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Abstract
Universal cycles are generalizations of de Bruijn cycles and Gray codes that were
introduced originally by Chung, Diaconis, and Graham in 1992. They have been
developed by many authors since, for various combinatorial objects such as strings,
subsets, and designs. Certain classes of objects do not admit universal cycles with-
out either a modification of either the object representation or a generalization of
the listing structure. One such generalization of universal cycles, which require al-
most complete overlap of consecutive words, is s-overlap cycles, which relax such a
constraint. In this paper we study permutations and some closely related classes
of strings, namely juggling sequences and functions. We prove the existence of
s-overlap cycles for these objects, as they do not always lend themselves to the
universal cycle structure.

1. Introduction

Listing structures for combinatorial objects are quickly becoming useful in more and
more interesting applications. Gray codes, first defined in 1947 by Frank Gray [6],
are used in many di↵erent places from position encoders [11] to genetic algorithms
[4]. More recently, universal cycles are being used in areas such as rank modulation
for multilevel flash memories [12]. However overlap cycles are still being explored
and have the potential to be useful in many applications.

An s-overlap cycle, or s-ocycle, is an ordering of a set of objects C, each rep-
resented as a string of length n. The ordering requires that object b = b0b1 . . . bn�1

follow object a = a0a1 . . . an�1 only if an�san�s+1 . . . an�1 = b0b1 . . . bs�1. Ocycles
were introduced by Godbole, Knisley, and Norwood in 2010 [5]. Universal cycles,
or ucycles are (n � 1)-ocycles and were originally introduced in 1992 by Chung,
Diaconis, and Graham [2].
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To find s-ocycles and ucycles on a set of strings, most proofs employ the same
method. For a given string X = x1x2 . . . xn, let Xs� = x1x2 . . . xs denote the
s-prefix of X and Xs+ = xn�s+1xn�s+1 . . . xn denote the s-su�x of X. The first
step in the proof is to construct the transition digraph for the set of strings as
follows. Vertices represent s-prefixes and s-su�xes of strings (the overlaps), while
each edge represents a string, traveling from its s-prefix to its s-su�x. Note that
the transition digraph is a directed multigraph in which an Euler tour (a closed
walk in which every edge is traversed exactly once) corresponds bijectively to an
s-ocycle. To prove the existence of an Euler tour, we use the following well-known
theorem.

Theorem 1.1. ([13], p. 60) A directed graph G is Eulerian if and only if it is both
balanced and weakly connected.

In this paper, we consider using the ocycle listing structure for permutations, as
well as functions and juggling sequences. We represent permutations of an n-set
{0, 1, . . . , n�1} as a string ⇧ = ⇡0⇡1 . . .⇡n�1, where the functional representation is
used, i.e., ⇡(0) = ⇡0. Closely related to permutations, juggling sequences have been
an active research area since the 1980’s [1]. These sequences are used to determine
in what patterns a fixed set of balls can be juggled, where only one ball may be
caught and/or thrown at a time.

Definition 1.2. ([3]) A juggling sequence is a string T = t0t1 . . . tn�1 where
each ti is nonnegative and such that

|{i + ti (mod n) | 0  i  n� 1}| = n.

This sequence illustrates that at time i, we should throw a ball high enough that
it is in the air for ti beats, or to height ti. The number of balls used in a given
juggling sequence T = t0t1 . . . tn�1 is given by

b =
1
n

n�1X
i=0

ti.

The period of a juggling sequence t0t1 . . . tn�1 is n, the length of the string.
An alternative definition considers the corresponding permutation sequence

for a juggling sequence. Given a string T = t0t1 . . . tn�1, the permutation sequence is
the string ⇧T = ⇡0⇡1 . . .⇡n�1 where ⇡i = ti+i (mod n). Then ⇧T is a permutation
of the n-set {0, 1, . . . , n � 1} if and only if T is a valid juggling sequence. From
this definition it is clear that there is a very close relationship between juggling
sequences and permutations, which is further illustrated by the similarity of the
results explored in this paper. The permutation sequence clarifies the point that a
juggler cannot catch or throw two objects simultaneously.
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Figure 1: Juggling Diagram for Sequence 015
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Figure 2: Juggling Diagram for Sequence 105

For example, when n = 3 and b = 2 the pattern 015 is valid. We can see this by
drawing the juggling diagram, shown in Figure 1. However, the sequence 105 is
not valid, as shown in Figure 2. In this second example, note that on the second
beat we are required two catch two balls simultaneously - an operation that is not
allowed.

In [3], Chung and Graham show that it is not always possible to find a single
universal cycle that contains all juggling sequences of period n and at most b balls.
However they do prove that we can use several disjoint universal cycles to cover each
sequence exactly once. This result is closely related to the long studied problem of
universal cycles for permutations. Since ucycles for permutations are not possible
using the standard representation, a modification of the representation can often
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provide an e↵ective solution [9, 10].
An alternative that has only recently been explored is to modify the listing

structure rather than the object representation. By utilizing s-ocycles rather than
ucycles, partial results for permutations have been obtained in [7]. However, we
obtain a more complete solution in this paper. In Section 2 we establish a complete
result on the existence of s-ocycles for permutations, and in Section 3 we explore
similar results for functions and juggling sequences.

2. Permutations

We begin with a general lemma that will be used for both permutations and juggling
sequences. For a string X = x0x1 . . . xn�1, define the rotation function as follows.
A rotation by s is given by:

⇢s(X) = xsxs+1 . . . xn�1x0x1 . . . xs�1.

The following lemma shows that for a string of length n, rotations by s partition
the string into blocks of length gcd(n, s), and we can always perform repeated
s-rotations to start X with any block desired.

Lemma 2.1. Let n, s 2 Z+ with 1  s  n � 1 and gcd(n, s) = d. Consider
a string X = x0x1 . . . xn�1, also written as X = Y0Y1 . . . Ym�1 where n = md
and Yi = xidxid+1 . . . xid+d�1. Then for any i 2 {0, 1, . . . ,m � 1} there is some
j 2 {0, 1, . . . ,m� 1} such that:

YiYi+1 . . . Ym�1Y0Y1 . . . Yi�1 = ⇢js(X).

Proof. Suppose that s = kd. Then each rotation ⇢s(X) advances through k blocks
of X. Thus if we can show that gcd(m,k) = 1, we are done. However we note that
gcd(n, s) = d implies that there are integers p, q such that pn+qs = d. This implies
the following.

pn + qs = d

pmd + qkd = d

pm + qk = 1

Thus the same integers p, q provide confirmation that gcd(m,k) = 1.

In [7], the following partial result was proven.

Theorem 2.2. [7] Let n, s 2 Z+ with n � 2 and let M be a multiset of size n. If
we have either (1) 1  s < n

2 , or (2) gcd(s, n) = 1 with n
2  s < n� 1, then there

exists an s-ocycle on the set of permutations of M .
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The following theorem o↵ers a more complete solution the problem.

Theorem 2.3. Let n, s 2 Z+ with 1  s  n� 1 and let M be a multiset of size n.
There exists an s-ocycle on permutations of M if and only if n� s > gcd(n, s).

Proof. Define gcd(n, s) = d, and suppose that n � s = kd > d. Construct the
transition digraph D with vertices representing s-permutations of M and edges
representing permutations of M . We will show that this graph is balanced and
connected, and hence Eulerian. Recall that an Euler tour in this graph corresponds
to an s-ocycle for permutations of M .

Balancedness: Let Xs� = x0x1 . . . xs�1 be an arbitrary vertex in the transition
graph. For each possible out-edge corresponding to an n-permutation with
prefix Xs�, such as X = x0x1 . . . xn�1, we also have the in-edge with su�x
Xs�, namely X 0 = xsxs+1 . . . xn�1x0x1 . . . xs�1. Thus there is a one-to-one
correspondence between in- and out-edges at each vertex, and so D is bal-
anced.

Connectedness: Consider an arbitrary vertex Xs� = x0x1 . . . xs�1, which is an
s-prefix of some permutation X = x0x1 . . . xn�1. We will consider a partition
of X into blocks of size d, such as X = X0X1 . . .Xm�1 where we define
Xi = xidxid+1 . . . x(i+1)d�1. Our goal is to show that we can permute elements
in any k consecutive blocks XiXi+1 . . .Xi+k�1, which illustrates that any
adjacent transpositions are possible, and hence we can reach all permutations.

In D, rotations of X correspond to the following cycle, where subscripts are
computed modulo n.

x0x1 . . . xs�1 ! xn�sxn�s+1 . . . xn�1

! xn�2sxn�2s+1 . . . xn�s�1

! xn�3sxn�3s+1 . . . xn�2s�1

...
! xn�isxn�is+1 . . . xn�(i�1)s�1

...
! x0x1 . . . xs�1

From the vertex Xs� we can permute all elements in {xs, xs+1, . . . , xn�1} to
determine an out-edge, and at any point we can permute the (n�s)-su�x of a
permutation. We would like to show that, through rotations, the (n�s)-su�x
may contain any k consecutive blocks from {X0,X1, . . . ,Xm�1}. Consider
the vertex xn�isxn�is+1 . . . xn�(i�1)s�1. How does the starting index n � is
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correspond to d? Note that:

n� is ⌘ in� is (mod n)
⌘ i(n� s) (mod n)
⌘ ikd (mod n).

Thus the vertices in this rotation cycle always begin with a multiple of kd.
Our final step is to show that any multiple of d, say id, may be written as a
multiple of kd modulo n, which is done by Lemma 2.1. Then we can rotate to
start with any block desired, which is equivalent to pushing any k consecutive
blocks to the (n� s)-su�x.

To summarize, we can perform adjacent transpositions xi $ xi+1 within Xs�

by rotating X until xi and xi+1 fall into the k blocks in the (n� s)-su�x and
then transposing. Finally, by continuing along through rotations we will arrive
at the vertex x0x1 . . . xi�1xi+1xixi+2 . . . xs�1. Thus adjacent transpositions
are always connected, hence all permutations can be reached.

For the converse, suppose that n � s = d = gcd(n, s). In this case, rotations
of the permutation X = x0x1 . . . xn�1 provide an (n � s)-su�x of length d – just
one block from X = X0X1 . . .Xm�1. Thus we can always permute elements within
each block, however the cyclic order of the blocks is fixed and we can perform
the swap xi $ xj if and only if xi and xj are in the same block. Thus we are
able to permute elements within blocks, but not permute blocks (only rotate the
block order). Hence the transition digraph connects only permutations with the
same block order (rotations allowed). Permutations with block order that are not
simple rotations are not connected, so the graph is disconnected and no Euler tour
exists.

Note that Theorem 2.3 agrees with the following well-known fact about universal
cycles, or (n� 1)-ocycles.

Corollary 2.4. There is no universal cycle for permutations of M .

Proof. In this case, we apply Theorem 2.3 setting s = n� 1. Then it is clear that
gcd(n, s) = 1 = n� s, so no (n� 1)-ocycle exists.

3. Related Objects

3.1. Functions

Many times injective, surjective, and bijective functions are represented by permu-
tations. We have the following facts about functions and theorems corresponding
to their alternate representations. We will use the notation [x] = {1, 2, . . . , x}.
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It is a well-known fact that an injective function f : [k]! [n] may be represented
by x1x2 . . . xk, the k-permutation of [n] defined so that xi = f(i). Applying this,
we have the following theorem.

Theorem 3.1. [7] For all n, s, k 2 Z+ with 1  s < k < n, there is an s-ocycle for
k-permutations of [n].

Similary, a surjective function f : [n] ! [h] may be represented by x1x2 . . . xn,
the string with ground set [h] defined so that xi = f(i). In [8], it is shown that
surjective functions are also represented by weak orders of [n] with height h � 1.
This observation is used for the following theorem.

Theorem 3.2. [8] For all n, s, h 2 Z+ with 1  s  n � 2, gcd(s, n) = 1, and
0  h  n� 1, there is an s-ocycle for W(n, h).

We are able to improve this theorem as follows.

Theorem 3.3. For all n, s, h 2 Z+ with 1  s  n � 2 and h  n � 1 there is an
s-ocycle for strings with ground set [h].

Proof. We will show that the corresponding transition graph is Eulerian.

Balancedness: Consider a vertex Xs� = x1x2 . . . xs. Xs� is an s-prefix of the
string X = x1x2 . . . xn where X has ground set [h]. Since it is clear that
xs+1xs+2 . . . xnx1x2 . . . xs is also a string with ground set [h], there is a bijec-
tion between in- and out-edges at Xs�. Hence the graph is balanced.

Connectedness: Define the minimum vertex V s� to be the s-prefix of the per-
mutation V = 12 · · ·hh · · ·h. Let X = x1x2 . . . xn be an arbitrary multiset
permutation with ground set [h], and let Xs� be the s-prefix. We will show
a path from Xs� to V s� exists in the transition graph.

Compare Xs� and V s�, and define i to be the least possible such that
Xs�(i) 6= V s�(i). Note that since h  n � 1, some element from [h] must
appear at least twice in X. We will refer to any element appearing more than
once as a duplicate. We have two cases.

1. If the letter xi 2 [h] appears twice in X:
Let d = gcd(n, s), and rotate X until the d-block containing xi is first. If
we rotate X again by following an out-edge in the graph, we have arrived
at a vertex A representing an s-substring of X without xi. Since xi also
appears elsewhere in X, we can follow (backwards) the in-edge that is
identical to A except with xi replaced by vi. Now we are at an edge
corresponding to an s-substring of x1x2 . . . xi�1vixi+1 . . . xn, so we are
one step closer to the minimum vertex.
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2. If the letter xi 2 [h] appears exactly once in X:
Since xi is not a duplicate in X, some other letter xj 2 [h] is a duplicate.
In this case, we proceed as in case 1 to replace xj with the letter xi.
Then xi is a duplicate so we may follow case 1 again to replace xi with
vi. At this point we have moved closer to the minimum vertex.

Continuing until we have transformed Xs� to V s� produces a path from Xs�

to the minimum vertex. Hence the graph is connected.

As the transition graph is balanced and connected, it is Eulerian by Theorem 1.1.

Finally, one cannot discuss injective and surjective functions without consider-
ing bijective functions for completeness. A bijective function f : [n] ! [n] may
be represented by x1x2 . . . xn, the permutation of [n] defined so that xi = f(i).
Using the results in the previous section, we know that there exists an s-ocycle on
permutations of [n] if and only if n� s > gcd(n, s).

3.2. Juggling Sequences

We begin with some lemmas that will help us to prove our main result.

Lemma 3.4. Let R = r0r1 . . . rn�1 be a string, and let 1  s  n. Then
R0 = ⇢s(R) = r0+sr1+s . . . rn�1+s (where addition is modulo n) is a valid juggling
sequence if and only if R is a valid juggling sequence.

Proof. We will check the corresponding permutation sequence for R0 and show that
it is valid. Suppose for a contradiction that there are i, j 2 {0, 1, . . . , n� 1} with

r0i + i ⌘ r0j + j (mod n).

Then we have:

r0i + i ⌘ r0j + j (mod n)
ri�s + i ⌘ rj�s + j (mod n)

ri�s + i� s ⌘ rj�s + j � s (mod n)
rk + k ⌘ r` + ` (mod n)

Thus ⇧R0 is valid if and only if ⇧R is valid.

Lemma 3.5. Let T = t0t1 . . . tn�1 be a juggling sequence, and let 0  i, s  n� 1.
Then

⇧⇢s(T )(i) = ⇢s(⇧T )(i)� s (mod n).
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Proof.

⇧⇢s(T )(i) = ⇢s(T )(i) + i (mod n)
= T (i + s) + i (mod n)
= T (i + s) + i + s� s (mod n)
= ⇧T (i + s)� s (mod n)
= ⇢s(⇧T )(i)� s (mod n)

Lemma 3.6. Fix n, s, b 2 Z+ with 1  s  n � 1. Define D to be the s-ocycle
transition digraph for juggling sequences of length n using at most b balls. From
any vertex v0v1 . . . vs�1, there exists a path to any vertex v00v

0
1 . . . v0s�1 whenever we

have v0i ⌘ vi (mod n) for all i 2 {0, 1, . . . , s� 1}.

Proof. Since adding/subtracting n to any digit in a juggling sequence of length n
does not invalidate the sequence, if vi � n we can simply rotate some juggling
sequence X with s-prefix v0v1 . . . vs�1 until vi is in the (n � s)-su�x, replace vi

with vi�n, and then rotate back to our original s-prefix with vi replaced by vi�n.
Repeating this eventually will find a path to v01v

0
2 . . . v0s.

Theorem 3.7. Fix n, s, b 2 Z+ such that 1  s  n� 1. There exists an s-ocycle
for the set of juggling sequences with period n and at most b balls if and only if
n� s > gcd(n, s).

Proof. We prove the forward direction by showing that the s-ocycle transition di-
graph D has an Euler tour. By Theorem 1.1 this is done by showing that the graph
is balanced and connected.

Balancedness: Consider a vertex R = r0r1 . . . rs�1 in D. We will show that any
(n�s)-string Q = q0q1 . . . qn�s�1 that is a valid s-su�x for R is also a valid s-
prefix for R. Note that strings RQ and QR are simply rotations of each other,
so by Lemma 3.4 either both strings are valid juggling sequences or neither
string is. In this manner, there is a bijection between in- and out-edges, hence
all vertices are balanced.

Connectedness: Consider an arbitrary vertex T s� = t0t1 . . . ts�1 that is an s-
prefix to some juggling sequence T = t0t1 . . . tn�1. First, by Lemma 3.6 we
may assume that ti 2 {0, 1, . . . , n � 1} for all i 2 {0, 1, . . . , n � 1}. We will
show that this arbitrary vertex is connected to the minimum vertex, which
we define to be V s� = 0s (a prefix of V = 0n). In doing so, we will have shown
that every vertex is connected to V s� and hence the graph is connected.
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Compare permutation sequences ⇧T and ⇧V corresponding to juggling se-
quences T and V , respectively. Note that ⇧V = 012 . . . (n � 1), so suppose
that for all x 2 {0, 1, . . . , i � 1} we have ⇧T (x) = ⇧V (x) = x, but that
⇧T (i) = j for some j 2 {i + 1, i + 2, . . . , s� 1}. We will find a path from the
s-prefix of T to the s-prefix of some juggling sequence T 0 with permutation
sequence ⇧T 0 that agrees with ⇧V in the first i + 1 positions. Repeating this
procedure until i = n will construct a path through D from T s� to V s�.

Assume n � s = kd and n = md for integers m,k where d = gcd(n, s),
and let T = Y0Y1 . . . Ym�1 be a partition of T into d-blocks, i.e., we define
Ya = tadtad+1 . . . tad+d�1. Suppose that ti 2 Ya and tj 2 Yb. We have two
cases.

1. If b� a < k:
In this case, from Lemma 3.4 we may perform s-rotations on T so that we
arrive at a vertex with both ti and tj in the (n� s)-su�x of T . Suppose
that we performed a total rotation of size R, i.e., we are now at the vertex
that represents the s-prefix of ⇢R(T ).
At this point, the values ti and tj are located in positions i�R and j�R
of ⇢R(T ), respectively. By Lemma 3.5 the corresponding permutation
sequence entries are:

⇧⇢R(T )(i�R) = ⇢R(⇧T )(i�R)�R (mod n)
= ⇧T (i)�R (mod n)

and

⇧⇢R(T )(j �R) = ⇧T (j)�R (mod n).

We now note that the vertex (⇢R(T ))s�, defined as the s-prefix of ⇢R(T ),
is also the s-prefix of the juggling sequence ⇢R(T 0) that is obtained from
⇢R(T ) by performing the swap ⇧⇢R(T )(i � R) $ ⇧⇢R(T )(j � R) and
adjusting the values ⇢R(T )(i�R) and ⇢R(T )(j�R) appropriately. Then
rotating backwards by R we reach a juggling sequence T 0 with ⇧T 0(x) = x
for all x 2 {0, 1, . . . , i�1, i}. This means that we have found a path from
T s� to T 0s�, which is one step closer to the minimum vertex.

2. If b� a � k:
In this case the blocks containing ti and tj are more than k apart, so
we cannot rotate to have both ti and tj in the (n� s)-su�x of T simul-
taneously. Instead, we pick a point tz in the block Yc that is k blocks
preceding Yb and follow case (1) with tz in place of ti. This produces a
juggling sequence T 0 with ⇧T 0(z) = i, where i  z < j. Repeating, we
will eventually have moved the permutation sequence value i to a block
that is close enough to block Ya to apply Case (1).
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By repeating the above procedures, we will eventually have transitioned to
the vertex corresponding to a juggling sequence with s-prefix 01 . . . (s � 1).
At this point we have reached the minimum vertex and we are done.

For the reverse direction, suppose that n � s = gcd(n, s) = d. Recall that the
number of balls b 2 Z+ is given by:

b =
1
n

n�1X
i=0

ti.

Thus juggling sequences of period n must always satisfy
Pn�1

i=0 ti ⌘ 0 (mod n).
Equivalently, when we partition a juggling sequence T = t0t1 . . . tn�1 into blocks of
length d, i.e., T = Y0Y1 . . . Ym�1, where n = md, we must have:

m�1X
i=0

w(Yi) =
m�1X
i=0

dX
j=0

tid+j =
n�1X
i=0

ti ⌘ 0 (mod n),

where, for a given block Yi, we call w(Yi) =
Pd

j=0 tid+j the weight of block Yi.
Now since n � s = gcd(n, s), from vertex T s� = t0t1 . . . ts�1 in D we may only

move to vertices in which the (n� s)-su�x has weight equivalent to w(Ym�1) mod
n. Thus if we can show that, for any n, s, and b, there exists a juggling sequence
with a block with weight w 6⌘ 0 (mod n), then we are done. This is witnessed by
the juggling sequence

T = d 0 0 . . . 0 (n� d) 0 . . . 0,

with permutation sequence

⇧T = d 1 2 . . . (d� 1) 0 (d + 1) (d + 2) . . . (n� 1).

This juggling sequence utilizes one ball (recall we required b 2 Z+) and the weight
of the first block of length d is d 6⌘ 0 (mod n). Thus this first block must always
have weight equal to d modulo n if n�s = d, and so the vertex T s� that represents
the s-prefix of T is not connected to the vertex 0s. Hence no Euler tour can exist
and so no s-ocycle exists.

While Theorem 3.7 completes the question of when s-ocycles for juggling se-
quences of period n and at most b balls exist, several variations remain open. For
example, one might consider juggling sequences with:

• exactly b balls,

• at least b balls,

• fixed minimum period, or

• period n with no restriction on number of balls.
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