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Abstract
Let s and £ be integers with s > 2 and k > 3 . Let g,(:)(n) denote the cardinality of
the largest subset of the set {1,2,...,n} that contains no geometric progression of
length k& whose common ratio is a power of s. Let r;(£) denote the cardinality of the
largest subset of the set {0,1,2,...,¢ — 1} that contains no arithmetric progression
of length k. It is proved that the limit

(i>min(7“kl(m)) (s _51)2 i T';(f).

=1

(s) o
. Y9 (n)

1 oL =(s—-1 g

Jim - (s ) 2

1

exists and is an irrational number.

1. Maximal Subsets Without Geometric Progressions

Let N and N denote the sets of positive integers and nonnegative integers, respec-
tively. For every real number x, the integer part of x, denoted [z], is the unique
integer n such that n <x <n+ 1.
Let s > 2 be an integer. Every positive integer a can be written uniquely in the
form
a = bs”

where b is a positive integer not divisible by s and v is a nonnegative integer. If G
is a finite geometric progression of length & whose first term is the positive integer
a and whose common ratio is a positive integral power of s, say, s with d € N,
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then ‘
G={a(s? :j=0,1,....k—1}.

Writing @ in the form a = bs” with b not a multiple of s, we have
G={bs"T¥:5=0,1,....,k—1} C {bs' : i € Ny} (1)

and so the set of exponents of s in the finite geometric progression G is the finite
arithmetic progression {v +dj : j = 0,1,...,k — 1}. Conversely, if a,d € N and
{vi+dj:j=0,1,...,k — 1} is a finite arithmetic progression of k nonnegative
integers, then {as"*%¥ : j =0,1,...,k — 1} is a geometric progression of length k.
Writing a = bs* with vy € N and b not divisible by s, we obtain {as"1*¥ : j =
0,1,....,k =1} ={bs"*¥ : j =0,1,...,k — 1}, where v = vy + v;.

Let ¢ and k be positive integers with & > 3. Let 71 (¢) denote the cardinality of the
largest subset of the set {0, 1,2,...,£—1} that contains no arithmetic progression of
length k. Because the geometric progression (2¢)%°, contains no 3-term arithmetic
progression, it follows that

lim r(£) = oo. (2)

£—o00

Note that r(¢) = £ for £ = 1,...,k — 1, that ri(k) = k — 1, and that, for every
¢ € N, there exists e, € {0,1} such that

’I“k(g-i-l) ZT]C(K)-FE@. (3)

Equivalently,
0<rp(l+1)—rg(l) <1. (4)

It follows from (2) and (4) that the function ry : N — N is increasing and surjective.
This implies that, for every positive integer m, the set

i (m) = { € N :rg(0) = m}
is a nonempty set of consecutive integers. We define
U, = min (r; " (m)) .
Then (u,,)5°_; is a strictly increasing sequence of positive integers.
Lemma 1. Let k > 3 and let u,, = min (r;l(m)) for m € N. Then

lim sup(Um4+1 — Um) = 0.

m—00

Proof. We use Szemerédi’s theorem, which states that r,(¢) = o(¢), to prove that
the increasing sequence (u,,)>°_; has unbounded gaps.
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Note that uy = 1. If limsup,,_ o (Umt1 — Um) < 00, then there is an integer
¢ > 2 such that ;41 — Uy, < ¢ for all m € N. It follows that

max (r; " (m)) + 1 = min (r; ' (m + 1))

= Um+1
m

= Z(uiﬂ —u;) +w
i=1

<cm+1.

Thus, max (rj, ' (m)) < em and so rix(cm) > m. Equivalently,

mlem) 1oy
cm &

for all m € N. This contradicts Szemerédi’s theorem, and completes the proof. [

For k > 3, let gr(n) denote the cardinality of the largest subset of the set
{1,2,...,n} that contains no geometric progression of length k. This function,
introduced by Rankin [4], has been investigated by M. Beiglbock, V. Bergelson,
N. Hindman, and D. Strauss [1], by Brown and Gordon [2], and by Riddell [5]. The
best upper bound for the function g (n) is due to Nathanson and O’Bryant [3].

For s > 2 and k > 3, let g,(f) (n) denote the cardinality of the largest subset of the
set {1,2,...,n} that contains no geometric progression of length k whose common
ratio is a power of s. The goal of this paper is to prove that the limit

(s) n 0 min(r;l(m)) s — 0o r
lim g1 () _ (s—1) Z (1) _ 1)2 Z ks(f) %)

n—oo n S S
m=1 {=1

exists and converges to an irrational number.

2. Maximal Geometric Progression-Free Sets

Lemma 2. Let k, s, and n be positive integers with k > 3 and s > 2, and let
B, ={be{1,2,...,n}: s does not divide b}.

Then

g,(:)(n) = Z T (1 + [logS (%)D )

beB,
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Proof. Let b € B,,. For i € Ny, we have bs' < n if and only if 0 < i < log,(n/b).
We define

T(b) ={t€{1,2,...,n} : t = bs' for some i € Ny}

:{bsi:1:0,1,...,[10&(%)}}.

{1.2,...,n} = | J T(b)

Then b € T'(b) and

beB’Vl
is a partition of {1,2,...,n} into pairwise disjoint nonempty subsets.
If the set {1,2,...,n} contains a finite geometric progression of length k whose

common ratio is a power of s, then, by (1), this geometric progression is a subset of
T(b) for some b € B,,, and the set of exponents of s is a finite arithmetic progression
of length k contained in the set of consecutive integers {0,1,...,[log,(n/b)]}. It
follows that the largest cardinality of a subset of T'(b) that contains no k-term
geometric progression whose common ratio is a power of s is equal to the largest
cardinality of a subset of {0,1, ..., [log,(n/b)]} that contains no k-term arithmetic

progression. This number is
re (1+ [os. (7)])-

If A, is a subset of {1,2,...,n} of maximum cardinality that contains no k-term
geometric progression whose common ratio is a power of s, then

40 N T(0)] =7 (1+ [log, (%)D :

Because A = J,cz T'(b) is a partition of {1,...,n}, it follows that

4= Y (A NTO) = Y (1+ [logs (%)D

beB, beB,

This completes the proof. O

3. Comnstruction of an Irrational Number

Lemma 3. Let s be an integer with s > 2. Let x and y be real numbers with x < y.
The number of integers n such that x <n <y and s does not divide n s

(8 1) (y— ) +O(1).

S

Proof. This is a straightforward calculation. O
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Theorem 1. Let k and s be integers with k > 3 and s > 2. The limit

(s) n s—1)2 [} r o min(r;l(m))

n—oo n Sz S
1 m=1

exists and converges to an irrational number.
Proof. For every positive integer b we have
1+ [logy(n/b)] = ¢

if and only if

no_,<sn
st - st

By Lemma 3, the number of integers in this interval that are also in B,,, that is, are
not divisible by s, is

() o = 2 s oq)

s Y JYAS)
Let n > s. Because 1 € B,,, we have
L(n) = max {1 + [log,(n/b)] : b € B,} = 1+ [log, n] < 2log, n,

Also, if £ < L(n), then ri(¢) < ¢ < L(n). By Lemma 2,

g2 () =Y i (1+ [log,(n/b)))

beB,

L(n)
= () x |{b€ By : £ =1+ [log,(n/b)]}|

=1

L(n) 2

n(s—1

= r (€) ( (SZ+1) +O(1))

=1

ns—lQL(n)r V4 L)
R L D

(=1 (=1
L(n)
_n(s—1)° 10 2
RPN DR +0 (L(n) )
- (s—1)2 L(n) T (0) L0 <log§n)
s st n
(=1
L(n)
(s =1 = ()

=n S ; +o(1)
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Because (L(n))52; is an increasing sequence and lim,,_,o, L(n) = 0o, we have

(s) o L(n)

-1 /
g () _ g, (52D Tk(g) +o(1) | =
n— 00 n n— oo S S
/=1 (=1

Let M(n) = rg(L(n)) and let u,, = min (r; ' (m)) and U,, = max (r; ' (m)). Then
M(n) < L(n) and U, + 1 = uppy1 for m=1,..., M(n). We have

T‘k(g) 1 1
o= 2 m Y, M) > o
t=1 m=1 ter; H(m) ter, (M (n)n{L,...,L(n)}

M(n)—1 U 1 L(n)
= Z m Z g—l—M(n) Z +
m=1 £=um e:uw](n)
B s M(n)—1 1 Um 1 Upn+1
1 2 () G
s 1) “M @) 1 L(n)+1
M - _(z
e (37 ()
s M(n)—-1 1 U 1 U 41
=2 (6 -0) )
1 UM (n) 1 L(n)+1
(-
5 — S S
M(n) Um  M(n) U L(n)+1
S 1 1 1
=\ Zm ) xe () e ()
s Ny 1 M(n)
Cos—1 Z sum s —1 \ sk
s 1
= — +o(1).
s—1 = SUm +o(1)
Therefore,
(s) 2 M(n) Unm
g (m) _(s—1) s 1
n S s—1 Z s +o(1) | +o(1)
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and so ()
S o0

tm 0§l
m=1

n—00 n su

Note that w; = 1. The infinite series converges to a real number 6 € (1 —1/s,1),
and the “decimal digits to base s” of 5 are 0 or s — 1. The number 6, is rational
if and only if these digits are eventually periodic, but Lemma 1 implies that there
are unbounded gaps between successive digits equal to 1. Therefore, 6 is irrational.
This completes the proof. O]

4. Two Remarks

The irrationality statement in Theorem 1 is a special case of the following observa-
tion.

Theorem 2. Let (a,)52, be an unbounded sequence of positive integers such that
0<ap,—an_1<s—1 foralln>2 Ifa, =o(n), then, for every integer s > 2,
the real number > >~ | an/s™ is irrational.

Proof. Let €1 = a; and let ¢, = ap,—an_1 forn > 2. Thene,, > 0and a, = ZLI &
for all n > 2.

Suppose there exist positive integers ¢ and ng such that a4 —a, > 1 for all
n > ng. It follows that for every positive integer k we have

k

Apg+ke = Ang + § (an0+ic - anoJr(ifl)c) 2 Any + k
=1

and so
0= lim & — jjy rotke
n—oo N k—oo ng + kc
a k

> lim inf ng + 8 > liminf ———
k—oo ng + ke k—oo ng + ke
1

=->0
c

which is absurd. Therefore, for every positive integer ¢ there exist infinitely many
positive integers n such that

n—+c
Z € = Ontc—an =10
i=n—+1
and sog; =0 fori =n+1,...,n+c. Thus, the sequence (g;)$2, contains arbitrarily

o0

long finite sequences of zeros. Because the sequence (a,,)22; is unbounded, it is not
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eventually constant, and so (g;)$2; is not eventually zero. It follows that (g;)5°, is
not eventually periodic. We have

I
M8
[
Ing
%=

Because (g;)32; is the sequence of “decimal digits to base s” of Y2 e;s7% and
because (g;)$2, is not eventually periodic, it follows that Y | a,s™™ is irrational.
(]

We define the function g,(j) (n) as the cardinality of the largest subset of {1,2,...,n}
that contains no geometric progression of length k£ with common ratio s. Recall that
B, ={be{1,2,...,n}: s does not divide b}.

Theorem 3. Let s > 2 and k > 3 be integers, and let Y* be the set of all integers
in{1,...,n} of the form bs®*~1 with b € B,, and ¢ € N. Then X* = {1,...,n}\Y*
contains no k-term geometric progression with common ratio s, and

3 (n) = X7 (6)
Moreover,
~(s) k_
i e (M) _ ¥ ‘
n—oo N st —1

Proof. Every k-term geometric progression of positive integers with common ratio
s is of the form {bs*T*:i=0,1,...,k— 1} for some b € B,, and v € Ny, and so the
set of exponents of s is a complete system of residues modulo k, hence contains an
integer congruent to £ — 1 modulo k. It follows that the set

X*={bs?* " e{l,....,n} : b€ Bp,qgeN, and i € {2,3,...,k}} (7)

contains no k-term geometric progression with common ratio s.

Let X be any subset of {1,...,n} that contains no k-term geometric progression
with common ratio s. We shall prove that | Xy| < |X*|. For each b € B,,, the set
X, does not contain the geometric progression {bs*~% : 4 = 1,2,... k}. It follows
that the set

Xi=(XoU{bs"":i=2,3,...,k})\ {bs" ' : b€ B,}

also contains no k-term geometric progression with common ratio s. Moreover,
| X1] = [ Xol.
For ¢ € N, let X, be a subset of {1,...,n} such that
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(i) X, contains no k-term geometric progression with common ratio s,
(i)
q o
U {psi=23,. .k} C X,
q'=1
(iii)
{bsq/k*1 ¢ = 1,...,q} nx,=0.
If bs(aT D=1 > p et
Xgy1 = (Xq U {bs(q+1)k—i 1=2,3,.. Jg}) Nn{L,...,n}.
If bs(atDr—1 < et
Xgy1 = (Xq U {bs(qul)kJ 11=2,3,..., k}) \ {bs(q+1)k71},

In both cases, the set X4, contains no k-term geometric progression with common
ratio s, and |X,41] > |X,|. Continuing inductively, we obtain the set X*(b) C
{1,2,...,n} such that

(i) X*(b) contains no k-term geometric progression with common ratio s,

(i) n’ € X*(b) if n’ € {1,2,...,n} and n' = bs?*~* for some ¢ € N and i €
{2,3,...,k},

(iii) bs?*—1 ¢ X*(b) for all ¢ € N,
(iv) [Xo| < [X*(b)]-

Tterating this construction with Xo = X*(b) and b € B, \ {b}, we obtain the set
X* defined by (7). The inequality | Xo| < |X*| implies (6).
We shall estimate the cardinality of the set

V*={1,2,...,n}\ X* = {bs? 1 € {1,....,n}: b€ B, and g € N}.

If bs?%~1 € Y* and n > s, then

1
q< % (log,n —log, b+ 1) < log, n.
For ¢ < log, n, we have bs?*~1 € {1,... ,n} if s does not divide b and
n
0<b< =

By Lemma 3, the number of such b is
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s s9k—1 54k
and so
[log, m]
dq_ N~ (s=Dn
vil= Y S+ Oflog,m)
qg=1
=1 > 1
q=1 q=[log, n]+1
~n(s—1) 1
T <1 ~ slioe. n]k) +O(log, n).
Therefore v . . |
* 5 — 0g,n
= O|— o ——
n o1 (nk>+ ( n )
and
g I
n n
s—1 1 log, n
=1- oO— o —=—
o) o (M)
sk —s
Tsh1 +o(n)
This completes the proof. O

5. Open Problems

1. Let k and s be integers with £ > 3 and s > 2. Is the number

lim 9t (n) — (s 1) i <1)min(rk1(m))

n—00 n S

m=1
transcendental?

2. Let up, = min (r;,'(m)) for m € N. Prove that the sequence (u,,)_; is not
eventually periodic without using Szemerédi’s theorem.

3. Let s and s’ be integers with 2 < s < s’. Is it true that g,(f/)(n) < g,(cs)(n) for
all n € N and that g,(f )(n) < g,(cs)(n) for all sufficiently large integers n?



INTEGERS: 14 (2014) 11

4. Let S be a finite set of integers such that s > 2 for all s € §. For k > 3,

let g,(cs) (n) denote the cardinality of the largest subset of the set {1,2,...,n}
that contains no geometric progression of length & whose common ratio is a
power of s for some s € S. Does

(S
lim 9 ) (")
n—oo n

exist? If so, can this limit be expressed by an infinite series analogous to (5)?
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