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Abstract
A quadratic-exponential Diophantine equation in 4 variables, describing certain
strongly regular graphs, is completely solved. Along the way we encounter di↵erent
types of generalized Ramanujan-Nagell equations whose complete solution can be
found in the literature, and we come across a problem on the order of the prime
ideal above 2 in the class groups of certain imaginary quadratic number fields, which
is related to the size of the squarefree part of 2n � 1 and to Wieferich primes, and
the solution of which can be based on the abc-conjecture.

1. Introduction

The question to determine the strongly regular graphs with parameters1 (v, k,�, µ)
with v = 2n and � = µ, was recently posed by Natalia Tokareva2. Somewhat
later Tokareva noted3 that the problem had already been solved by Bernasconi,
Codenotti and Vanderkam [2], but nevertheless we found it, from a Diophantine
point of view, of some interest to study a ramification of this problem.

We note the following facts about strongly regular graphs, see [5]. They satisfy
(v�k�1)µ = k(k���1). With v = 2n and � = µ this becomes 2n = 1+k(k�1)/µ.
In this case their eigenvalues are k and ±t with t2 = k � µ, with t an integer.
From these data Bernasconi and Codenotti [1] derived the diophantine equation
k2� 2nk + t2(2n� 1) = 0, which was subsequently solved in [2]. The only solutions
turned out to be (k, t) = (0, 0), (1, 1), (2n � 1, 1), (2n, 0) for all n, and additionally
(k, t) = (2n�1 � 2 1

2 n�1, 2 1
2 n�1), (2n�1 + 2 1

2 n�1, 2 1
2 n�1) for even n. As a result, the

only nontrivial strongly regular graphs of the desired type (2n, k, µ, µ) are those
1See [5] for the definition of strongly regular graphs with these parameters.
2Personal communication to Andries Brouwer, March 2013.
3Personal communication to BdW, April 2013.
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with even n and (k, µ) = (2n�1 ± 2 1
2 n�1, 2n�2 ± 2 1

2 n�1). These are precisely the
graphs associated to so-called bent functions, see [1].

In studying this diophantine problem we take a somewhat deviating path4. With-
out loss of generality we may assume that there are three distinct eigenvalues, i.e.,
t � 1 and k > 1. The multiplicity of t then is (2n�1�k/t)/2, so t | k. It follows that
also t | µ. We write k = at and µ = bt. Then we find t = a� b and 2n = (a2�1)t/b.
Let g = gcd(a, b) = gcd(b, t), and write a = cg, b = dg. It then follows that 2n is
the product of the integers (a2 � 1)/d and t/g, which therefore are both powers of
2. Let (a2 � 1)/d = 2m. Then we have m  n.

Since 2n � 1 = a(at� 1)/b = a(a2 � ab� 1)/b, the question now has become to
determine the solutions in positive integers n,m, c, g of the diophantine equation

2n � 1 = c
�
2m � cg2

�
. (1)

For the application at hand only n � m is relevant, but we will study n < m as well.
With n � m there obviously are the four families of Table 1. Our first, completely
elementary, result is that there are no others.

n m c g
[I] any n 1 1
[II] n 2n � 1 1

[III] even 1
2n + 1 2 1

2 n � 1 1
[IV] 1

2n + 1 2 1
2 n + 1 1

Table 1: Four families of solutions of (1) with n � m.

Theorem 1. All the solutions of (1) with n � m are given in Table 1.

Proof. Note that c and g are odd, and that cg2 < 2m.
For m  2 the only possibilities for cg2 < 2m are c = g = 1, leading to m = n,

fitting in [I], and for m = 2 also c = 3, g = 1, leading to n = 2, fitting in [II].
For m � 3 we look at (1) modulo 2m. Using n � m we get (cg)2 ⌘ 1 (mod 2m),

and by m � 3 this implies cg ⌘ ±1 (mod 2m�1). So either c = g = 1, immediately
leading to m = n and thus to [I], or cg � 2m�1 � 1. Since also cg2  2m � 1

we get g  2m � 1
2m�1 � 1

< 3, hence g = 1. We now have c ⌘ ±1 (mod 2m�1) and

1 < c < 2m, implying c = 2m�1 � 1 or c = 2m�1 + 1 or c = 2m � 1, leading to
exactly [III], [IV], [II] respectively.

Note that this result implies the result of [2].
4I owe this idea to Andries Brouwer.
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When m > n, a fifth family and seven isolated solutions are easily found, see
Table 2. For n = 3 and c = 1 equation (1) is precisely the well known Ramanujan-
Nagell equation [6].

n m c g
[V] any � 3 2n� 2 1 2n�1 � 1
[VI] 3 5 1 5

6 7 3
7 1 11
15 1 181

[VII] 4 5 3 3
7 5 5
9 3 13

Table 2: One family and seven isolated solutions of (1) with m > n.

In Sections 2, 3 and 4 we will prove the following result, which is not elementary
anymore, and works for both cases n � m and m > n at once.

Theorem 2. All the solutions of (1) with m > n are given in Table 2.

2. Small n

The cases n  2 are elementary.

Proof of Theorems 1 and 2 when n  2. Clearly n = 1 leads to c = 1 and 2m�g2 =
1, which for m � 2 is impossible modulo 4. So there is only the trivial solution
m = g = 1. And for n = 2 we find 3 = c

�
2m � cg2

�
, so c = 1 or c = 3. With c = 1

we have 2m � g2 = 3, which for m � 3 is impossible modulo 8. So we are left with
the trivial m = 2, g = 1 only. And with c = 3 we have 2m � 3g2 = 1, which also for
m � 3 is impossible modulo 8. So we are left with the trivial m = 2, g = 1 only.

3. Recurrence Sequences

From now on we assume n � 3. Let us write D = 2n � 1.

Lemma 3. For any solution (n,m, c, g) of (1) there exists an integer h such that

h2 + Dg2 = 2` with ` = 2m� 2, (2)

c =
2m�1 ± h

g2
. (3)
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Proof. We view equation (1) as a quadratic equation in c. Its discriminant is 22m�
4Dg2, which must be an even square, say 4h2. This immediately gives the result.

So ` is even, but when studying (2) we will also allow odd ` for the moment. Note
the ‘basic’ solution (h, g, `) = (1, 1, n) of (2). In the quadratic field K = Q

�p
�D

�
we therefore look at

↵ =
1
2

⇣
1 +

p
�D

⌘
,

which is an integer of norm 2n�2. Note that D is not necessarily squarefree (e.g.
n = 6 has D = 63 = 32 · 7), so the order O generated by the basis {1,↵}, being a
subring of the ring of integers (the maximal order of K), may be a proper subring.
The discriminant of K is the squarefree part of �D, which, just like �D itself, is
congruent to 1 (mod 8). So in the ring of integers the prime 2 splits, say (2) = }},
and without loss of generality we can say (↵) = }n�2. Note that it may happen
that a smaller power of } already is principal. Indeed, for n = 6 we have } =�

1
2

�
1�

p
�7

��
itself already being principal, where (↵) =

�
1
2

�
1 +

p
�63

��
= }4.

But note that },}2,}3 are not in the order O, and it is the order which interests
us. We have the following result.

Lemma 4. The smallest positive s such that }s is a principal ideal in O is s = n�2.

In a later section we further comment on the order of } in the full class group
for general n. In particular we gather some evidence for the following conjecture,
showing (among other things) that it follows from (an e↵ective version of) the abc-
conjecture (at least for large enough n).

Conjecture 5. For n 6= 6 the smallest positive s such that }s is a principal ideal
in the maximal order of K is s = n� 2.

Proof of Lemma 4. There exists a minimal s > 0 such that }s is principal and is
in the order O. Let 1

2

�
a + b

p
�D

�
be a generator of }s, then a, b are coprime and

both odd, and
a2 + Db2 = 2s+2. (4)

Since }n�2 = (↵) is principal and in O, we now find that s|n� 2, and
⇣
a + b

p
�D

⌘k
= ±2k�1

⇣
1 +

p
�D

⌘
, with k =

n� 2
s

. (5)

Comparing imaginary parts in (5) gives that b | 2k�1, and from the fact that b is
odd it follows that b = ±1. Equation (4) then becomes a2 + D = 2s+2, which is
a2 = 2s+2�2n+1. This equation, which is a generalization of the Ramanujan-Nagell
equation that occurs for n = 3, has, according to Szalay [8], only the solutions given

in Table 3. Only in case [ii] we have k =
n� 2

s
integral, and this proves k = 1,

s = n� 2.
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n s a

[i] any � 2 2n� 4 2n�1 � 1
[ii] n� 2 1
[iii] 3 3 5

5 11
13 181

Table 3: The solutions of a2 = 2s+2 � 2n + 1 with a > 0.

We next show that the solutions h, g of (2) are elements of certain binary recur-
rence sequences. We define for k � 0

hk = ↵k + ↵k, with h0 = 2, h1 = 1, and hk+1 = hk � 2n�2hk�1 for k � 1,

gk =
↵k � ↵k

p
�D

, with g0 = 0, g1 = 1, and gk+1 = gk � 2n�2gk�1 for k � 1.

For even n, say n = 2r, we can factor D as (2r � 1)(2r + 1). Now we define

� =
1
2

⇣
2r + 1 +

p
�D

⌘
, µ =

1
2

⇣
2r � 1 +

p
�D

⌘
,

satisfying N(�) = 22r�1 + 2r�1 and N(µ) = 22r�1 � 2r�1, �µ = �↵
p
�D, �µ =

2r�1
p
�D, �2 = (2r + 1)↵, and µ2 = �(2r � 1)↵. For n = 2r and  � 0 we define

u =
1

2r + 1
�
�↵ + �↵

�
, with u0 = 1, u1 = �(2r�1 � 1),

and u+1 = u � 2n�2u�1 for  � 1,

v =
�1

2r�1(2r � 1)
�
µ↵+1 + µ↵+1

�
, with v0 = 1, v1 = 2r�1 + 1,

and v+1 = v � 2n�2v�1 for  � 1.

We present a few useful properties of these recurrence sequences.

Lemma 6.

(a) For any n � 3 we have g2 = gh for all  � 0.

(b) For even n = 2r we have g2+1 = uv for all  � 0.

(c) For any n and even k = 2, we have

2(n�2)+1 + h2 = h2
, 2(n�2)+1 � h2 = (2n � 1)g2

.

(d) For any even n = 2r and odd k = 2 + 1, we have

2(r�1)(2+1)+1 + h2+1 = (2r + 1)u2
, 2(r�1)(2+1)+1 � h2+1 = (2r � 1)v2

.
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Proof. Trivial by writing out all equations and using the mentioned properties of
�, µ.

For curiosity only, note that (2r + 1)u2
 + (2r � 1)v2

 = 2(r�1)(2+1)+2.
Now that we have introduced the necessary binary recurrence sequences, we can

state the relation to the solutions of (2).

Lemma 7. Let (h, g, `) be a solution of (2).

(a) There exists a k � 0 such that h = ±hk, g = ±gk and (n� 2)k = `� 2.

(b) If ` is even and equation (3) holds with m = 1
2 (n�2)k+2 and integral c, then

one of the four cases [A], [B], [C], [D] as shown in Table 4 applies, according
to k being even or odd, and the ± in (3) being + or �.

n k ± condition c
[A] any 2 + g = ±1 1

[B] � h2
 | 2n � 1

2n � 1
h2



[C] 2r 2 + 1 + v2
 | 2r + 1

2r + 1
v2



[D] � u2
 | 2r � 1

2r � 1
u2



Table 4: The four cases.

Proof.

(a) Equation (2) implies that g, h are coprime, so that
�

1
2

�
h ± g

p
�D

��
= }`�2.

Lemma 4 then implies that n � 2 | ` � 2. We take k =
`� 2
n� 2

and thus have
1
2

�
h ± g

p
�D

�
= ↵k or ↵k, and the result follows.

(b) Note that ` being even implies that at least one of n, k is even.
For even k = 2, (a) and Lemma 6(a) say that g = ±gk = ±gh.

If ± = + then equation (3) and Lemma 6(a,c) say that c =
2(n�2)+1 + h2

g2
2

=

1
g2



. Then c being integral implies g = ±1 and c = 1.

If ± = � then equation (3) and Lemma 6(a,c) say that c =
2(n�2)+1 � h2

g2
2

=

2n � 1
h2



. Then c being integral implies h2
 | 2n � 1.



INTEGERS: 14 (2014) 7

For even n = 2r and odd k = 2+1, (a) and Lemma 6(b) say that g = ±gk =
±uv.
If ± = + then equation (3) and Lemma 6(b,d) say that c =
2(r�1)(2+1)+1 + h2+1

g2
2+1

=
2r + 1

v2


. Then c being integral implies v2
 | 2r + 1.

If ± = � then equation (3) and Lemma 6(b,d) say that c =
2(r�1)(2+1)+1 � h2+1

g2
2+1

=
2r � 1

u2


. Then c being integral implies u2
 | 2r � 1.

Let’s trace the known solutions.
Families [I] and [II] have k = 2, so  = 1, and c = 1 or c = 2n � 1, so they are in

cases [A] and [B] with g1 = 1 and h1 = 1, respectively.
Families [III] and [IV] have k = 1, so  = 0, and c = 2r� 1 or c = 2r +1, so they

are in cases [D] and [C] with u0 = 1 and v0 = 1, respectively.

Family [V] has k = 4, so  = 2, and c =
2(n�2)2+1 + h4

g2
4

=
h2

2

g2
2h

2
2

=
1
g2
2

= 1, so it

is in case [A].
The known solutions with n = 3 and even k = 2 are presented Table 5, and the

known solutions with n = 4 and even k = 2 resp. odd k = 2 + 1 are presented in
Table 6.

 0 1 2 3 4 5 6 7 . . . 11 12 13
h 2

⌥

⌃

⌅

⇧

1 �3 �5
⌥

⌃

⌅

⇧

1 11 9 �13 . . . 67 �47 �181
g 0

⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

�1 �3
⌥

⌃

⌅

⇧

�1 5 7 . . . 23 45
⌥

⌃

⌅

⇧

�1
m 2 3 4 5 6 7 8 9 . . . 13 14 15

[A] c
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1
[B] c

⌥

⌃

⌅

⇧

7
⌥

⌃

⌅

⇧

7

Table 5: Tracing the solutions with n = 3 and even k = 2 to elements in recurrence
sequences.

4. Solving the Four Cases

All four cases [A], [B], [C] and [D] can be reduced to diophantine equations known
from the literature.

Lemma 8. Case [A] leads to only the solutions from families [I] and [V], and the
three isolated solutions from [VI] with odd m.
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 0 1 2 3  0 1 2 3 4
h 2

⌥

⌃

⌅

⇧

1 �7 �11 u

⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

�1 �5
⌥

⌃

⌅

⇧

�1 19
g 0

⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1 �3 v

⌥

⌃

⌅

⇧

1 3
⌥

⌃

⌅

⇧

�1 �13 �9
m 2 4 6 8 m 3 5 7 9 11

[A] c
⌥

⌃

⌅

⇧

1
⌥

⌃

⌅

⇧

1 [C] c
⌥

⌃

⌅

⇧

5
⌥

⌃

⌅

⇧

5
[B] c

⌥

⌃

⌅

⇧

15 [D] c
⌥

⌃

⌅

⇧

3
⌥

⌃

⌅

⇧

3
⌥

⌃

⌅

⇧

3
k = 2 k = 2 + 1

Table 6: Tracing the solutions with n = 4 and even k = 2, resp. odd k = 2 + 1,
to elements in recurrence sequences.

Proof. Table 4 gives gk = ±1 and c = 1. Then Equation (1) becomes the generalized
Ramanujan-Nagell equation g2 = 2m�2n+1, which was completely solved by Szalay
[8].

Lemma 9. Case [B] leads to only the solutions from family [II], and the isolated
solution from [VI] with m even.

Proof. Note that we have  � 1, and then h ⌘ 1 (mod 2n�2), so we have either
h = 1 or |h| � 2n�2 � 1. In the latter case the condition in Table 4 implies
(2n�2 � 1)2  h2

  2n � 1, leading to n  4. If n = 3 we must have h = ±1.
But h is never congruent to �1 (mod 8), so h = 1. If n = 4 then we must have
|h| = 1. Note that (when  � 1) we always have h ⌘ 1 (mod 4). So we find that
h = 1 always, and it follows from Table 4 that c = 2n � 1, and Equation (1) now

becomes g2 =
2m � 1
2n � 1

. Hence n | m. The equation g2 =
xt � 1
x� 1

has been treated by

Ljunggren [4], proving (among other results) that for even x always t  2. Hence
either m = n, g = 1 leading to family [II], or m = 2n, in which case 2n + 1 must be
a square. This happens only for n = 3, leading to m = 6, thus to the only solution
from [VI] with even m.

Lemma 10. Cases [C] and [D] lead to only the solutions from families [III] and
[IV], and the isolated solutions [VII].

Proof. It is easy to see that u ⌘ 1�2r�1 (mod 22r�2), v ⌘ 1+2r�1 (mod 22r�2)
for all  � 1. If r � 3 then it follows that |v| � 2r�1 + 1 and |u| � 2r�1 � 1, so
the condition in Table 4 shows that in case [C] (2r�1 + 1)2  2r + 1 and in case [D]
(2r�1 � 1)2  2r � 1, which both are impossible. Thus r = 2 or  = 0.

The case  = 0 gives k = 1, so g = 1, and m = 1
2n + 1, and this gives exactly

families [III] and [IV]. So we are left with r = 2 and  � 1, so n = 4.
In case [C] the condition in Table 4 shows that v2

  5, but also we alway have
v ⌘ 3 (mod 4), leaving only room for v = �1, c = 5. This leaves us with solving
3 = 2m � 5g2. This equation is a special case of the generalized Ramanujan-Nagell
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equation treated in [9, Chapter 7], from which it can easily be deduced that the
only solutions are (m, g) = (3, 1), (7, 5) (solutions nrs. 72 and 223 in [9, Chapter 7,
Table I]). It might occur elsewhere in the literature as well.

In case [D] the condition in Table 4 shows that u2
  3, but also always u ⌘ 3

(mod 4), leaving only room for u = �1, c = 3. This leaves us with solving
5 = 2m � 3g2. Again this equation is a special case of the generalized Ramanujan-
Nagell equation treated in [9, Chapter 7], and it can easily be deduced that the
only solutions are (m, g) = (3, 1), (5, 3), (9, 13) (solutions nrs. 43, 123 and 257 in [9,
Chapter 7, Table I]). It might also occur elsewhere in the literature as well.

Proof of Theorems 1 and 2 when n � 3. This is done in Lemmas 3, 7, 8, 9 and 10.

5. The Order of the Prime Ideal Above 2 in the Ideal Class Group of
Q

⇣p
�(2n � 1)

⌘
, and Wieferich Primes

We cannot fully prove Conjecture 5, but we will indicate why we think it is true.
We will deduce it from the abc-conjecture, and we have a partial result.

Recall that a Wieferich prime is a prime p for which 2p�1 ⌘ 1 (mod p2). For any
odd prime p we introduce wp,k as the order of 2 in the multiplicative group Z⇤pk ,
and `p as the number of factors p in 2p�1� 1. Fermat’s theorem shows that `p � 1,
and Wieferich primes are those with `p � 2.

Theorem 11. Let n � 3, 2n � 1 = D = e2D0 with D0 squarefree and e � 1. Let }
be a prime ideal above 2 in K = Q

�p
�D

�
.

(a) If e < 2n/4�3/5 then the smallest positive s such that }s is a principal ideal
in the maximal order of K is s = n� 2.

(b) The condition e < 2n/4�3/5 holds at least in the following cases:

(1) n 6= 6 and n  200,

(2) n is not a multiple of wp,2 for some Wieferich prime p.

In particular Conjecture 5 is true for all n 6= 6 with 3  n  200.

Proof of Theorem 11.

(a) We start as in the proof of Lemma 4. There exists a minimal s > 0 such that
}s is principal in the ring of integers of K = Q

�p
�D0

�
. Let 1

2

�
a + b

p
�D0

�
be a generator of this principal ideal, then a, b are both odd and coprime, and
a2 + D0b2 = 2s+2. Since }n�2 = (↵) (with ↵ = 1

2

�
1 + e

p
�D0

�
) is principal

with norm 2n�2, we now find that s|n� 2. Let us write k =
n� 2

s
.
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The condition e < 2n/4�3/5 implies D0 >
2n � 1

2n/2�6/5
. As ks = n � 2 and we

don’t know much about s we estimate k  n � 2. We may however assume
k � 2, as k = 1 is what we want to prove. This means that we get s  1

2n�1,

and from a2 + D0b2 = 2s+2 we get 1  |b|  2n/4+1/2

p
D0

<
2n/2�1/10

p
2n � 1

. And this

contradicts n � 3.

(b) We would like to get more information on how big e can become. To get an
idea of what happens we computed e for all n  200. Table 7 shows the cases
with e > 1. Note that in all these cases e | n, and that in all of these cases
except n = 6 we have e < 2n/4�3/5, with for larger n an ample margin. This
proves that condition (1) is su�cient.

n e n e n e n e n e n e n e
6 3 36 3 66 3 100 5 126 21 150 3 180 15
12 3 40 5 72 3 102 3 132 3 155 31 186 3
18 3 42 21 78 3 105 7 136 17 156 39 189 7
20 5 48 3 80 5 108 9 138 3 160 5 192 3
21 7 54 9 84 21 110 11 140 5 162 9 198 3
24 3 60 15 90 3 114 3 144 3 168 21 200 5
30 3 63 7 96 3 120 15 147 7 174 3

Table 7: The values of e > 1 for all n  200.

Next let condition (2) hold, i.e., n is not a multiple of wp,2 for some Wieferich
prime p. We will prove that in this case e | n, as was already observed in
Table 7. This then is su�cient, as e | n implies e  n, and n < 2n/4�3/5 is
true for n � 20, and for 3  n  19 with the exception of n = 6 we already
saw that e < 2n/4�3/5.

The following result is easy to prove: if p is an odd prime and a ⌘ 1 (mod pt)
for some t � 1 but a 6⌘ 1 (mod pt+1), then ap ⌘ 1 (mod pt+1) but ap 6⌘ 1
(mod pt+2). By the obvious wp,`p | p� 1 it now follows that p - wp,`p , and the
above result used with induction now gives wp,k = wp,`ppk�`p for k � `p.

Now assume that p is a prime factor of e, and pk | e but pk+1 - e. Then 2n ⌘ 1
(mod p2k), 2p�1 6⌘ 1 (mod p`p+1), and wp,2k = wp,`pp2k�`p has wp,2k | n.
Hence p2k�`p | n. When k � `p for all p we find that e | n. But condition (2)
implies that `p = 1 for all p|e, and we’re done.

Extending Table 7 soon becomes computationally challenging, as 2n � 1 has to
be factored. However, we can easily compute a divisor of e, and thus a lower bound,
for many more values of n, by simply trying only small prime factors. We computed
for all primes up to 105 to which power they appear in 2n� 1 for all n up to 12000.
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n
364

e
1093

1093n
e

n
364

e
1093

1093n
e

n
364

e
1093

1093n
e

1 1 364 12 273 16 23 1 8372
2 1 728 13 1 4732 24 273 32
3 273 4 14 1 5096 25 5 1820
4 1 1456 15 1365 4 26 1 9464
5 5 364 16 1 5824 27 819 12
6 273 8 17 1 6188 28 1 10192
7 1 2548 18 273 24 29 29 364
8 1 2912 19 1 6916 30 1365 8
9 273 12 20 5 1456 31 1 11284
10 5 728 21 273 28 32 1 11648
11 1 4004 22 1 8008

n
1755

e
3511

3511n
e

n
1755

e
3511

3511n
e

n
1755

e
3511

3511n
e

1 1 1755 3 1 5265 5 1 8775
2 9 390 4 585 12 6 9 1170

Table 8: Lower bounds / conjectured values of e for all n  12000 for which e - n.

We conjecture that the resulting lower bounds for e are the actual values. In most
cases we found them to be divisors of n indeed. But interestingly we found a few
exceptions.

The only cases for n where we are not yet sure that the conditions of Theorem
11(b) are fulfilled are related to Wieferich primes. Only two such primes are known:
1093 and 3511, with w1093,2 = 364, w3511,2 = 1755. So the multiples of 364 and
1755 are interesting cases for n. Indeed, we found that the value for e in those cases
definitely does not divide n. See Table 8 for those values for n  12000.

Most probably 364 is the smallest n for which the conditions of Theorem 11(b)
do not hold, but we are not entirely sure, as there might exist a Wieferich prime p
with exceptionally small wp,`p .

If n is divisible by wp,2 for a Wieferich prime p, then the above proof actually
shows that when n is multiplied by at most p`p�1 (for each such p) it will become
a multiple of e. It seems quite safe to conjecture the following.

Conjecture 12. For all n � 7 we have e < 2n/4�3/5.

Most probably a much sharper bound is true, probably a polynomial bound,
maybe even e < n2.

According to the Wieferich prime search5, there are no other Wieferich primes
up to 1017. A heuristic estimate for the number of Wieferich primes up to x is

5See http://www.primegrid.com.
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log log x, see [3]. This heuristic is based on the simple expectation estimate
X
px

p�1

for the number of p such that the second p-ary digit from the right in 2p�1 � 1 is
zero. A similar argument for higher powers of p indicates that the number of primes
p such that 2p�1 ⌘ 1 (mod p3) (i.e., `p � 3) is finite, probably at most 1, becauseX

p

p�2 ⇡ 0.4522. This gives some indication that e probably always divides n times

a not too large factor. However, wp,`p might be much smaller than p, and thus a
multiplication factor of p might already be large compared to n. We do not know
how to find a better lower bound for wp,2 than the trivial wp,2 > 2 log2 p.

6. Connection to the abc-Conjecture

Miller6 gives an argument that an upper bound for e in terms of n follows from
the abc-conjecture. The abc-conjecture states that if a + b = c for coprime positive
integers, and N is the product of the prime numbers dividing a, b or c, then for every
✏ > 0 there are only finitely many exceptions to c < N1+✏. Indeed, assuming e �
2n/4�3/5 for infinitely many n contradicts the abc-conjecture, namely 2n = 1+e2D0

has c = 2n and N  2eD0 = 2(2n�1)/e < 23n/4+8/5, so that
log c

log N
>

4/3
1 + 32/(15n)

,

which contradicts the conjecture. Indeed, assuming that the abc-conjecture is true,
there is for every ✏ > 0 a constant K = K(✏) such that c < KN1+✏, and we get
e < K1/(1+✏)21+n✏/(1+✏). This shows that any ✏ < 1/3 will for su�ciently large n
give the truth of Conjecture 5 via Theorem 11(a).

Robert, Stewart and Tenenbaum [7] formulate a strong form of the abc-conjecture,

implying that log c < log N + C

r
log N

log log N
for a constant C (asymptotically 4

p
3).

Using c = 2n and N  2n+1/e  2n+1 we then obtain n log 2 < (n + 1) log 2 �

log e + C

s
(n + 1) log 2

log(n + 1) + log log 2
, hence e < exp

✓
C0

r
n

log n

◆
for a constant C0

slightly larger than C, probably C0 < 7.5. Not exactly polynomial, but this is a
general form of the abc-conjecture, not using the special form of our abc-example,
and it does of course imply Conjecture 5.

Even though Conjecture 5 follows from an e↵ective version of the abc-conjecture,
it might be possible to prove it in some other way.

Acknowledgements The author is grateful to Aart Blokhuis, Andries Brouwer,
Victor Miller and Natalia Tokareva for fruitful discussions.

6“Re: Order of an ideal in a class group”, message to the NMBRTHRY mailing list, April 7,
2013, https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1304&L=NMBRTHRY&F=&S=&P=5692.
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