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Abstract

A quadratic-exponential Diophantine equation in 4 variables, describing certain
strongly regular graphs, is completely solved. Along the way we encounter different
types of generalized Ramanujan-Nagell equations whose complete solution can be
found in the literature, and we come across a problem on the order of the prime
ideal above 2 in the class groups of certain imaginary quadratic number fields, which
is related to the size of the squarefree part of 2" — 1 and to Wieferich primes, and
the solution of which can be based on the abc-conjecture.

1. Introduction

The question to determine the strongly regular graphs with parameters! (v, k, A, i)
with v = 2" and A = u, was recently posed by Natalia Tokareva?. Somewhat
later Tokareva noted® that the problem had already been solved by Bernasconi,
Codenotti and Vanderkam [2], but nevertheless we found it, from a Diophantine
point of view, of some interest to study a ramification of this problem.

We note the following facts about strongly regular graphs, see [5]. They satisfy
(v—k—1)u =k(k—X—1). With v = 2™ and A = y this becomes 2" = 1+k(k—1)/u.
In this case their eigenvalues are k and +t with t2 = k — pu, with ¢ an integer.
From these data Bernasconi and Codenotti [1] derived the diophantine equation
k% — 2"k +t2(2" — 1) = 0, which was subsequently solved in [2]. The only solutions
turned out to be (k,t) = (0,0),(1,1), (2" — 1,1),(2™,0) for all n, and additionally
(k,t) = (27~ — 2271 23n—1) (9n—1 4 23n=1 93n-1) for even n. As a result, the
only nontrivial strongly regular graphs of the desired type (2", k, u, 1) are those

1See [5] for the definition of strongly regular graphs with these parameters.
2Personal communication to Andries Brouwer, March 2013.
3Personal communication to BAW, April 2013.
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with even n and (k,pu) = (271 £ 2271 27=2 4 237~1) These are precisely the
graphs associated to so-called bent functions, see [1].

In studying this diophantine problem we take a somewhat deviating path*. With-
out loss of generality we may assume that there are three distinct eigenvalues, i.e.,
t > 1and k > 1. The multiplicity of ¢ then is (2" —1—k/t)/2,so t | k. It follows that
also t | u. We write k = at and p = bt. Then we find ¢t = a —b and 2" = (a® —1)t/b.
Let g = ged(a,b) = ged(b, t), and write a = ¢g,b = dg. It then follows that 2™ is
the product of the integers (a® — 1)/d and t/g, which therefore are both powers of
2. Let (a® —1)/d = 2™. Then we have m < n.

Since 2" — 1 = a(at — 1)/b = a(a® — ab — 1) /b, the question now has become to
determine the solutions in positive integers n, m, ¢, g of the diophantine equation

2" —1=c(2™ —cg?). (1)

For the application at hand only n > m is relevant, but we will study n < m as well.
With n > m there obviously are the four families of Table 1. Our first, completely
elementary, result is that there are no others.

n m c g
(1] any n 1 1
11 n 2n—-1 |1
[

[III] |even | in+1 2:m —1 |1

[1V] Ind1]2:m41 1

Table 1: Four families of solutions of (1) with n > m.

Theorem 1. All the solutions of (1) with n > m are given in Table 1.

Proof. Note that ¢ and g are odd, and that cg? < 2™.

For m < 2 the only possibilities for cg? < 2™ are ¢ = g = 1, leading to m = n,
fitting in [I], and for m = 2 also ¢ = 3, ¢ = 1, leading to n = 2, fitting in [I1].

For m > 3 we look at (1) modulo 2™. Using n > m we get (cg)? =1 (mod 2™),
and by m > 3 this implies cg = +1 (mod 2™~ 1). So either ¢ = g = 1, immediately
leading to m = n and thus to [I], or cg > 2™~ — 1. Since also cg? < 2™ — 1

am
we get g < T < 3, hence g = 1. We now have ¢ = 41 (mod 2™~ !) and
1 <c< 2™, implying ¢ = 2"t —~1lorc=2""14+1orc=2"—1, leading to
exactly [III], [IV], [IT] respectively. O

Note that this result implies the result of [2].

4] owe this idea to Andries Brouwer.
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When m > n, a fifth family and seven isolated solutions are easily found, see
Table 2. For n = 3 and ¢ = 1 equation (1) is precisely the well known Ramanujan-
Nagell equation [6].

n m c g
[V] [any >3 [2n—2[ 1 [ 2" 1 -1
V1] 3 5 |1 5
6 7 3
7 1 11
15 1 181
VII] 1 5 |3 3
7 ) 5
9 3 13

Table 2: One family and seven isolated solutions of (1) with m > n.

In Sections 2, 3 and 4 we will prove the following result, which is not elementary
anymore, and works for both cases n > m and m > n at once.

Theorem 2. All the solutions of (1) with m > n are given in Table 2.

2. Small n

The cases n < 2 are elementary.

Proof of Theorems 1 and 2 when n < 2. Clearlyn = 1leadstoc=1and 2™ —g? =
1, which for m > 2 is impossible modulo 4. So there is only the trivial solution
m=g=1. Andforn=2Weﬁnd3:c(2m—cg2),soc=10rc=3. With c=1
we have 2™ — g2 = 3, which for m > 3 is impossible modulo 8. So we are left with
the trivial m = 2, ¢ = 1 only. And with ¢ = 3 we have 2™ — 3¢ = 1, which also for
m > 3 is impossible modulo 8. So we are left with the trivial m =2,g =1 only. O

3. Recurrence Sequences

From now on we assume n > 3. Let us write D = 2™ — 1.

Lemma 3. For any solution (n,m,c,g) of (1) there exists an integer h such that

h* 4+ Dg? =2°  with £ =2m —2, (2)
2m=1 4
c=". (3)

9
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Proof. We view equation (1) as a quadratic equation in ¢. Its discriminant is 2™ —
4Dg?, which must be an even square, say 4h%. This immediately gives the result. [

So ¢ is even, but when studying (2) we will also allow odd ¢ for the moment. Note
the ‘basic’ solution (h, g,¢) = (1,1,n) of (2). In the quadratic field K = Q (vV-D)
we therefore look at

a:%(lJr\/j),

which is an integer of norm 2"~2. Note that D is not necessarily squarefree (e.g.
n =6 has D = 63 = 3% 7), so the order O generated by the basis {1, a}, being a
subring of the ring of integers (the maximal order of K), may be a proper subring.
The discriminant of K is the squarefree part of —D, which, just like —D itself, is
congruent to 1 (mod 8). So in the ring of integers the prime 2 splits, say (2) = pp,
and without loss of generality we can say (a) = "~ 2. Note that it may happen
that a smaller power of @ already is principal. Indeed, for n = 6 we have p =
(3 (1 —+/=7)) itself already being principal, where (o) = (3 (1 +/—63)) = p*.
But note that g, p?, > are not in the order O, and it is the order which interests
us. We have the following result.

Lemma 4. The smallest positive s such that p® is a principal ideal in O is s = n—2.

In a later section we further comment on the order of p in the full class group
for general n. In particular we gather some evidence for the following conjecture,
showing (among other things) that it follows from (an effective version of) the abc-
conjecture (at least for large enough n).

Conjecture 5. For n # 6 the smallest positive s such that ©° is a principal ideal
in the mazimal order of K is s =n — 2.

Proof of Lemma 4. There exists a minimal s > 0 such that ¢® is principal and is
in the order O. Let % (a + b\/j) be a generator of p®, then a,b are coprime and
both odd, and

a® + Db* = 2572, (4)

Since "2 = () is principal and in O, we now find that s|n — 2, and

k -2
(a+bv=D) =+2*"1 (14+V=D), withk=""=, (5)
S
Comparing imaginary parts in (5) gives that b | 2571, and from the fact that b is
odd it follows that b = +1. Equation (4) then becomes a? + D = 25%2 which is
a’? = 25122741, This equation, which is a generalization of the Ramanujan-Nagell
equation that occurs for n = 3, has, according to Szalay [8], only the solutions given

in Table 3. Ouly in case [ii] we have k = N integral, and this proves k = 1,
s=n—2. ]
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n s a
i] |[any>2|2n—4 |21 -1
ii] n—2 1
] 3 3 5
) 11
13 181

Table 3: The solutions of a? = 25+2 — 2" 4+ 1 with a > 0.

We next show that the solutions h, g of (2) are elements of certain binary recur-
rence sequences. We define for k£ > 0

hi =aof +@*, with hg=2,h; =1, and hyp1 = hy — 27 2y for k > 1,
ok —ak

gkzﬁ,

For even n, say n = 2r, we can factor D as (2" — 1)(2" + 1). Now we define

A:%(2T+1+\/ﬁ), u:%(zr—um/ﬁ),

with go = 0,91 = 1, and gpr1 = g — 2" 2gp_1 for k > 1.

satisfying N(\) = 22"=1 + 2=t and N(p) = 22"~ — 2771 A\p = —av/—D, \u =
2r=1/=D, A2 = (2" + 1)a, and p? = —(2" — 1)a@. For n = 2r and x > 0 we define

U = g (Aa® +Xa") , with up = 1,u; = —(2""1 — 1),
and w1 = u — 2" 2u,,_; for k> 1,
-1
Vg = m (luali—i-l +wl€+1) , Wlth vy = 1,’(]1 — 2r—1 + 17

and veq1 = v — 2" 20,1 for K > 1.
We present a few useful properties of these recurrence sequences.
Lemma 6.
(a) For any n > 3 we have ga,, = gihy for all k > 0.
(b) For even n = 2r we have ki1 = ugvy for all £ > 0.
(¢) For any n and even k = 2k, we have

2= o = k2, 20TDREL oy = (27 — 1)g2.

)

(d) For any even n =2r and odd k = 2k + 1, we have

2 DEAEDHL | popr = (20 + Du, 207 DEREDTL_py = (27— D)o
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Proof. Trivial by writing out all equations and using the mentioned properties of
A, L. O

For curiosity only, note that (27 + 1)u2 + (2" — 1)v2 = 20r=DEr+1)+2,
Now that we have introduced the necessary binary recurrence sequences, we can
state the relation to the solutions of (2).

Lemma 7. Let (h,g,{) be a solution of (2).
(a) There exists a k > 0 such that h = £hy, g = £gi and (n —2)k = ¢ — 2.

(b) If ¢ is even and equation (3) holds with m = +(n—2)k+2 and integral c, then
one of the four cases [A], [B], [C], [D] as shown in Table 4 applies, according
to k being even or odd, and the £ in (3) being + or —.

n k 4+ | condition c

[A] | any 2k + | ge==1 1
2" —1

B LA
2" +1

[Cl| 2r | 26+1 |+ | 02|27 +1 ;L

/UK/
2r—1

[D] — | uZ]2r -1 3

Table 4: The four cases.

Proof.

(a) Equation (2) implies that g, h are coprime, so that (3 (h £ gv/—D)) = "2
Lemma 4 then implies that n — 2 | £ — 2. We take k = —
% (h + gv/ —D) = o or @*, and the result follows.

and thus have

(b) Note that £ being even implies that at least one of n, k is even.
For even k = 2k, (a) and Lemma 6(a) say that g = £gx = £gihs.
2(n72)n+1 + hay
If + = 4 then equation (3) and Lemma 6(a,c) say that ¢ = ———5——
92k

1
— - Then ¢ being integral implies g,, = +1 and ¢ = 1.

2(n—2)m+1 _ h2n

If + = — then equation (3) and Lemma 6(a,c) say that ¢ = 5
92k
2" —1

7 Then ¢ being integral implies h? | 2" — 1.
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For even n = 2r and odd k = 2k +1, (a) and Lemma 6(b) say that g = +¢g;, =
T, v,
If + = + then equation (3) and Lemma 6(b,d) say that ¢ =

o(r=1)(2r+1)+1 4 p . o’
5 RIS —; . Then ¢ being integral implies v2 | 2" + 1.
J2k+1 Uk
If + = — then equation (3) and Lemma 6(b,d) say that ¢ =
9(r—1)(2k+1)+1

—h or _
3 2ntl 5—- Then ¢ being integral implies u? | 2" — 1.
92k+1 Ui

O

Let’s trace the known solutions.
Families [I] and [II] have k =2, s0 kK =1, and ¢ =1 or ¢ = 2" — 1, so they are in
cases [A] and [B] with g; = 1 and hy = 1, respectively.
Families [IIT] and [IV] have k =1, s0 K =0, and ¢ = 2" — 1 or ¢ = 2" + 1, so they
are in cases [D] and [C] with ug = 1 and vy = 1, respectively.
200=2241 1 p, h2 1

Family [V] has k =4, s0 k =2, and ¢ = = =
Y 7 A

is in case [A].

The known solutions with n = 3 and even k = 2k are presented Table 5, and the
known solutions with n = 4 and even k = 2k resp. odd k = 2k + 1 are presented in
Table 6.

k|0 1 2 3 4 5 6 7 e 11 12 13

he | 2 @ -3 -5 1 11 9 —-13 ... 67 —47 —181

gr | O -3 5 7 ... 23 45

m |2 3 4 5 6 7 8 9 .. 13 14 15
[A] | e
B | c

Table 5: Tracing the solutions with n = 3 and even k = 2k to elements in recurrence
sequences.

4. Solving the Four Cases

All four cases [A], [B], [C] and [D] can be reduced to diophantine equations known
from the literature.

Lemma 8. Case [A] leads to only the solutions from families [I] and [V], and the
three isolated solutions from [VI] with odd m.
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[0 1 2 3 k] 0 1 3 4
h | 2 -7 11 Uy 5 19
gs | O -3 Vs 3 13 -9
m|2 4 6 8 m| 3 5 7 9 11

Al | ¢ 1 (1) EREERIE (5)

B] | c D] | ¢

k=2x k=2r+1

Table 6: Tracing the solutions with n = 4 and even k = 2k, resp. odd k = 2k + 1,
to elements in recurrence sequences.

Proof. Table 4 gives g, = £1 and ¢ = 1. Then Equation (1) becomes the generalized
Ramanujan-Nagell equation g2 = 2™ —2"+1, which was completely solved by Szalay
[8]. O

Lemma 9. Case [B] leads to only the solutions from family [11], and the isolated
solution from [VI] with m even.

Proof. Note that we have x > 1, and then h, = 1 (mod 2"~?), so we have either
h. = 1 or |he| > 272 — 1. In the latter case the condition in Table 4 implies
(2772 — 1) < h2 < 2" — 1, leading to n < 4. If n = 3 we must have h, = +1.
But h,, is never congruent to —1 (mod 8), so h, = 1. If n = 4 then we must have
|h] = 1. Note that (when x > 1) we always have h, =1 (mod 4). So we find that
h, =1 always, and it follows from Table 4 that ¢ = 2™ — 1, and Equation (1) now

m __ t
= o1 Hence n | m. The equation g* =
Ljunggren [4], proving (among other results) that for even z always ¢t < 2. Hence
either m = n, g = 1 leading to family [IT], or m = 2n, in which case 2" + 1 must be
a square. This happens only for n = 3, leading to m = 6, thus to the only solution

from [VI] with even m. O

-1
becomes g% = 1 has been treated by

Lemma 10. Cases [C] and [D] lead to only the solutions from families [I11] and
[IV], and the isolated solutions [VII].

Proof. Tt is easy to see that u, =1—2""1 (mod 2%"72),v, = 1+2""! (mod 22"72)
for all k > 1. If r > 3 then it follows that |v,| > 2771 + 1 and |u,| > 277! — 1, so
the condition in Table 4 shows that in case [C] (2" 7! 4+ 1)? < 2" +1 and in case [D]
(27—t —1)2 < 2" — 1, which both are impossible. Thus 7 = 2 or x = 0.

The case kK =0 gives k = 1,80 g = 1, and m = %n + 1, and this gives exactly
families [ITI] and [IV]. So we are left with r =2 and k > 1, so n = 4.

In case [C] the condition in Table 4 shows that v2 < 5, but also we alway have
v, = 3 (mod 4), leaving only room for v, = —1, ¢ = 5. This leaves us with solving
3 = 2™ — 5¢%. This equation is a special case of the generalized Ramanujan-Nagell
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equation treated in [9, Chapter 7], from which it can easily be deduced that the
only solutions are (m, g) = (3,1),(7,5) (solutions nrs. 72 and 223 in [9, Chapter 7,
Table I]). It might occur elsewhere in the literature as well.

In case [D] the condition in Table 4 shows that u? < 3, but also always u, = 3
(mod 4), leaving only room for u, = —1, ¢ = 3. This leaves us with solving
5 = 2™ — 3¢2. Again this equation is a special case of the generalized Ramanujan-
Nagell equation treated in [9, Chapter 7], and it can easily be deduced that the
only solutions are (m, g) = (3,1), (5,3), (9,13) (solutions nrs. 43, 123 and 257 in [9,
Chapter 7, Table I]). It might also occur elsewhere in the literature as well. O

Proof of Theorems 1 and 2 when n > 3. This is done in Lemmas 3, 7, 8, 9 and 10.
O

5. The Order of the Prime Ideal Above 2 in the Ideal Class Group of

Q (\/—(2" - 1)), and Wieferich Primes

We cannot fully prove Conjecture 5, but we will indicate why we think it is true.
We will deduce it from the abc-conjecture, and we have a partial result.

Recall that a Wieferich prime is a prime p for which 2°=! =1 (mod p?). For any
odd prime p we introduce wp ;, as the order of 2 in the multiplicative group Z;k,
and ¢, as the number of factors p in 2P~ — 1. Fermat’s theorem shows that £, > 1,
and Wieferich primes are those with £, > 2.

Theorem 11. Letn >3, 2" — 1 = D = 2D’ with D’ squarefree and e > 1. Let @
be a prime ideal above 2 in K =Q (\/—D).

(a) Ife < 2n/4=3/5 then, the smallest positive s such that p° is a principal ideal
i the mazximal order of K is s =n — 2.

(b) The condition e < 27/*=3/5 holds at least in the following cases:
(1) n#6 and n < 200,
(2) n is not a multiple of wy o for some Wieferich prime p.
In particular Conjecture 5 is true for all n # 6 with 3 < n < 200.
Proof of Theorem 11.

(a) We start as in the proof of Lemma 4. There exists a minimal s > 0 such that
©® is principal in the ring of integers of K = Q (\/—D’). Let % (a + b\/—D’)
be a generator of this principal ideal, then a, b are both odd and coprime, and
a? + D'b? = 2572, Since p"~? = () (with a = 3 (1 + ev/—D’)) is principal

n—

with norm 2772, we now find that s|n — 2. Let us write k =
s
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2" —1
on/2-6/5"
don’t know much about s we estimate £ < n — 2. We may however assume

k > 2, as k =1 is what we want to prove. This means that we get s < %n -1,
on/4+1/2 on/2—1/10

< .
VD V1

The condition e < 2*/4=3/5 implies D’ > As ks = n — 2 and we

and from a? + D'b? = 2572 we get 1 < |b] < And this

contradicts n > 3.

(b) We would like to get more information on how big e can become. To get an
idea of what happens we computed e for all n < 200. Table 7 shows the cases
with e > 1. Note that in all these cases e | n, and that in all of these cases
except n = 6 we have e < 27/473/5 with for larger n an ample margin. This
proves that condition (1) is sufficient.

n | e n | e n | e n e n e n e n e

6 |3 36 | 3 66 | 3 100 | 5 126 | 21 150 | 3 180 | 15

12 |3 (|40 | 5 721 3 102 | 3 132 | 3 155 | 31 186 | 3

18 |3 |] 42|21 781 3 105 | 7 136 | 17 156 | 39 189 | 7

2015|481 3 80 | 5 108 | 9 138 | 3 160 | 5 192 | 3

21 | 7|54 | 9 84 | 21 110 | 11 140 | 5 162 | 9 198 | 3

24 13 60 | 15 9 | 3 114 | 3 144 | 3 168 | 21 200 | 5

30 | 3 63 | 7 9% | 3 120 | 15 147 | 7 174 | 3

Table 7: The values of e > 1 for all n < 200.

Next let condition (2) hold, i.e., n is not a multiple of w,, 5 for some Wieferich
prime p. We will prove that in this case e | n, as was already observed in
Table 7. This then is sufficient, as e | n implies e < n, and n < 27/473/° is
true for n > 20, and for 3 < n < 19 with the exception of n = 6 we already
saw that e < 27/4-3/5,

The following result is easy to prove: if p is an odd prime and a =1 (mod p')
for some t > 1 but @ # 1 (mod p'*!), then a”? = 1 (mod p'*1) but a? # 1
(mod p'*2). By the obvious wy ¢, | p—1 it now follows that p { wy, ¢, , and the
above result used with induction now gives wy, ; = wy, o, p* % for k > ¢,,.

Now assume that p is a prime factor of e, and p* | e but p**! te. Then 2" = 1
(mod p?*), 2P=1 #£ 1 (mod p® ™), and wyor = wye,p** % has wp ok | n.
Hence p?*~% | n. When k > ¢, for all p we find that e | n. But condition (2)
implies that ¢, = 1 for all p|e, and we’re done. O

Extending Table 7 soon becomes computationally challenging, as 2™ — 1 has to
be factored. However, we can easily compute a divisor of e, and thus a lower bound,
for many more values of n, by simply trying only small prime factors. We computed
for all primes up to 10° to which power they appear in 2" — 1 for all n up to 12000.
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E
®

1093n n e 1093n n e 1093n
1093 e 364 1093 e 364 1093 e
1 364 12 273 16 23 1 8372

1 728 13 1 4732 24 | 273 32

w
2]
=

273 4 14 1 5096 25 5 1820
1 1456 15 | 1365 4 26 1 9464
) 364 16 1 0824 27 | 819 12

273 8 17 1 6188 28 1 10192

2548 18 | 273 24 29 29 364
1 2912 19 1 6916 30 | 1365 8
273 12 20 5 1456 31 1 11284
) 728 21 | 273 28 32 1 11648
1 4004 22 1 8008

— =
CTE oo uo otk W
—

n_ e 3511n n_ _e 3511n n_ e 3511n
1755 3511 e 1755 3511 e 1755 3511 e
1 1 1755 3 1 5265 ) 1 8775
2 9 390 4 585 12 6 9 1170

Table 8: Lower bounds / conjectured values of e for all n < 12000 for which e { n.

We conjecture that the resulting lower bounds for e are the actual values. In most
cases we found them to be divisors of n indeed. But interestingly we found a few
exceptions.

The only cases for n where we are not yet sure that the conditions of Theorem
11(b) are fulfilled are related to Wieferich primes. Only two such primes are known:
1093 and 3511, with w932 = 364, wss11,2 = 1755. So the multiples of 364 and
1755 are interesting cases for n. Indeed, we found that the value for e in those cases
definitely does not divide n. See Table 8 for those values for n < 12000.

Most probably 364 is the smallest n for which the conditions of Theorem 11(b)
do not hold, but we are not entirely sure, as there might exist a Wieferich prime p
with exceptionally small wy g,

If n is divisible by w2 for a Wieferich prime p, then the above proof actually
shows that when n is multiplied by at most p‘»~! (for each such p) it will become
a multiple of e. It seems quite safe to conjecture the following.

Conjecture 12. For all n > 7 we have e < 27/4-3/5,

Most probably a much sharper bound is true, probably a polynomial bound,
maybe even e < n?.

According to the Wieferich prime search®, there are no other Wieferich primes
up to 10'7. A heuristic estimate for the number of Wieferich primes up to xz is

5See http://www.primegrid.com.
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loglog x, see [3]. This heuristic is based on the simple expectation estimate Z pt
p<z

for the number of p such that the second p-ary digit from the right in 2P~ — 1 is

zero. A similar argument for higher powers of p indicates that the number of primes

p such that 2°~! =1 (mod p?) (i.e., £, > 3) is finite, probably at most 1, because

Z p~2 ~ 0.4522. This gives some indication that e probably always divides n times

P
a not too large factor. However, wp ¢, might be much smaller than p, and thus a
multiplication factor of p might already be large compared to n. We do not know
how to find a better lower bound for w, » than the trivial wy 2 > 2log, p.

6. Connection to the abc-Conjecture

Miller® gives an argument that an upper bound for e in terms of n follows from
the abc-conjecture. The abe-conjecture states that if a + b = ¢ for coprime positive
integers, and N is the product of the prime numbers dividing a, b or ¢, then for every
€ > 0 there are only finitely many exceptions to ¢ < N'T¢. Indeed, assuming e >
27/4=3/5 for infinitely many n contradicts the abc-conjecture, namely 27 = 1/+ e2D’
—_on /I _ n 3n/4+8/5 IOgC 4/3

has ¢ = 2" and N < 2eD’ = 2(2"—1)/e < 237/4+8/5 50 that og N > 7 32/(T5n)’
which contradicts the conjecture. Indeed, assuming that the abc-conjecture is true,
there is for every € > 0 a constant K = K(e) such that ¢ < KN'T¢ and we get
e < KY/(+egltne/(+e) - This shows that any € < 1/3 will for sufficiently large n
give the truth of Conjecture 5 via Theorem 11(a).

Robert, Stewart and Tenenbaum [7] formulate a strong form of the abc-conjecture,

log N
implying that logc < log N + C % for a constant C' (asymptotically 41/3).
og lo
Using ¢ = 2" and N < 2"F1/e < 27F! we then obtain nlog2 < (n + 1)log2 —
(n+1)log2 n
1 C h c’ f tant C”
oge + log(n +1) + loglog 2’ ence e < exp Togn or a constan

slightly larger than C, probably C’ < 7.5. Not exactly polynomial, but this is a
general form of the abc-conjecture, not using the special form of our abc-example,
and it does of course imply Conjecture 5.

Even though Conjecture 5 follows from an effective version of the abc-conjecture,
it might be possible to prove it in some other way.
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6«“Re: Order of an ideal in a class group”, message to the NMBRTHRY mailing list, April 7,
2013, https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1304&L=NMBRTHRY&F=&S=4P=5692.
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