element a.

Assume now that z # b. Recall that we have solved for ¢ to get ¢ = b —y + 2.
If b = y, then ¢ = z which implies {a,c} = {z, z}, a contradiction as the tuples are
distinct. By definition y # z, so ¢ = b—y+2z where {b, 2} € A® and {y}n{b, 2z} = 0.
The number of ways to write ¢ in this form is f(c). Given such a solution {b, z},y
counted by f(c), there are two ways to order b and z, and | A| ways to choose a = z.
The number of ordered tuples we obtain when {a,c} N {z,z} # 0 and z # b is at
most [A] -2 4 f(c). This completes the analysis in Case 1.

Before addressing Case 2, the case when b = y and {a,c} N {x, 2z} = (), some
additional notation is needed. For d € A + A, define

S(d) = {{a,b} € A® : a+b=d and there is a pair {a’,b'} € A®
with {a,b} N {a’,b'} =0 and o’ + V' = d}.
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Let dq,ds, ..., dy be the integers for which S(d;) # 0. Write S? for S(d;) and define
T! ={a:a <€ {a,b} for some {a,b} € S?}.

Let s; = |S?| and dy,da, . .., d,, be the integers for which s; = 2. Let dyyi1,...,dyn
be the integers for which s; > 3. For 1 < ¢ < M, we will use the notation Si2 =
{{al, b3}, {ab, b4}, ... {a’ ,b. }}. A simple, but important, observation is that for
any fixed i € {1,..., M}, any element of A appears in at most one pair in S?.

If A was a Bs-set, then there would be no d;’s. This suggests that a B;r—set

or a Bj-set that is denser than a Bs-set should have many d;’s. The B -set AT
constructed in Theorem 1.1 has m ~ %(‘Ag‘). However, if A7 is viewed as a subset
of Z, then m = %(‘AQ;‘) (see Lemma 4.3 which also holds in Zy if N is odd).
Case 2: b=y and {a,c} N{x, 2z} = 0.

If b = y, then a 4+ ¢ = x + z. There are |A| choices for b =y and

M

> IsEISsE - 1)

i=1

ways to choose an ordered pair of different sets {a, ¢}, {z, 2} € A® with a+c = z+2,
and {a,c} N{z,z} = 0.

Putting Cases 1 and 2 together gives the estimate

M
Y f)(f(n) —1) < |A] <2Zf(0) +Z|53|(IS?| - 1)) +96|A7. (7)

ceA

Our goal is to find upper bounds on the sums ) . , f(c) and Zf‘il |SZ|(1S2|—1).

Lemma 3.2. Ifx € T} NT} for some i # j, then (i) max{s;,s;} <3 and (i) if
s; = s; = 3, then for some x1,y,z € A depending on i and j, we have d; = d;+N/2
and 512 = {{xwrl}v {y,z}, {y+%7z+%}}’ Sg2 = {{I,l‘rl—%}, {y—F%,Z}, {y,Z—F%}}

Proof. 1If s; = 2 and s; = 2 then we are done. Assume s; > 2. Let Sz =
{{ai, b1}, {al,, 04, ) and ST = {{a],b1},...,{al,,b] }}. Without loss of gen-
erality, suppose * = a} and z = a%. By definition, s; > 2 so we can write

di =z +bi =ab+ by and dj = = + b} = a} + b = af + b},
Solve for z to get x = ab + by — bl = a3 + bj — b]. This can be rewritten as

al + by + ] = al + b} + bl (8)

Since d; # dj, b} cannot be b{ therefore b]i is not on the right hand side of (8), and
bi is not on the left hand side of (8). By the B property, {a}, by} N {a}, by} # 0.



INTEGERS: 14 (2014) 9

The same argument can be repeated with ag in place of ag and b% in place of bg to
get o
{a3, 05} N {a3, b3} # 0.
Recall any element of A can occur at most once in the list a{, b{, aé, bé, co.al b
J J
thus s; < 3. By symmetry, s; < 3.
Now suppose s; = s; = 3. Repeating the argument above, we have for each
2<k<3and2<1<3,
{ai, b} N{ag, b} = 1.
This intersection cannot have size 2 since d; # d;. Without loss of generality, let
y=ah=al, 2 =0b =a}, u=a} ="b) and v = b, = b,. We represent these
equalities between T}! and le using a bipartite graph with parts T} and le where
w € T} is adjacent to w' € le if and only if w = w’ (see Figure 1).

T!
. ¢ .
i =z by ay =y by =z ay =u by =w
[ ]
L]

J _ J J Jo_ J J o
a =z by ay =y by =u g =2 by =v
T!

J

Figure 1 - Equality Graph for Lemma 3.2

The equalities d; = y+2z =u+vand d; = y+u = z+v imply d; —d; = z—u and
d; —d; = u — z. Therefore 2z = 2u. If z = u, then this is a contradiction since the
elements in the list ,b%,y, z, u,v are all distinct. It is in this step that the parity
of N plays an important role. We conclude v = z + N/2 and

di=y+u=y+(z+N/2)=y+2+N/2=d; + N/2.
Let bl = x1 so b =z + N/2. Since d; =y + 2z =u+v and u = z + N/2,
v=y+z—u=y+z—(2+N/2)=y— N/2=y+ N/2.

Substituting u = z + N/2 and v = y + N/2 gives the assertion about the pairs in
S7 and S7 when s; = s; = 3. O

Corollary 3.3. Ifs; > 4, then for any j # i, T} ﬂle = (). Furthermore, anyx € A
is in at most two T} ’s with s; = 3.
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Proof. The first statement follows immediately from Lemma 3.2. For the second
statement, suppose © € T} NT} with s; = s; = 3 and i # j. By Lemma 3.2,
{z,2:} € S7 and {x,z, + N/2} € S5 for some z; € A. If x € T} with k # 4, then
{@, 214+ N/2} € S} sodj =z + (z1 + N/2) = dj, and j = k. O

Lemma 3.4. If A C Zy is a By -set, then

S 7(0) < AP + T/l

ceA
Proof. For c € A, let

g1(0) = #{({w.2}y) € A x A=z —y+zc £y {a.2} N {y) = 0}
and
92(0) = #{({z.2hy) € AP x A= —y+z e =y, {w,2} N {y) =0}

For each ¢ € A, f(c) = g1(c) + g2(c). The sum }_ _, g2(c) is exactly the number
of nontrivial 3-term a.p.’s in A. By Lemma 3.1, > ., g1(c) < 4|A|. Estimating
Y eca g1(c) takes more work. To compute g;(c) with ¢ € A, we first choose an 4
with ¢ € T}, and then choose one of the pairs {z, 2z} € SZ\{c,y} to obtain a solution
c=x—y+zwith ¢ # y and {x, 2} N {y} = 0.

If c ¢ TLU---UT}3,, then the equation c+y = x+z with ¢,y, z, and z all distinct
has no solutions in A so gi(¢) =0. Assume c € T} U--- UT},.
Case 1: c¢ Tt U---UT}.

By Corollary 3.3, there are two possibilities. One is that there is a unique j with
ce T} and s; > 3. In this case, |S7| < % so g1(c) < |‘21|. The other possibility is
that ¢ € T;) N T} with s; = s; = 3 and i # j. In this case, g1(c) < 4 because we
can choose either i or j, and then one of the two pairs in S? or sz that does not
contain c.

Case 2: ce T}t U---UTL.

By Lemma 3.2, ¢ is not in any 7} with s; > 4 and ¢ is in at most two T}’s with
s; = 3. There are at most |A| T}’s with ¢ € T} since there are at most |A| pairs
{c,y} that contain ¢ so g1(c) < |A| + 4.

In all cases, g1(c) < |A|+4 and

D fe) = (91(0) +g2(e)) < |AI(|A] +4) + 4] A]

ceA ceA

which proves the lemma. ]

Lemma 3.5. If gi(c) is the function of Lemma 3.4, then

M
22 SEIISE 1) =D q1(e).

ceEA
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Proof. Define an edge-colored graph G with vertex set A, edge set UM, S2, and such
that the color of edge {a,b} is a + b. The sum lel |Sf|(|Sf| -1) counts ordered
pairs ({c,y},{z, z}) of distinct edges of G where {c,y} and {z,z} have the same
color, i.e., c+y = x + 2z, and ¢,y,z, and z are all distinct elements of A. The
sum ) 4 g1(c) counts each such ordered pair ({c,y},{z,z2}) exactly two times,

one contribution coming from ¢ (c¢) and the other from g;(y). O
By Lemma 3.5,
M
SISES? ~ 1) < 5 37 f(e). (9)
i=1 cEA

Next we use the following version of the Cauchy-Schwarz inequality.

Lemma 3.6. (Cauchy-Schwarz) If x1, ..., x, are real numbers, t € {1,2,...,n—1},
and A=313"_ w;— LSz, then

2
" 1 (< tnA?

i=1

A simple counting argument shows Y f(n) = (“3‘)(|A| —2). Let 3 o4 fle) =

S|A% If
1 1
— — S5|Al — —
1 Zf N;ﬂn) ol4| N;f(n)
then, using Ruzsa’s bound |A| = O(N'/3) and Cf (N) < F;"(N), we get

() (Al -2)
N

A =5|A| - > 5|A| - C

where C' is some absolute constant. By Lemma 3.6,

()14 —2)2 | |A]- N(8]A] — C)?

Do fm? 2 SR M
2
(a2 (1 - )
= 12 ~ + 6% AP I

M
D ofm? < ) )+ 1A <2Zf(0)+2|53|(|53|—1)>+96Al2

ceA

A]* 514] 2
5+ ;f(c)+96|A|

1
EPTE (+T55> + 96| A[2.

IN
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Combining the two estimates on >~ f(n)? gives the inequality

2
IAN2(1 4] — 2)2 1— 5 1
E) (4 -2" “N‘ ) +62|A|37< 1 612:) <|AP <—J;55> +961A%. (10)
- N

If 6 = 0, then (10) is not valid but we still get

(3074l =27 _ |ap
2L T < 1 96|4)2

N -2 +96]4]
This inequality implies |A| < (14 o(1))(2N)'/3. Assume that § > 0. In this case,
(10) simplifies to

1/3

Al < (1+0(1)) (2 + 105 — 46%) " N*/3., (11)

At this point we find the maximum of the right hand side of (11) using the fact
that 0 < §d <1+ ﬁ, which follows from Lemma 3.4. For |A| > 28, the maximum

occurs when 6 =1+ ﬁ therefore, after some simplifying, we find

|A] < (1 + o(1))(8N)'/3.

4. Proof of Theorem 1.5(i)

The proof of Theorem 1.5(i) follows along the same lines as the proof of Theorem 1.3.
We will use the same notation as in the previous section. The derivation of (7) is
very similar except in Z, or in Zy with N odd, there are fewer 3-term a.p.’s in
A. Regardless, (7) still holds under the assumption that A C [N] is a By -set, or
A C Zy is a By -set and N odd.

Next we prove a lemma that corresponds to Lemma 3.2.

Lemma 4.1. If x € T} NT} for distinct i and j, then either s; = s; = 2, or if
s; > 2, then s; =2, s; =3, and |T}} N Tj1| > 3.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 3.2 up
until the point where we write the equation 2z = 2u. In Z (or Zy with N odd),
this implies z = u which is a contradiction since the elements z,b,y, z, u, v are all
distinct. This allows us to conclude that T;' N'T} = ) for any i # j with s; > 3 and
Sj Z 3.

The assertion | T} N Tj1| > 3 can be verified with some easy computations. Alter-
natively, one can just ignore a} = u and b4 = v in Figure 1 to see |T}! ﬁTj1| >3. O

Corollary 4.2. If m+1<i<j<M, then T} N T} =.
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Proof. If x € T; N'T; with ¢ # j, then by Lemma 4.1, one of s; or s; must be equal
to 2. U

The next lemma has no corresponding lemma from the previous section. It will
be used to estimate ) ., f(c).

Lemma 4.3. If A C [N] is a By -set or if A C Zy is a By -set and N is odd, then
for any a € A, the number of distinct i € {1,2,...,m} such that a € T} is at most
|A]
T-
Proof. To make the notation simpler, we suppose a € T} for 1 < i < k and we
will show k& < %. The case when a € Til1 N---N Tzlk for some sequence 1 <
i1 < --+ < 1 < m is the same. For this lemma we deviate from the notation
S? = {{a},bi}, .. {al b }}. Write S7 = {{a,a;},{b;,c;}} and a4+ a; = b; + ¢;
where 1 < i < k, and for fixed i, the elements a, a;, b;, and ¢; are all distinct. Observe
ai,...,a, are all distinct since the sums a + a; are all distinct. For 1 < i < k,

a = b; + ¢; — a;. Therefore,
bi+ci+a; =b;+c;+a;

for any 1 < 4,5 < k. These two sums must intersect and they cannot intersect at
aj or a;, unless i = j, so for 2 < j <k,

{br, ey N {bj e} # 0.

Let 2 < j <[ be the indices for which the sums intersect at b;. Let [ +1 < j < k
be the indices for which the sums intersect at ¢;. Let b = b; and ¢ = ¢;. We have
the k£ equations

a+a, = b+ec,
atay = b+ co,
a+a = b+g,
a+ar = b1t
ata, = bp+ec.
We will show that a1, ...,ar,c1,...,¢,b41,...,bg are all distinct which implies

2k < |A|.

Suppose a; = b; for some 2 < i < land{+1 < j < k. Then a+b; = a+a; = b+c;,
but @ = b; + ¢ — a;. Therefore, b +¢; = a +b; = 2b; + ¢ — a; which implies
2bj+c¢ = b+c;+a;. The elements a;,b;, and c are all distinct so these sums cannot
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intersect at a;. Similarly they cannot intersect at c. The only remaining possibility
is b; = ¢;, but then a; = b; = ¢;, which is a contradiction. We conclude that a; and
b; are distinct for 2 < ¢ <land [+ 1 < j < k. A similar argument shows that a;
and ¢; are distinct for [+ 1 < j<kand 2 <i <.

Suppose now that a; = ¢ for some 2 < ¢ # ¢ <. Thenb+c¢; = a+a; =
a+ciy =a+ (a+ay —b), so that 2b + ¢; = 2a + a;r. Since 2 < ¢/ < I, these sums
cannot intersect at b and they cannot intersect at a. If ¢; = a;/, then a = b which is
impossible. The equation 2b+ ¢; = 2a 4 a,;/ contradicts the B;)r property. Note that
2b = 2a need not imply a = b if A C Zy with N even. We conclude that a; # ¢y
for each 2 <4 # 4’ <. Similarly, a; # by, for | +1 < j # j' < k.

The previous two paragraphs imply

{al,ag, - ,ak} N {62,63, .. ,Cl,bl+1,bl+2, .. .,bk} = 0.

To finish the proof we show {ca, ¢z, ..., {bit1, bit2,..., b} = 0. Suppose ¢; = b;
for some 2 <i<landl+1<j<k. Then

at+a;=b+c;=b+bj=b+(a+aj—c)=b+a+a;—(a+a1—b)=a;+2b—a;

which implies @ + a; + a1 = a; + 2b. Since ¢ < [ 4+ 1 < j, these sums cannot
intersect at a;. They cannot intersect at b either since a, a;, b, and ¢; are all distinct
whenever 1 < ¢ <[. This is a contradiction. Therefore, ¢; # b; for all 2 < ¢ <[ and
l+1<j<k. O

Lemma 4.4. If A C [N] is a Bf -set, then

S e < A g

2
ceA

Proof. Again we write f as a sum of the simpler functions g; and go. Recall that
for c € A,

01(0) = #{({z.2hy) € A® x A c=a—y+ zc £y, (w2} N {y} = 0},
and
gg(c):#{({ﬂf,z},y) e A® ><A:c:x—y—i—z,c:y,{x,z}ﬂ{y}:(Z)}.

For each c € A, f(c) = g1(c) +g2(c). The sum - ., g2(c) is exactly the number of
nontrivial 3-term a.p.’s in A. By Lemma 3.1, this is at most 4|A]|.

If ¢ ¢ T U---UT}4,, then the equation c+y = x+ 2z with ¢,y, z, and z all distinct
has no solutions in A so g1(¢) =0. Assume c € T} U--- U T4,
Case 1: c¢ T}t U---UTL.
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By Corollary 4.2, there is a unique j with ¢ € le and m+1 < j < M. For such
a j we have |Sj2| < % by Corollary 4.2. There is a unique pair in sz that contains
¢ so y is determined. There are at most % choices for the pair {z,z} € S7\{c,y}
0 gr(e) < 41
Case 2: ce T} U---UT}.

First assume ¢ ¢ T, U---UT},. A solution to ¢ +y = x + z with ¢,y,z, and
z all distinct corresponds to a choice of an 522 with 1 <7 <m and c € Til. By
Lemma 4.3, ¢ is in at most % T}s and so g;(c) < %.

Lastly suppose ¢ € T,}TH U---UT4. There is a unique j with ¢ € le and
m+1 < j < M. Furthermore, for this j we have |Tj1| = 6 by Lemma 4.1. If
c € Ti1 with 1 < 4 < m then, again by Lemma 4.1, |T¢1 N le\ > 3. There are (g)
3-subsets of le and given such a 3-subset, there are (?) ways to pair up an element
in the 3-subset with ¢ in S2. This implies c is in at most 3(5) S2’s with 1 <4 < m,

so gi(c) < 2+ 3(?) < |‘21|. The 2 comes from choosing one of the two pairs in

S2\{e). O

The rest of the proof of Theorem 1.5(i) is almost identical to that of Theorem 1.3.
If > .c4 f(c) = 0|AJ?, then by (7) and (9),

St < 4P (F52) + ogap)

We use the same version of the Cauchy-Schwarz inequality to get

AN Al — 1— 5
(%) (4] -2 +52|A|3(1i) < AP (HTM> +0(AP).  (12)

3N _ 1Al
3N

If § = 0, then
(3)7Al=27 _ jap
A2/ 2 oL Al?
<L ogap)
which implies |A| < (1 +o(1))(6N)'/3. Assume § > 0. Then (12) simplifies to

|A] < (1+0(1))(6 + 305 — 126%)Y/3N1/3.

By Lemma 4.4, 0 < 6 < % + |%|. The maximum occurs when § = % + % and we

get
|A| < (14 0(1))(18N)Y/3,

If we were working in Zx with N odd, then in (12) the 3N can be replaced by
N. Some simple calculations show that we get Theorem 1.3 in the odd case. We
actually obtain the upper bound |A| < (1+0(1))(6N)/3 when A C Zy is a By -set
and N is odd.
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5. Proof of Theorem 1.5(ii)
Let A C [N] be a B -set. For n € [-2N,2N], define

f(”) = #{({al’a2}7 {bl7b2}) S A(Q) X A(Q) L ay =+ ag — bl — b2 =n,
{al, ag} n {b1, bg} = @}

Recall that A®) = {{z,y} : 2,y € A,z # y}.
Lemma 5.1. If A C [N] is a Bf -set, then A is a Ba-set.

Proof. Suppose a +b = ¢+ d with a,b,¢,d € A. If {a,b} N{c,d} = 0, then the
equation 2(a + b) = 2(c + d) contradicts the B property so {a,b} N {c,d} # 0.
Since a + b =c+d and {a,b} N{c,d} # 0, we have {a,b} = {c,d}. O

Lemma 5.2. If A C [N] is a Bf -set, then for any integer n, f(n) < 2|A|.

Proof. Suppose f(n) > 1. Fix a tuple ({a1,az2},{b1,b2}) counted by f(n). Let
({c1,¢2},{d1,d2}) be another tuple counted by f(n), not necessarily different from
({al,ag}, {bl,bg}). Then a1 +as — by — by =¢1 +¢3 —dy — dy so

a1 +ag +dy +doy =cy +co+ by + bs. (13)

By the BJ property, {a1,az2,di,da} N {c1,ca,b1,b2} # 0. In order for this in-
tersection to be non-empty, it must be the case that {a1,as} N {c1,c2} # O or
{b1,b2} N {d1,da} # 0.
Case 1: {a,as}N{c1,ca}t #0.

Assume a1 = ¢1. There are at most |A| choices for ¢y so we fix one. The equality
a; = ¢ and (13) imply

di +do = by +ba + ¢y — as. (14)

The right hand side of (14) is determined. By Lemma 5.1, there is at most one pair
{dy,d>} such that (14) holds.
Case 2: {aj,as} N{c1,co} =0 and {by,b2} N{d1,da} # 0.

Again there is no loss in assuming by = d;. There are at most |A| choices for da
so fix one. The equality by = dy and (13) imply

c1+co=ai+as — by + ds. (15)

The right hand side of (15) is determined and there is at most one pair {c1, c2}
satisfying (15) as before.

Putting the two possibilities together we get at most 2| A| solutions
({c1,¢2},{d1,d2}). We have also accounted for the solution ({a1,as},{b1,b2}) in
our count so f(n) < 2|A|. O
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Lemma 5.3. If A C [N] is a Bf -set, then

Yo Fm(fn) 1) <204 Y f(n). (16)

neA—A

Proof. The left hand side of (16) counts the number of ordered tuples

(({a1, a2}, {b1,02}), ({c1, e2}, {d1,d2}))

such that ({a1,a2}, {b1,b02}) # ({c1,¢2}, {d1,dz2}), and both tuples are counted by
f(n). Equation (13) holds for these tuples. As before we consider two cases.
Case 1: {aj,as} N{cr,ca} # 0.

Assume a1 = ¢ so that as — co = b1 + by — dy — ds.

If {by,ba} N{dy,d2} # 0, say by = dy, then as — ¢y = by — da. We can rewrite this
equation as as+do = ba+co so that {a2,d2} = {bQ,CQ}. Since {al,az}ﬂ{bl,bg} = @,
it must be the case that as = co and do = by. This contradicts the fact that the
tuples are distinct. We conclude {b1, b2} N {d1,d>} = 0.

There are |A| choices for the element a3 = ¢; and we fix one. Since ag — ¢y =
by + by —dy — do and {b1,b2} N {d1,d2} = 0, there are f(az — c2) ways to choose
{b1,b2} and {d;y,d2}. Also observe that each n € A — A with n # 0 has a unique
representation as n = as — ¢o with as, ¢y € A. This follows from the fact that A is
a Bs-set.

Case 2: {ai,az} N{c1,ca} =0 and {b1,b2} N{d1,da} # 0.

The argument in this case is essentially the same as that of Case 1.

Putting the two cases together proves the lemma.

O

Observe S f(n) = (141)('*,7?). Using Cauchy-Schwarz, and Lemmas 5.3 and
5.2,

[

((2)045)

A\ (1Al -2
< 2 (I
w2 = D= () (M) v s
neA—A
4
< A0 gaia- a2
4 4
< AR gap = 10AD
4 4

After rearranging we get

|A| < (14 0(1))(16 - 17N)Y* = (1 + o(1))(272N) /4.
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6. Proof of Theorem 1.6

Lemma 6.1. Let A be a B,j—set with k > 4. If k = 2l, then there is a subset
A’ C A such that A" is a B} -set and |A'| > |A| — 2. If k = 2]+ 1, then there is a
subset A" C A such that |A'| > |A| — 2k and A’ is either a B} -set or a Bltl—set.

Proof. Suppose k = 2l with [ > 2. If A is not a Bl"'—set, then there is a set of 2/
(not necessarily distinct) elements ay, ..., a9 € A, such that

ap+---+a =a41+--+ag

and {a1,...,aq;} N{ai41,...,a9} = 0. Let A’ = A\{a1,as,...,a9}. If A" isnot a
B["—set7 then there is another set of 2/ elements of A’, say b1, ..., bs, such that

by 4+ +by=b1+- -+ by
and {by,..., b} N{by1,...,by} = 0. Adding these two equations together gives
@b ap by b = Qg e ag by e by

with {a1,...,a;,01,...,01} N {ai11,...,a2;,b141,...,by} = 0. This is a contradic-
tion.
The case when £ = 2] + 1 > 5 can be handled in a similar way.

It is easy to modify the proof of Lemma 6.1 to obtain a version for Bj-sets.

Lemma 6.2. Let A be a Bj-set with k > 4. If k = 21, then there is a subset A’ C A
such that A’ is a By -set and |A'| > |A| — 2l. If k = 2l + 1, then there is a subset
A" C A such that |A'| > |A| — 2k and A’ is either a Bj-set or a Bf,-set.

For A C [N]and j > 2, let
oj(n) =#{(a1,...,a;) €AV tay+---+a;=n}.
Let e(r) = €*™® and f(t) = Z e(at). For any j > 1, f(t) = > o;(n)e(nt) so by

acA
Parseval’s Identity, Y 0;(n)? = fol |f(t)|?'dt. The next lemma is (5.9) of [16].

Lemma 6.3. If A C [N] is a Bj-set, then

S or(m)? < (14 o)A Y o (m)?, (1)

In [16], Ruzsa estimates the right hand side of (17) using Holder’s Inequality and

shows .
3 oii(n)® < (Z ak(n))m Al

Our next lemma uses Holder’s Inequality in a different way.
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Lemma 6.4. Let A C [N] be a Bj-set. If k > 4 is even, then

ng <(1+o(1 ))kk|A\k/QZUk/2(”)
If k=2l4+12>05, then

3 on(n)? < (1+o(1 ))max{kkH\AV“Za 2 ALY 01 (n) }

Proof. First assume that k = 2] > 4. By Lemma 6.2, we may assume that A is
a Bj-set. Otherwise, we pass to a subset of A that is a B} set and has at least
|A| — 2k elements. Applying Holder’s Inequality with p = k—ﬁ2 and ¢ = g, we get

1 1
on_1(n 2 _ 2(k—1) 7, _ 2% 2
2 k() /O\f<t>l dt /Olf(t)l F()] s dt

( / 1 If(t)l%dt)l/p ( / 1 If(t)lzldt>1/q
= (Zoew?) T (S am)™"

Substituting this estimate into (17) and solving for Y o1 (n)? gives the first part of
the lemma.

Now assume k = 2] + 1 > 5. Again by Lemma 6.2, we can assume that A is
either a B[-set or a B/, ;-set.

Suppose A is a Bj-set. Applying Holder’s Inequality with p = £t1 and ¢ = &2,

we get ) R
S a0 = (Toutn) ™ (Son)™

This inequality and (17) imply

S o(n)? < (1+ oMK AT Y 0y(n)?.
l

If Ais a By ,-set instead, then apply Holder’s Inequality with p = ;=5 and ¢ =
and proceed as above. It is in this step that we must assume £k = 2] +1 >
otherwise if £ = 3, then [ = 1 and p is not defined.

IN

O i

For k > 2 let c;: be the smallest constant such that for any B,j—set A,

Yo an(n)® < (L +o(1)ef A"
+

Define ¢} similarly. The techniques of [16] can be used to show that ¢ < k?* so ¢f
and ¢ are well defined. Observe that for any k > 2, ¢} < c¢;. Using Lemma 6.4, it
is not difficult to show that for even k > 4,

cf < kkcz/2 and ¢, < k;kcz/Q, (18)
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Similarly, one can show that for odd k =20+ 1 > 5,
cf < max {kkﬂc;r, Kk 1CH_1} and ¢ < max {k‘kﬂc* kF= lcl_H} (19)

Lemma 6.5. Let A C [N] be a B,‘:—set. If k > 4 is even, then

4] < (1+0(1)) (kkJrlc;:/QN)l/k. (20)

If k=204+12>5, then

)1/k

|A] < (1+0(1)) (K* - max{k?c;" el PN (21)

The same inequalities hold under the assumption that A C [N] is a Bj-set provided
that the C; ’s are replaced with cj’s

Proof. By Cauchy-Schwarz,

AP > ow(n)? (22)
EN —£<0F
for any k > 2.
First suppose k > 4 is even. By (22) and Lemma 6.4,
|A|2k

N < Zak(n)Q <(1 +0(1))kk|A|k/QZak/2(n)2 <(1+o0(1 ))kkcfc‘/2|A|k.

Solving this inequality for |A| proves (20).
Now suppose k = 2l + 1 > 5. By (22) and Lemma 6.4,

A2k
‘k]|\/ < Zak 1—|—0(1))max{k‘k+1cl"’|A|k kL lfH|A|k}

(14 o(1)|A["K* ! max{k®c\, cif, 1}

O

Lemma 6.5 shows that we can obtain upper bounds on B,j—sets and Bj-sets
recursively. To start the recursion we need estimates on cj , c3, c3, and c.

Lemma 6.6. If A is a Bj-set, then
> oa(n)? < 2|A]* + 32|A]
and therefore c5 < 2.

Proof. Let 6(n) = #{(a1,a2) € A% : a; —as = n}. Observe Y oa(n)? =3 §(n)2.
In [16] (see Theorem 4.7) it is shown that §(n) < 1 for any n # 0, and d(n) = 2 for
at most 8| A| integers n. We conclude

> 6(n) )2 +8|A| - 44 |A— A < 2|A]? + 32|A|.
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Lemma 6.7. If AC[N] isa B;-set, then

> o3(n)® < (1+0(1))18|Af
and therefore c?f < 18.

Proof. Let A C [N] be a By -set and let
ro(n) = #{{a,b} € A® :a—i—b:n}.

Define 2+ A:={2a:a € A}. Forn € 2- A, o02(n) = 2ra2(n) + 1 and o2(n) = 2ra(n)
otherwise. The sum ), ,72(n) counts the number of 3-term a.p.’s in A so by
Lemma 3.1,

Y oa(n)® = 4 r(n)®+4 > ra(n)+[2- Al

ne2-A

< 4> rp(n)? +4-4A 4 A =4 ra(n)® +17]A|.

Using the notation and results of Section 3, and the inequality z? < 2z(z — 1) for
x > 2, we have

> ra(n) Z|522<2Z\52 (171 =1) <> f(e) AT+3|A|.

ceEA

Combining this inequality with (17) gives

> os(n)? (1+0(1))3%|A] Y o2(n)? < 1)9[A](4) " ra(n)® + 17| A))
(14 0(1))9]A|(2|A]* + 29|A|) < (1 +0(1)) (18| AJ® + 261|AJ?).

IA

IN

Lemma 6.8. If A C [N] is a Bj-set, then
> os(n)? < (14 0(1))54/Af°
and therefore ¢ < 54.

Proof. Let A C [N] be a Bj-set. The idea of the proof is motivated by the same
arguments that we used for By -sets. For d € A + A, let

P*(d) = {{a,b} € A® 1 a +b=d}.

Define mg = 0 and for 1 < j <4, let dy;_,4+1,dm;_,+2,---,dm; be the integers for
which |P2(d;)| = j. Let dp,+1,dm,12,---,dar be the integers for which |P2?(d;)| >
5. Write P? for P?(d;), p; for |P?|, and for 1 <i < M, let

Q! ={a:ac€{a,b} for some {a,b} € P?}.
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We will use the notation P? = {{a},b}},...,{a’ b} }}. A difference between the
P%s of this section and the S?’s of earlier sections is that we allow for a P? to
contain only one pair.

Lemma 6.9. If z € Q! N le for some i # j where p; > 3 and p; > 3, then
pi +p; <.

Proof. Without loss of generality, assume x = a% and x = a{ where

P? = {{a1, b1}, {ab, 05}, {ay, 0}, }} and PF = {{a], 01}, {ad, b3}, . {a), . by, }}-

For 2 <[ < p; we have d; = z + b} = a} + bi. Similarly, for 2 < k < p; we have
dj =2 +b] =al +b,. Then a} + b} — b =z = al, + bl —b], so

ay +bi + b =al + b, + b for any 2 <1 <p; and 2 < k < p;. (23)

If b} € T}, then there is no loss in assuming b € {a},b5}. The same assumption
may be made with ¢ and j interchanged. This means that for [ > 3, b{ is not a
term in the sum aj + b} and for k > 3, b} is not a term in the sum aj, 4 b]. The B}
property and (23) imply

[{ai, b8} N {al,bl}| =1 for any 3 <1 <p; and 3 < k < p;. (24)

In particular, {a}, b4} N {a},b}} # 0 and {a}, b} N {a),b}} # 0 so that p; < 4.
Here we are using the fact that any element of A can occur at most once in the list
ai, by, ..., ap,, b, . By symmetry, p; <4.

If p; = p; = 4, then by (24), {a},b},ai,bi} = {a},b},a},b}} but then 2d; =
as + b5 + aj + by = 2d; implying d; = d;, a contradiction. O
Corollary 6.10. If p; > 4 and p; > 4 with i # j, then Q} N QJ1 = .

Using the definition of the P?’s, we can write

M M
27“2(71)2 = Z | P22 = my+4(ma—mq)+9(m3—msa)+16(my—m3)+ Z | P22,
i=1 i=ma+1

If p; = p; = 4 for some i # j, then Q! QQ} = () by Corollary 6.10 so my —mg < “:%I.
For 1 <1< 37 let 51|A|2 =Mm; — M;—1. Then

M
D ra(n)® < |AP(01 + 462 +963) + > [P7*+2/Al. (25)
i=mg+1

Define a graph H with vertex set Q},, , ;U---UQ},, and edge set P2, ,,U---UP}

ms"*

Let n = |V(H)|. The graph H has 3(m3 — mg) = 3d3]A[* edges so 303|A|* < %

which can be rewritten as

V603 A| < [Qpuyir U U Q. (26)
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For any 7 and j with mo +1 < i <mgand my+1<j < M, Qzlmle = 0 by
Lemma 6.9. Thus (26) implies

M M

1 1
S IP=5 3 1@ = 5@t U UM < 51— V)AL

i=mg+1 i=mg+1

2
We conclude "M |P2|? < (17— 5653) |AJ2. This estimate and (25) give

1=maq+1

1
> ra(n)? < AP (51 + 402 + 905 + (1 - «/663)2> +2|A|. (27)

Each pair {a,b} € A® is in at most one P? so

2 B _ AN _ AP
‘A| (51 + 265 + 363) my + 2(m2 m1) + 3(m3 mg) 9 < 5

The maximum of &; + 42 + 963 + i(l —+/683)? subject to the conditions d; + 26 +
303 < %, 01 >0, 02 >0, and 63 > 0 is %, achieved when 6; = 6o = 0 and d3 = %
By (27),

3A
> ra(n)? < slAP +2|A]. (28)

An immediate consequence is that
1/2
S ra(m) =Y Lalra(n) <[4 (Y ram)?) T <2472 (29)
ne2-A
Next we proceed as in Lemma 6.7. Using (29) and (28),

S = A 443 )+ 1204

ne2-A
6| A% + 8| A]P/2 + 9] A|.

D o3(n)? < (14 0(1))3%[4] > 0a(n)?

The previous two estimates show that Y o3(n)? < (1+0(1))54|A|®. This completes
the proof of Lemma 6.8. O

IN

By Lemma 6.3,

Corollary 6.11. If A C [N] is a Bj-set, then
|A] < (1+ o(1))(162N)Y/3.

Proof. Let A C [N] be a Bj-set. By Cauchy-Schwarz and Lemma 6.8,

e <D os(n)? < (14 0(1))54/Af.
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So far we have shown c; <c5 <2 cg < 18, and c3 < 54. Now we describe our
method for obtaining upper bounds on F; (N) and Fj'(N). Assume we have upper
bounds on ¢j ,c7,. .. ’C;ctr Lemma 6.5 gives an upper bound on |A| in terms of
C:/Q when k is even, and in terms of cl+ and clt_l when k = 2+ 1 > 5. An upper
bound on ¢/ is obtained from (18) and (19). We can also apply this method to
Bj-sets. The upper bounds we obtain are given in Table 1 below. They have been
rounded up to the nearest tenth. They hold for large enough N without error terms.

k || Ub. of [16] on F} || Our U.b. on Fy | Our U.b. on F,"
3 6.3N1/3 5.5N1/3 2.7TNL/3
4 11.4N1/4 6.8N1/4 4.1N/4
5 18.2N1/5 11.2N1/5 11N1/5
6 26.8N1/6 15.8N1/6 13.1N1/6
7 37.2N/7 21.6NY/7 18.5N1/7
8 49.4N1/8 22.7TN1/8 22.7TN1/8

Table 1: Upper bounds on B,j—sets and Bj-sets.

We conclude this section with our proof of the second statement of Theorem 1.6.
Recall that (18) states ¢} < kzkc;;/2 for any even k > 4. For k =2l +1 > 5, (19)
gives ¢ < k" 'max{c/,c},,}. For z > 0, let [z] be the smallest integer greater
than or equal to z. Let |z] be the greatest integer less than or equal to x. For
k >0, define ¢y (k) = [%] and ¢;(k) := ¢1(¢i—1(k)) for i > 2. A simple induction
argument can be used to show that for all i > 1, ¢;(k) < k27% + Zi;é 27t The
conclusion is that for every i > 1, ¢;(k) < k27¢ + 2. For any k > 5,

[log, k] [log, k] ) k2043
cp <K ()P <k T (k270 4 2) :

i=1 i=1

Taking k-th roots,

llogs k] v
(ep)/* < KHVRCTT (k27 4 2)2 H3/k
i=1
k % llog, k] .
< k1+1/k v ) k271 9 9—i
< 5+ 1;[1 (k27" +2)
< Uk gk s lope E g o g—i 4 2 2
k i=1 —_
< Zl;[l +k
Llogs k [log, k| 9 P
< Kk R 9—i4 2 )
< L (20 )

i=1
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We claim the sequence (c})'/* is bounded above by a function F(k) that tends
to % as k — oo. With this in mind, we rewrite the previous inequality as

[logs k| 271
4(c)Mk 4logy 2
S VA B .
T S Ak i|:|1 27+ o (30)

n—1

— las k — oo. Using > % nx
elementary calculus, we obtain

|log, k| ) Ztlogz k| o—i
H 27" = <§> —

i=1

= ﬁ from

e~ =

as k — oo. Using the inequality 1 + x < e” for x > 0, we have

Uogsz g—i 4 o/py27t  Loszkl git1\ 2
e (L 2

1 <
- HUng kJ( )271' _ k
i=1
[log, k] Llogs k|
S H 21+1/k<ekz 82 2t Sel/k.
i=1

As k — o0, e!/* — 1 s0
UCﬁkJ i g 277 - 1
P} k 4

This shows that the right hand side of (30) tends to 1 as k — oo which proves the
claim.
Given ¢ > 0, we can choose k large enough so that k'/*(c *)1/k < (1 + e) . The

theorem now follows from the definition of ¢} and the estimate M- < S ok(n)?.

7. Proof of Theorem 1.8

Lemma 7.1. If A C G is a non-abelian By-set and B C H is a non-abelian B} -set,
then A x B is a non-abelian B; -set in G x H.

Proof. Suppose a1, ...,ax,a;,...,a) € A, by, ..., bg,by,..., b, € B and
(alabl) T (ak,bk) = (allab/l) e (a;cab;c)

Then a;---ap = a}---aj, and by --- by, = b} ---b) so that a; = a] for every i and

bj = b} for some j. Thus, (a;,b;) = (a},}). O
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Let Fy = {0,1,a,b} be the finite field with four elements. Let

€T *
H:{( 0 xﬂ):xe&,yeh}.

Then H is a group under matrix multiplication and |H| = 12. Let

a:(g 2) andﬁ:(g Z)

Simple computations show that o and 3 satisfy o® = 32 = id and o2 = 5%a.
Lemma 7.2. The set {a, 3} is a By -set in H.

Proof. Suppose there is a solution to the equation z1zox3T4 = Yy1y2y3ys with x; # y;
for 1 < i < 4, and z;,y; € {a, 5} for all i,5. Without loss of generality, assume
z1 = a and y; = (. There are eight cases which we can deal with using the relations
o’ = 3% =id and o3 = B?«. Instead of considering each individually, we handle
several cases at the same time.

Case 1: a* =% or &3 = Ba or f® = Ba’.

If any of these equations hold, then the relation a® = 3% = id implies a = 3, a
contradiction.

Case 2: o2Ba = f2af or o?3? = 32a?.

If either of these equations hold, then the relation o?3 = 3%« implies o = S3.
Case 3: affa? = pfaB?.

Multiplying the equation on the right by 3 and using 3% = id, we get afa?f =
Ba. On the other hand, afBa?8 = aB%a = a? so combining the two equations we
get fa = a?. This implies a = 3, a contradiction.

Case 4: afaf = fafa.

Multiply the equation on the left by 42 to get 32aBaB = afa. This can be
rewritten as a?28%a8 = afa using F2a = o?3. Replace $2a with o?3 on the left
hand side of a?3%a/3 = afa and cancel « to get 32 = Ba. This implies 8 = «a.
Case 5: aoff%a = Ba2p.

Using the relation 5% = a?3, we can rewrite this equation as o3 = $3a which
implies o = 3 since o® = 3% =id. O

The set {a, 3} is not a non-abelian By-set since a? 33 = 3?a/3. The next theorem
is a special case of a result of Odlyzko and Smith. We will use it in our construction.

Theorem 7.3. (Odlyzko, Smith, [15]) For each prime p with p — 1 divisible by 4,
there is a non-abelian group G of order 4(p* — 1) and a non-abelian By-set A C G

with 1
A= 1).
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Armed with Lemma 7.1, Lemma 7.2, and Theorem 7.3, we now prove Theo-
rem 1.8.

Let p be any prime with p—1 divisible by 4. By Theorem 7.3, there is a group G
of order 4(p* — 1) and a non-abelian By-set A; C Gy with [4;]| = 1(p — 1). Define
the group G to be the product group G = G1 x H. Let A = A; x {«,8}. Clearly
|G| =12-4(p* — 1), |A| = £(p — 1), and by Lemma 7.1, A is a non-abelian B -set
in G.
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