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Abstract
Let G be an additive finite abelian group with exponent m and A a non-empty
subset of {1, 2, . . . ,m� 1}. The constant ⌘A(G) (respectively, sA(G)) is defined to
be the smallest positive integer t such that any sequence of length t of elements
of G contains a non-empty A-weighted zero-sum subsequence of length at most m
(respectively, of length equal to m). In this note we shall calculate the value of
⌘±(G) and s±(G) for certain finite abelian groups G of rank 2 and rank 3. In 2007,
Gao et al. conjectured that s(G) = ⌘(G)+exp(G)�1 for any finite abelian group G.
For weight A = {±1}, we shall observe that the weighted analog of this conjecture
does not hold for G = Zn � Zn for an odd integer n > 7. However, we show that
the conjecture holds for any abelian group G of order 8 and 16.

1. Introduction

Let G be an additive finite abelian group with exponent m and A a non-empty
subset of {1, 2, . . . ,m� 1}. The notations that we use in this note were introduced
by A. Geroldinger and F. Halter-Koch in [12]. Readers may also refer to the survey
article by W. Gao and A. Geroldinger [11].

Let F(G) denote an abelian multiplicative monoid with a basis G. An element S
of F(G) is called a sequence over G. A sequence of not necessarily distinct elements
of G may be written in various ways: S = (x1, x2, · · · , xt) = x1x2 · · ·xt =

Qt
i=1 xi =Q

g2G gvg(S), where vg(S) � 0 is called the multiplicity of g in S. We call |S| = t the
length of S and h(S) = max{vg(S)|g 2 G} the maximum multiplicity of S. We say
that S contains some g 2 G if vg(S) � 1. A sequence T is said to be a subsequence of
a sequence S if vg(T )  vg(S) for every g 2 G. If T is a subsequence of S, we write
T |S and ST�1 denotes the sequence obtained by deleting the terms of sequence T
from the sequence S.
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Let S = x1x2 · · ·xt be a finite sequence over G. By �(S) we denote the sum of all
the elements of S. That is, �(S) =

Pt
i=1 xi. For ā = (a1, a2, · · · , at) with ai 2 A,

we define �ā(S) =
Pt

i=1 aixi.
A sequence S = x1x2 · · ·xt over G is said to be a zero-sum sequence with re-

spect to the weight set A or an A-weighted zero-sum sequence, if there exists
ā = (a1, a2, · · · , at) 2 At such that

Pt
i=1 aixi = 0. The Davenport constant of

an abelian group G, denoted by D(G), is the least positive integer k such that ev-
ery sequence of length k contains a non-empty zero-sum subsequence. The constant
E(G) is the least positive integer k such that every sequence of length k contains a
zero-sum subsequence of length |G|. The Davenport constant of an abelian group
G with respect to weight A, denoted by DA(G), is the least positive integer k such
that for every sequence of length k, there exists a non-empty subsequence T and
ā 2 A|T | such that �ā(T ) = 0. Similarly, the constant EA(G) is the least positive
integer k such that for every sequence of length k, there exists a subsequence T of
length |G| and ā 2 A|T | such that �ā(T ) = 0. These two weighted constants were
introduced by Adhikari et al. in [2, 3, 4]. In 1961, Erdős, Ginzburg and Ziv [8]
proved that every sequence of length 2n�1 over the cyclic group Cn contains a zero
sum subsequence of length n. This result is one of the starting points of research
on zero-sum problems.

For a given positive integer k, ⌘km
A (G) is defined to be the least positive integer t

such that every sequence S over G of length t has a non-empty zero-sum subsequence
of length at most km with respect to weight A. In the spirit of some combinatorial
constants considered by Harborth [7] and others, for a positive integer k, we define
skm

A (G) to be the least positive integer t such that every sequence S over G of
length t has a zero-sum subsequence of length km with respect to weight A. When
k = 1, we write ⌘A(G) instead of ⌘km

A (G) and sA(G) instead of skm
A (G). In this

note, Cn denotes the cyclic group of order n. If A = {1}, ⌘A(G) and sA(G) are
respectively the well-known constants ⌘(G) and s(G). For a finite cyclic group G,
one has ⌘(G) = D(G) and s(G) = E(G).

It was proved by Gao [9] that for any finite abelian group G, E(G) = |G|+D(G)�
1 and generalizing this in 2009, Grynkiewicz et al. [13] proved that EA(G) = |G|+
DA(G)�1 for any non-empty subset A of {1, 2, . . . ,m�1}. It was conjectured by W.
Gao et al. [10] that s(G) = ⌘(G)+exp(G)�1. That this conjecture is true for finite
abelian groups of rank at most 2 was proved by Geroldinger and Halter-Koch [12].
It is very natural to ask whether the weighted analog sA(G) = ⌘A(G) + exp(G)� 1
holds. Here we consider this analog in the case of the weight A = {1,�1} and
observe that s±(Cn � Cn) > ⌘±(Cn � Cn) + exp(Cn � Cn)� 1, for an odd integer
n > 7. However, we prove that s±(G) = ⌘±(G)+ exp(G)� 1, for any abelian group
G of order 8 and 16.
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2. Theorems and Observations

First, we state the following theorem which we shall be using several times.

Theorem 1 (Adhikari et al. [6]). Let G be a finite and nontrivial abelian group
and let S 2 F(G) be a sequence.

(1) If |S| � log2 |G| + 1 and G is not an elementary 2-group then S contains a
proper nontrivial {±1}-weighted zero-sum subsequence.

(2) If |S| � log2 |G| + 2 and G is not an elementary 2-group of even rank then
S contains a proper nontrivial {±1}-weighted zero-sum subsequence of even
length.

(3) If |S| > log2 |G|, then S contains a nontrivial {±1}-weighted zero-sum subse-
quence, and if |S| > log2 |G| + 1, then such a subsequence may be found with
even length.

We also need to state the following theorem.

Theorem 2 (Adhikari et al. [5]). For a positive odd integer n, we have

s±(Cn � Cn) = 2n� 1.

Observation 1. Trivially, for any finite abelian group G, we have

D±(G)  ⌘±(G)  s±(G).

From Theorem 1.3 of [6], if G = Cn1 �Cn2 � · · ·�Cnr , with n1|n2| · · · |nr, we have
rX

i=1

blog2 nic+ 1  D±(G)  blog2 |G|c+ 1.

If |G| is a power of 2 (or even at most one of the ni’s is not a power of 2), the
upper bound and the lower bound for D±(G) in the above are the same and we get
the precise value for D±(G).

Therefore, if |G| is a power of 2, then D±(G) = blog2 |G|c+ 1 = log2 |G|+ 1.
Now, if blog2 |G|c + 1  nr, then D±(G) = ⌘±(G) and if |G| is a power of 2

and G is not an elementary 2-group then by Part (1) of Theorem 1, a sequence
over G of length log2 |G| + 1 contains a proper nontrivial {±1}-weighted zero-sum
subsequence.

To sum up, if |G| is a power of 2, G is not an elementary 2-group and log2 |G|+1 
nr + 1, then we have D±(G) = ⌘±(G) = log2 |G|+ 1 in this case.

In particular, if ni = 2l with l > 1, for i = 1, . . . , r, that is, G = Cr
2l , then for l

satisfying rl  2l,
⌘±(G) = D±(G) = rl + 1.
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For instance, taking r = 3, for l � 4, we have

⌘±(C2l � C2l � C2l) = D±(C2l � C2l � C2l) = 3l + 1.

Some more consequences of the above observation are stated in the following
theorem.

Theorem 3. Let l, n be positive integers. We have the following results.

(1) If 2ln � 4 then ⌘±(C2l � C2ln) = D±(C2l � C2ln) = blog2 2lnc+ l + 1.

(2) If n � 2 then ⌘±(C2l�C2l�C2ln) = D±(C2l�C2l�C2ln) = blog2 2lnc+2l+1.

Proof. We start with part (1). For n = 1, 2, the order of the group being a power
of 2, the result follows from Observation 1. Suppose n > 2. From Observation 1,

D±(C2l � C2ln) = blog2 2lnc+ l + 1.

Here trivially, l + 1  2l�1n. Now, writing k = blog2 2lnc, since 2k  2k for
each positive integer k, we get 2ln  22l�1n and hence, k  2l�1n. Therefore,
k+l+1  2l�1n+2l�1n = 2ln and once again, the result follows from Observation 1.

Moving on to part (2), here too, for n = 2, the order of the group being a power
of 2, the result follows from Observation 1. Suppose n > 2. Writing k = blog2 2lnc,
we have only to show that k+2l+1  2ln. Arguing as in Part (1) above, k  2l�1n.
Since for n > 2, we have 2l+1  2l�1n, it follows that k+2l+1  2l�1n+2l�1n = 2ln
and the result follows from Observation 1.

Next, we shall state Warning’s Theorem, which will be used in the proof of
Theorem 5.

Theorem 4 (Warning’s Theorem (see [1], for instance)). Let Fq be the finite
field with q-elements, where q = pr for a prime number p, and an integer r � 1. Let
f1(x1, x2, · · · , xn), f2(x1, x2, · · · , xn), · · · , fk(x1, x2, · · · , xn) 2 Fq[x1, x2, · · · , xn] be
set of polynomials in n variables such that

Pk
i=1 deg(fi)  n� 1. Then the number

of simultaneous solutions of the system fi(x1, x2, · · · , xn) = 0, i = 1, 2, . . . k, in Fn
q

is divisible by p.

Theorem 5. Let n be an odd integer. Then ⌘±(Cn � Cn)  n.

Proof. Let S = (a1, b1)(a2, b2) · · · (an, bn) be a sequence of length n over a group
Cn � Cn and A = {±1}. First, we shall prove the theorem for n = p, p an odd
prime and the general result will then follow by a standard argument (as employed
in the proof of Theorem 3 in [5]) involving induction on the number of prime factors
of n.
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Consider the following system of equations:

pX
i=1

aix
p�1
2

i = 0 and
pX

i=1

bix
p�1
2

i = 0.

Clearly, (0, 0, . . . , 0) 2 Cp
p is a solution of the given system and so by Theorem

4 we have a nonzero solution of the system. This solution gives us a nonempty
zero-sum subsequence of length  p with respect to weight {±1}.

Observation 2. One observes that the sequence (1, 0)(0, 1) over C3 � C3 does
not have {±1}-weighted zero-sum subsequence. Therefore, in view of the above
theorem, ⌘±(C3 � C3) = 3. Similarly, since the sequence (1, 0)(2, 0)(0, 1)(0, 2) over
C5�C5 does not have any {±1}-weighted zero-sum subsequence, we have ⌘±(C5�
C5) = 5.

In 2007, Gao et al. [10] conjectured that s(G) = ⌘(G)+exp(G)� 1 for any finite
abelian group G. The corresponding weighted analog s±(G) = ⌘±(G)+exp(G)�1,
for weight {±1}, is thus satisfied for the groups C3 �C3 and C5 �C5, by Theorem
2.

By Part (1) of Theorem 1, any sequence of length � log2 n2 + 1 over Cn � Cn

contains a proper non-trivial zero-sum subsequence with respect to weight {±1}.
Since for any positive integer n > 7, log2 n2 + 1 < n, for such an n, we have
⌘±(Cn �Cn) < n and hence ⌘±(Cn �Cn) + exp(Cn �Cn)� 1 < 2n� 1. However,
for a positive odd integer n, we have s±(Cn�Cn) = 2n�1, by Theorem 2. Therefore,
for an odd integer n > 7, ⌘±(Cn � Cn) + exp(Cn � Cn) � 1 < s±(Cn � Cn). That
is, the weighted analog does not hold in these cases.

The following theorem gives some instances where the analog holds. In fact, it
will be easy to observe that by our method, one can prove the analog for some more
abelian groups of small order when the order of the group is a power of 2.

Theorem 6. The following statements hold true.

(1) ⌘±(C2 � C4) = 4 and s±(C2 � C4) = ⌘±(C2 � C4) + 4 � 1 = 7. We have,
s±(G) = ⌘±(G) + exp(G)� 1, for any abelian group G of order 8.

(2) Let G be a finite abelian group of order 16 with exp(G) � 4. We have ⌘±(G) =
5. Further, s±(G) = 12 or 8 depending on exp(G) = 8 or 4 respectively. We
conclude that s±(G) = ⌘±(G) + exp(G)� 1, for any abelian group G of order
16.

Proof. We first prove (1). It follows from Part (1) of Theorem 1 that ⌘±(C2�C4)  4
and the example of the length 3 sequence (0, 1)(0, 2)(1, 0) shows that ⌘±(C2�C4) �
4 and hence, ⌘±(C2 � C4) = 4.
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We proceed to prove that s±(C2 � C4) = 7. Let S =
Q7

i=1 xi be a sequence
over G of length 7. If h(S) = 1, that is, no element appears more than once in
S, we are done, as all but one element of the group appear in S and the zero-
sum sequences (1, 3)(1, 1)(0, 3)(0, 1) and (0, 0)(0, 2)(1, 0)(1, 2) have no element in
common. Therefore, we may assume that h(S) � 2. Let us write S = x2

1x2x3x4x5x6.
The element x1 repeated twice gives a {±1}-weighted zero-sum subsequence of
length 2.

Since the number of 2-subsets of {2, 3, 4, 5, 6} is 10 > 8, either xi + xj = xj + xk

or xi + xj = xk + xl for distinct elements i, j, k, l of the set {2, 3, 4, 5, 6}. In the
first case, we have xi = xk giving us another {±1}-weighted zero-sum subsequence
of length 2. In the second case, xixjxkxl is a {±1}-weighted zero-sum subsequence
of length 4 and so in any case there is a {±1}-weighted zero-sum subsequence of
length 4 and we have s±(C2 �C4)  7. Since trivially, for any finite abelian group
G, s±(G) � ⌘±(G)+exp(G)�1, we have 7 � s±(C2�C4) � ⌘±(C2�C4)+exp(C2�
C4)� 1 = 4 + 4� 1 = 7, and we are through.

If G = C8, the result s±(G) = ⌘±(G) + exp(G) � 1 follows from [3] and for the
elementary 2 group (here working with the weight set {±1} is nothing but working
with the weight set {1}, that is, s±(G) is the classical constant s(G)) of order 8, it
is trivial. This completes the proof of Part (1) of the theorem.

We now prove part (2). When G = C4 � C4 or C2 � C8, the result ⌘±(G) = 5
follows from Part (1) of Theorem 3; when G = C2 � C2 � C4, it follows from Part
(2) of Theorem 3 and finally, for G = C16, it is a particular case of a result in [3].

Given a sequence S =
Q12

i=1 xi over G in this case, if it does not have a {±1}-
weighted zero-sum subsequence of length 2, then considering

A =

(
AI =

X
i2I

xi : I ⇢ {1, 2, · · · , 12}, |I| = 2

)
,

since the number of 2-subsets of {1, 2, · · · , 12} is 66 and |G| = 16, by repeated
application of the pigeonhole principle there exist distinct 2-subsets I1, I2, I3, I4

such that AI1 = AI2 = AI3 = AI4 . Clearly, Ii and Ij will have to be disjoint for
i 6= j, as otherwise we would have a {±1} -weighted zero-sum subsequence of length
2, contrary to our assumption. We therefore have AD = 0 where D = I1[I2[I3[I4

giving us a {±1}-weighted zero-sum subsequence of length 8.
Let us first assume that exp(G) = 8. Given a sequence S of length 12 over G, if it

does not have a {±1}-weighted zero-sum subsequence of length 2, then as observed
above, it has a {±1}-weighted zero-sum subsequence of length 8. We now assume
that S has a {±1}-weighted zero-sum subsequence S1 of length 2. Now, |SS�1

1 | = 10
and by Part (2) of Theorem 1, a 6 length subsequence of SS�1

1 has a {±1}-weighted
zero-sum subsequence S2 of length 2 or 4. By the same argument, SS�1

1 S�1
2 will

have a {±1}-weighted zero-sum subsequence S3 of length 2 or 4. If one of S2 or S3

is of length 4, we already have a {±1}-weighted zero-sum subsequence of length 8.
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If, both S2 and S3 are of length 2, then SS�1
1 S�1

2 S�1
3 is of length 6 and will have a

{±1}-weighted zero-sum subsequence S3 of length 2 or 4 and hence there is a {±1}
-weighted zero-sum subsequence of length 8. Thus, if exp(G) = 8, s±(G)  12. On
the other hand s±(G) � ⌘±(G) + exp(G)� 1 = 5 + 8� 1 = 12.

Now, we assume that exp(G) = 4. If G = C4�C4, then from Part (i) of Theorem
4.3 in [6], s±(G) = 8. If G = C2 � C2 � C4, then s±(G) � ⌘±(G) + exp(G) � 1 =
5 + 4� 1 = 8. Here, given a sequence S of length 8 over G, by Part (2) of Theorem
1, a 6 length subsequence of S has a a {±1}-weighted zero-sum subsequence S1

of length 2 or 4. If S1 is of length 2, then SS�1
1 is of length 6 and will have a

{±1}-weighted zero-sum subsequence S2 of length 2 or 4. Thus, there must be a
{±1}-weighted zero-sum subsequence of length 4 and hence s±(G)  8.

With these and the remark at the end of the proof of Part (1) above, for the
elementary 2 group case, we get s±(G) = ⌘±(G)+exp(G)�1 for any abelian group
G with |G| = 16.
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