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Abstract
Generalized tribonacci numbers Rn are defined through the recurrence

Rn+1 = aRn + bRn�1 + cRn�2.

A generating matrix of three tribonacci sequences with negative subscripts is defined
and used to establish identities connecting these sequences which is analogous to the
matrix of Shannon and Horadam. We derive an explicit formula for the generalized
tribonacci numbers with negative subscripts.

1. Introduction

Let L(a, b, c) be the set of all third-order recurrent sequences {Rn}n2Z satisfying
the relation

Rn = aRn�1 + bRn�2 + cRn�3,

where a, b, c are positive integers.
Three generalized tribonacci sequences {Jn}, {Kn} and {Ln} in L(a, b, c) are

uniquely determined by taking special values n = 0, 1, 2, namely,

(i) J0 = 0, J1 = 1 and J2 = a,

(ii) K0 = 1,K1 = 0 and K2 = b,

(iii) L0 = 0, L1 = 0 and L2 = c.
1Supported by the Kasetsart University Research and Development Institute (KURDI), Thai-
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These sequences have been studied by many researchers (for more details see [5]-
[7]). If a = b = c = 1, then {Jn} is a sequence of the classical tribonacci numbers,
say {Tn}. It can be written Rn as a linear combination of Jn,Kn and Ln, namely,

Rn+1 = R2Jn + R1Kn + R0Ln,

and the following relations are easily proved, see [4], [5] or [7],

Jn+1 = aJn + Kn, Kn+1 = bJn + cJn�1, and Ln+1 = cJn. (1)

In 1972, Shannon and Horadam [7] constructed the 3⇥ 3 matrix and computed
the nth power of this matrix2

4a b c
1 0 0
0 1 0

3
5

n

=

2
4Jn+2 Kn+2 Ln+2

Jn+1 Kn+1 Ln+1

Jn Kn Ln

3
5

and they showed that

(a + b + c� 1)
nX

i=1

Ji = Jn+3 + (1� a)Jn+2 + (1� a� b)Jn+1 � 1,

Jn+1 =
[n/2]X
i=0

[n/3]X
j=0

✓
i + j

j

◆✓
n� i� 2j

i + j

◆
an�2i�3jbicj ;

see also [1], [2], [5], [6].
The sequences {Jn}, {Kn} and {Ln} can be defined for negative values of n by

using the definition of any recurrent relation and initial conditions. The first few
terms of them are shown in the following table.

n Jn Kn Ln

�1 0 0 1
�2 1/c �a/c �b/c
�3 �b/c2 (ab + c)/c2 (b2 � ac)/c2

�4 (b2 � ac)/c3 (a2c� ab2 � bc)/c3 (c2 + 2abc� b3)/c3

In this article we construct certain matrices for J�n,K�n, L�n and partial sums
of J�n to derive interesting identities involving these numbers. We also derive an
expansion of J�n in a partial sum of binomial coe�cients.

2. Matrix Representations

For n 2 N, define the 3⇥ 3 matrices A and Cn as follows

A =

2
4�b/c �a/c 1/c

1 0 0
0 1 0

3
5 and Cn =

2
4L�n�1 K�n�1 J�n�1

L�n K�n J�n

L�n+1 K�n+1 J�n+1

3
5 .
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Theorem 1. For all n 2 N, we have An = Cn.

Proof. (Induction on n) Using the above table (section 1), one can see that A1 = C1.
Assume An = Cn holds for n > 1. By our assumption and a matrix multiplication,
we get An+1 = AnA = CnA, which, by using all equations in (1), satisfies An+1 =
CnA = Cn+1. Thus, complete the proof.

Since An+m = AnAm, equating the (2, 1), (2, 2) and (2, 3)-entries on both sides
of this matrix equation, we get the following corollary.

Corollary 1. For m,n 2 N, we get the relation

R�m�n = L�mR�n�1 + K�mR�n + J�mR�n+1,

where Rn is Jn,Kn or Ln.

Taking n = 2 and m = 2 in Corollary 1, we get

R�m�2 = R�3L�m + R�2K�m + R�1J�m,

R�n�2 =
1
c
(�bR�n�1 � aR�n + R�n+1),

respectively.
Next, for n 2 N, we define the 4⇥ 4 matrices B and Dn as follows

B =

2
664

1 0 0 0
1/c
0 A
0

3
775 and Dn =

2
664

1 0 0 0
S�n�1

S�n Cn

S�n+1

3
775 ,

where S�n =
Pn

i=1 J�i and S0 = 0.

Theorem 2. For all n 2 N, we have Bn = Dn.

Proof. Since L�n+1 = cJ�n, we can write S�n�1 = S�n + 1
cL�n. Combining the

above identity and the result of Theorem 1, we write Dn = Dn�1B. By using
induction on n, the result still holds.

Corollary 2. For all positive integers m,n, we have

S�m�n�1 = S�m�1 + L�m�1S�n�1 + K�m�1S�n + J�m�1S�n+1. (2)

Proof. Since Dm+n = DmDn, we have the equation (2) by equating the (2, 1)-entry
on both sides of this matrix equation.

Now we derive an explicit formula for partial sums of J�n. We have the following
theorem.
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Theorem 3. For n � 1, we have

nX
i=1

J�i =
1

a + b + c� 1
(1� cJ�n�1 + (a� 1)J�n � J�n+1). (3)

Proof. Put m = 1 in the equation (2) of Corollary 2, we get

cS�n�2 = 1� aS�n � bS�n�1 + S�n+1.

This equation equivalent to

(a + b + c� 1)S�n+1 = 1� cJ�n�2 + J�n�1(�b� c) + J�n(�a� b� c).

By the definition of J�n, we can rewrite the last equation to obtain (3).

Taking a = b = c = 1 in identity (3), we obtain

nX
i=1

T�i =
1
2
(1� T�n�1 � T�n+1).

3. Expansions

Definition 1. Let n, i be non-negative integers with n � i. Denote

B(n, i) =
b(n+i)/3cX

j=0

✓
i

j

◆✓
n� j

i

◆
ai�jbn�i�jcj .

It is easy to see that we can write B(n, i) in the form of the recursive recurrence
as

B(n, i) = bB(n� 1, i) + aB(n� 1, i� 1) + cB(n� 2, i� 1). (4)

Theorem 4. For non-negative integer n, we have

J�n�2 =
bn/2cX
i=0

(�1)n�i

cn�i+1
B(n� i, i). (5)

Proof. We see that

J�2 = c�1, J�3 = �bc�2 and J�4 = (b2 � ac)c�3.
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By induction on n, assume that identity (5) holds for all n = 0, 1, 2, ..., k � 1. By
the definition of Jk, the identity (4) and the inductive hypothesis, we get

cJ�k�2 = J�k+1 � aJ�k � bJ�k�1

=
b(k�3)/2cX

i=0

(�1)k�3�i

ck�i�2
B(k � i� 3, i)� a

b(k�2)/2cX
i=0

(�1)k�2�i

ck�i�1
B(k � i� 2, i)

� b

b(k�1)/2cX
i=0

(�1)k�1�i

ck�i
B(k � i� 1, i)

=
b(k�1)/2cX

i=1

(�1)k�2�i

ck�i�1
B(k � i� 2, i� 1)� a

bk/2cX
i=1

(�1)k�1�i

ck�i
B(k � i� 1, i� 1)

� (�1)k�1b

ck
B(k � 1, 0)� b

b(k�1)/2cX
i=1

(�1)k�1�i

ck�i
B(k � i� 1, i)

=

8>>>><
>>>>:

(�1)k

ck B(k, 0)�
b(k�1)/2cX

i=1

(�1)k�1�i

ck�i
B(k � i, i) ; k is odd

(�1)k

ck B(k, 0)�
b(k�1)/2cX

i=1

(�1)k�1�i

ck�i
B(k � i, i) +

✓
�a

c

◆k/2

; k is even

=
bk/2cX
i=0

(�1)k�i

ck�i
B(k � i, i),

so

J�k�2 =
bk/2cX
i=0

(�1)k�i

ck�i+1
B(k � i, i).

Showing that (5) holds for n = k, thereby proving the theorem.

We can rewrite (5) in terms of binomial coe�cients by using Definition 1.

Corollary 3. For non-negative integer n, we have

J�n�2 =
bn/2cX
i=0

bn/3cX
j=0

(�1)n�i

✓
i

j

◆✓
n� i� j

i

◆
ai�jbn�2i�jci+j�n�1.

Taking a = b = c = 1, we get an explicit formula for the tribonacci numbers, so

T�n�2 =
bn/2cX
i=0

bn/3cX
j=0

(�1)n�i

✓
i

j

◆✓
n� i� j

i

◆
. (6)
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