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Abstract
Let s and k be integers with s � 2 and k � 3 . Let g(s)

k (n) denote the cardinality of
the largest subset of the set {1, 2, . . . , n} that contains no geometric progression of
length k whose common ratio is a power of s. Let rk(`) denote the cardinality of the
largest subset of the set {0, 1, 2, . . . , `� 1} that contains no arithmetric progression
of length k. It is proved that the limit

lim
n!1

g(s)
k (n)

n
= (s� 1)

1X
m=1

✓
1
s

◆min(r�1
k (m))

=
(s� 1)2

s

1X
`=1

rk(`)
s`

.

exists and is an irrational number.

1. Maximal Subsets Without Geometric Progressions

Let N and N0 denote the sets of positive integers and nonnegative integers, respec-
tively. For every real number x, the integer part of x, denoted [x], is the unique
integer n such that n  x < n + 1.

Let s � 2 be an integer. Every positive integer a can be written uniquely in the
form

a = bsv

where b is a positive integer not divisible by s and v is a nonnegative integer. If G
is a finite geometric progression of length k whose first term is the positive integer
a and whose common ratio is a positive integral power of s, say, sd with d 2 N,
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then
G = {a

�
sd
�j

: j = 0, 1, . . . , k � 1}.

Writing a in the form a = bsv with b not a multiple of s, we have

G = {bsv+dj : j = 0, 1, . . . , k � 1} ✓ {bsi : i 2 N0} (1)

and so the set of exponents of s in the finite geometric progression G is the finite
arithmetic progression {v + dj : j = 0, 1, . . . , k � 1}. Conversely, if a, d 2 N and
{v1 + dj : j = 0, 1, . . . , k � 1} is a finite arithmetic progression of k nonnegative
integers, then {asv1+dj : j = 0, 1, . . . , k � 1} is a geometric progression of length k.
Writing a = bsv0 with v0 2 N0 and b not divisible by s, we obtain {asv1+dj : j =
0, 1, . . . , k � 1} = {bsv+dj : j = 0, 1, . . . , k � 1}, where v = v0 + v1.

Let ` and k be positive integers with k � 3. Let rk(`) denote the cardinality of the
largest subset of the set {0, 1, 2, . . . , `�1} that contains no arithmetic progression of
length k. Because the geometric progression (2i)1i=0 contains no 3-term arithmetic
progression, it follows that

lim
`!1

rk(`) =1. (2)

Note that rk(`) = ` for ` = 1, . . . , k � 1, that rk(k) = k � 1, and that, for every
` 2 N, there exists "` 2 {0, 1} such that

rk(` + 1) = rk(`) + "`. (3)

Equivalently,
0  rk(` + 1)� rk(`)  1. (4)

It follows from (2) and (4) that the function rk : N! N is increasing and surjective.
This implies that, for every positive integer m, the set

r�1
k (m) = {` 2 N : rk(`) = m}

is a nonempty set of consecutive integers. We define

um = min
�
r�1
k (m)

�
.

Then (um)1m=1 is a strictly increasing sequence of positive integers.

Lemma 1. Let k � 3 and let um = min
�
r�1
k (m)

�
for m 2 N. Then

lim sup
m!1

(um+1 � um) =1.

Proof. We use Szemerédi’s theorem, which states that rk(`) = o(`), to prove that
the increasing sequence (um)1m=1 has unbounded gaps.
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Note that u1 = 1. If lim supm!1(um+1 � um) < 1, then there is an integer
c � 2 such that um+1 � um < c for all m 2 N. It follows that

max
�
r�1
k (m)

�
+ 1 = min

�
r�1
k (m + 1)

�
= um+1

=
mX

i=1

(ui+1 � ui) + u1

< cm + 1.

Thus, max
�
r�1
k (m)

�
< cm and so rk(cm) > m. Equivalently,

rk(cm)
cm

>
1
c

> 0

for all m 2 N. This contradicts Szemerédi’s theorem, and completes the proof.

For k � 3, let gk(n) denote the cardinality of the largest subset of the set
{1, 2, . . . , n} that contains no geometric progression of length k. This function,
introduced by Rankin [4], has been investigated by M. Beiglböck, V. Bergelson,
N. Hindman, and D. Strauss [1], by Brown and Gordon [2], and by Riddell [5]. The
best upper bound for the function gk(n) is due to Nathanson and O’Bryant [3].

For s � 2 and k � 3, let g(s)
k (n) denote the cardinality of the largest subset of the

set {1, 2, . . . , n} that contains no geometric progression of length k whose common
ratio is a power of s. The goal of this paper is to prove that the limit

lim
n!1

g(s)
k (n)

n
= (s� 1)

1X
m=1

✓
1
s

◆min(r�1
k (m))

=
(s� 1)2

s

1X
`=1

rk(`)
s`

(5)

exists and converges to an irrational number.

2. Maximal Geometric Progression-Free Sets

Lemma 2. Let k, s, and n be positive integers with k � 3 and s � 2, and let

Bn = {b 2 {1, 2, . . . , n} : s does not divide b}.

Then
g(s)

k (n) =
X
b2Bn

rk

⇣
1 +

h
logs

⇣n

b

⌘i⌘
.
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Proof. Let b 2 Bn. For i 2 N0, we have bsi  n if and only if 0  i  logs(n/b).
We define

T (b) = {t 2 {1, 2, . . . , n} : t = bsi for some i 2 N0}

=
n
bsi : i = 0, 1, . . . ,

h
logs

⇣n

b

⌘io
.

Then b 2 T (b) and
{1, 2, . . . , n} =

[
b2Bn

T (b)

is a partition of {1, 2, . . . , n} into pairwise disjoint nonempty subsets.
If the set {1, 2, . . . , n} contains a finite geometric progression of length k whose

common ratio is a power of s, then, by (1), this geometric progression is a subset of
T (b) for some b 2 Bn, and the set of exponents of s is a finite arithmetic progression
of length k contained in the set of consecutive integers {0, 1, . . . , [logs(n/b)]}. It
follows that the largest cardinality of a subset of T (b) that contains no k-term
geometric progression whose common ratio is a power of s is equal to the largest
cardinality of a subset of {0, 1, . . . , [logs(n/b)]} that contains no k-term arithmetic
progression. This number is

rk

⇣
1 +

h
logs

⇣n

b

⌘i⌘
.

If An is a subset of {1, 2, . . . , n} of maximum cardinality that contains no k-term
geometric progression whose common ratio is a power of s, then

|An \ T (b)| = rk

⇣
1 +

h
logs

⇣n

b

⌘i⌘
.

Because A =
S

b2Bn
T (b) is a partition of {1, . . . , n}, it follows that

|An| =
X
b2Bn

|An \ T (b)| =
X
b2Bn

rk

⇣
1 +

h
logs

⇣n

b

⌘i⌘
.

This completes the proof.

3. Construction of an Irrational Number

Lemma 3. Let s be an integer with s � 2. Let x and y be real numbers with x < y.
The number of integers n such that x < n  y and s does not divide n is

✓
s� 1

s

◆
(y � x) + O(1).

Proof. This is a straightforward calculation.
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Theorem 1. Let k and s be integers with k � 3 and s � 2. The limit

lim
n!1

g(s)
k (n)

n
=

(s� 1)2

s

1X
`=1

rk(`)
s`

= (s� 1)
1X

m=1

✓
1
s

◆min(r�1
k (m))

exists and converges to an irrational number.

Proof. For every positive integer b we have

1 + [logs(n/b)] = `

if and only if
n

s`
< b  sn

s`
.

By Lemma 3, the number of integers in this interval that are also in Bn, that is, are
not divisible by s, is✓

s� 1
s

◆
(s� 1)n

s`
+ O(1) =

n(s� 1)2

s`+1
+ O(1).

Let n � s. Because 1 2 Bn, we have

L(n) = max {1 + [logs(n/b)] : b 2 Bn} = 1 + [logs n]  2 logs n,

Also, if `  L(n), then rk(`)  `  L(n). By Lemma 2,

g(s)
k (n) =

X
b2Bn

rk (1 + [logs(n/b)])

=
L(n)X
`=1

rk (`)⇥ |{b 2 Bn : ` = 1 + [logs(n/b)]}|

=
L(n)X
`=1

rk (`)
✓

n(s� 1)2

s`+1
+ O(1)

◆

=
n(s� 1)2

s

L(n)X
`=1

rk(`)
s`

+ O

0
@L(n)X

`=1

rk(`)

1
A

=
n(s� 1)2

s

L(n)X
`=1

rk(`)
s`

+ O
⇣
L(n)2

⌘

= n

0
@(s� 1)2

s

L(n)X
`=1

rk(`)
s`

+ O

✓
log2

s n

n

◆1A

= n

0
@(s� 1)2

s

L(n)X
`=1

rk(`)
s`

+ o(1)

1
A .
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Because (L(n))1n=1 is an increasing sequence and limn!1 L(n) =1, we have

lim
n!1

g(s)
k (n)

n
= lim

n!1

0
@(s� 1)2

s

L(n)X
`=1

rk(`)
s`

+ o(1)

1
A =

(s� 1)2

s

1X
`=1

rk(`)
s`

.

Let M(n) = rk(L(n)) and let um = min
�
r�1
k (m)

�
and Um = max

�
r�1
k (m)

�
. Then

M(n)  L(n) and Um + 1 = um+1 for m = 1, . . . ,M(n). We have

L(n)X
`=1

rk(`)
s`

=
M(n)�1X

m=1

m
X

`2r�1
k (m)

1
s`

+ M(n)
X

`2r�1
k (M(n))\{1,...,L(n)}

1
s`

=
M(n)�1X

m=1

m
UmX

`=um

1
s`

+ M(n)
L(n)X

`=uM(n)

1
s`

=
s

s� 1

M(n)�1X
m=1

m

 ✓
1
s

◆um

�
✓

1
s

◆Um+1
!

+
s

s� 1
M(n)

 ✓
1
s

◆uM(n)

�
✓

1
s

◆L(n)+1
!

=
s

s� 1

M(n)�1X
m=1

m

✓✓
1
s

◆um

�
✓

1
s

◆um+1◆

+
s

s� 1
M(n)

 ✓
1
s

◆uM(n)

�
✓

1
s

◆L(n)+1
!

=
s

s� 1

0
@M(n)X

m=1

m

✓
1
s

◆um

�
M(n)X
m=2

(m� 1)
✓

1
s

◆um

�M(n)
✓

1
s

◆L(n)+1
1
A

=
s

s� 1

M(n)X
m=1

1
sum

� 1
s� 1

✓
M(n)
sL(n)

◆

=
s

s� 1

M(n)X
m=1

1
sum

+ o(1).

Therefore,

g(s)
k (n)

n
=

(s� 1)2

s

0
@ s

s� 1

M(n)X
m=1

✓
1
s

◆um

+ o(1)

1
A+ o(1)

= (s� 1)
M(n)X
m=1

✓
1
s

◆um

+ o(1)
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and so

lim
n!1

g(s)
k (n)

n
=

1X
m=1

s� 1
sum

.

Note that u1 = 1. The infinite series converges to a real number ✓s 2 (1� 1/s, 1),
and the “decimal digits to base s” of ✓s are 0 or s � 1. The number ✓s is rational
if and only if these digits are eventually periodic, but Lemma 1 implies that there
are unbounded gaps between successive digits equal to 1. Therefore, ✓ is irrational.
This completes the proof.

4. Two Remarks

The irrationality statement in Theorem 1 is a special case of the following observa-
tion.

Theorem 2. Let (an)1n=1 be an unbounded sequence of positive integers such that
0  an � an�1  s � 1 for all n � 2. If an = o(n), then, for every integer s � 2,
the real number

P1
n=1 an/sn is irrational.

Proof. Let "1 = a1 and let "n = an�an�1 for n � 2. Then "n � 0 and an =
Pn

i=1 "i

for all n � 2.
Suppose there exist positive integers c and n0 such that an+c � an � 1 for all

n � n0. It follows that for every positive integer k we have

an0+kc = an0 +
kX

i=1

(an0+ic � an0+(i�1)c) � an0 + k

and so

0 = lim
n!1

an

n
= lim

k!1

an0+kc

n0 + kc

� lim inf
k!1

an0 + k

n0 + kc
� lim inf

k!1

k

n0 + kc

=
1
c

> 0

which is absurd. Therefore, for every positive integer c there exist infinitely many
positive integers n such that

n+cX
i=n+1

"i = an+c � an = 0

and so "i = 0 for i = n+1, . . . , n+c. Thus, the sequence ("i)1i=1 contains arbitrarily
long finite sequences of zeros. Because the sequence (an)1n=1 is unbounded, it is not
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eventually constant, and so ("i)1i=1 is not eventually zero. It follows that ("i)1i=1 is
not eventually periodic. We have

1X
n=1

an

sn
=

1X
n=1

1
sn

nX
i=1

"i

=
1X

i=1

"i

1X
n=i

1
sn

=
s

s� 1

1X
i=1

"i

si
.

Because ("i)1i=1 is the sequence of “decimal digits to base s” of
P1

i=1 "is�i and
because ("i)1i=1 is not eventually periodic, it follows that

P1
n=1 ans�n is irrational.

We define the function ĝ(s)
k (n) as the cardinality of the largest subset of {1, 2, . . . , n}

that contains no geometric progression of length k with common ratio s. Recall that
Bn = {b 2 {1, 2, . . . , n} : s does not divide b}.
Theorem 3. Let s � 2 and k � 3 be integers, and let Y ⇤ be the set of all integers
in {1, . . . , n} of the form bsqk�1 with b 2 Bn and q 2 N. Then X⇤ = {1, . . . , n}\Y ⇤

contains no k-term geometric progression with common ratio s, and

ĝ(s)
k (n) = |X⇤| . (6)

Moreover,

lim
n!1

ĝ(s)
k (n)

n
=

sk � s

sk � 1
.

Proof. Every k-term geometric progression of positive integers with common ratio
s is of the form {bsv+i : i = 0, 1, . . . , k� 1} for some b 2 Bn and v 2 N0, and so the
set of exponents of s is a complete system of residues modulo k, hence contains an
integer congruent to k � 1 modulo k. It follows that the set

X⇤ =
�
bsqk�i 2 {1, . . . , n} : b 2 Bn, q 2 N, and i 2 {2, 3, . . . , k}

 
(7)

contains no k-term geometric progression with common ratio s.
Let X0 be any subset of {1, . . . , n} that contains no k-term geometric progression

with common ratio s. We shall prove that |X0|  |X⇤|. For each b 2 Bn, the set
X0 does not contain the geometric progression {bsk�i : i = 1, 2, . . . , k}. It follows
that the set

X1 =
�
X0 [ {bsk�i : i = 2, 3, . . . , k}

�
\ {bsk�1 : b 2 Bn}

also contains no k-term geometric progression with common ratio s. Moreover,
|X1| � |X0|.

For q 2 N, let Xq be a subset of {1, . . . , n} such that
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(i) Xq contains no k-term geometric progression with common ratio s,

(ii)
q[

q0=1

n
bsq0k�i : i = 2, 3, . . . , k

o
✓ Xq

(iii) n
bsq0k�1 : q0 = 1, . . . , q

o
\Xq = ;.

If bs(q+1)k�1 > n, let

Xq+1 =
⇣
Xq [

n
bs(q+1)k�i : i = 2, 3, . . . , k

o⌘
\ {1, . . . , n}.

If bs(q+1)k�1  n, let

Xq+1 =
⇣
Xq [

n
bs(q+1)k�i : i = 2, 3, . . . , k

o⌘
\ {bs(q+1)k�1}.

In both cases, the set Xq+1 contains no k-term geometric progression with common
ratio s, and |Xq+1| � |Xq|. Continuing inductively, we obtain the set X⇤(b) ✓
{1, 2, . . . , n} such that

(i) X⇤(b) contains no k-term geometric progression with common ratio s,

(ii) n0 2 X⇤(b) if n0 2 {1, 2, . . . , n} and n0 = bsqk�i for some q 2 N and i 2
{2, 3, . . . , k},

(iii) bsqk�1 /2 X⇤(b) for all q 2 N,

(iv) |X0|  |X⇤(b)|.

Iterating this construction with X0 = X⇤(b) and b0 2 Bn \ {b}, we obtain the set
X⇤ defined by (7). The inequality |X0|  |X⇤| implies (6).

We shall estimate the cardinality of the set

Y ⇤ = {1, 2, . . . , n} \ X⇤ =
�
bsqk�1 2 {1, . . . , n} : b 2 Bn and q 2 N

 
.

If bsqk�1 2 Y ⇤ and n � s, then

q  1
k

(logs n� logs b + 1)  logs n.

For q  logs n, we have bsqk�1 2 {1, . . . , n} if s does not divide b and

0 < b  n

sqk�1
.

By Lemma 3, the number of such b is
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✓
s� 1

s

◆
n

sqk�1
+ O(1) =

(s� 1)n
sqk

+ O(1)

and so

|Y ⇤| =
[logs n]X

q=1

(s� 1)n
sqk

+ O(logs n)

= n(s� 1)

0
@ 1X

q=1

1
sqk

�
1X

q=[logs n]+1

1
sqk

1
A+ O(logs n)

=
n(s� 1)
sk � 1

✓
1� 1

s[logs n]k

◆
+ O(logs n).

Therefore
|Y ⇤|
n

=
s� 1
sk � 1

+ O

✓
1
nk

◆
+ O

✓
logs n

n

◆

and

ĝ(s)
k (n)

n
= 1� |Y ⇤|

n

= 1� s� 1
sk � 1

+ O

✓
1
nk

◆
+ O

✓
logs n

n

◆

=
sk � s

sk � 1
+ o(n).

This completes the proof.

5. Open Problems

1. Let k and s be integers with k � 3 and s � 2. Is the number

lim
n!1

g(s)
k (n)

n
= (s� 1)

1X
m=1

✓
1
s

◆min(r�1
k (m))

transcendental?

2. Let um = min
�
r�1
k (m)

�
for m 2 N. Prove that the sequence (um)1m=1 is not

eventually periodic without using Szemerédi’s theorem.

3. Let s and s0 be integers with 2  s < s0. Is it true that g(s0)
k (n)  g(s)

k (n) for
all n 2 N and that g(s0)

k (n) < g(s)
k (n) for all su�ciently large integers n?
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4. Let S be a finite set of integers such that s � 2 for all s 2 S. For k � 3,
let g(S)

k (n) denote the cardinality of the largest subset of the set {1, 2, . . . , n}
that contains no geometric progression of length k whose common ratio is a
power of s for some s 2 S. Does

lim
n!1

g(S)
k (n)

n

exist? If so, can this limit be expressed by an infinite series analogous to (5)?
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