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Abstract
In this paper we generalize completely a class of multinomial-Fibonacci identities.
They are given in a variety of forms, including one associated with the Zeckendorf
representation of an integer as the sum of non-consecutive Fibonacci numbers, which
may be regarded as the canonical form for these identities. Our proofs are obtained
via both combinatorial and algebraic methods.

1. Introduction

There are a number of well-known identities involving sums of products of binomial
coe�cients and Fibonacci numbers, the latter of which may be defined by way of
the recurrence relation Fn = Fn�1 + Fn�2 for n � 2, where F0 = 0 and F1 = 1
[4, 5]. For example,
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may be found in [1, 6, 7, 9, 11], [1, 8, 11] and [1, 11], respectively. In addition, the
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appear in [11], whilst
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which is valid for q � 3, can be seen in [1].
We show here how identities of these forms may be generalized completely to

give an infinite family of multinomial-Fibonacci identities. Both combinatorial and
algebraic proofs of our results are provided. Of further interest is the way that
this work gives rise to a natural application of Zeckendorf’s theorem. Finally, we
consider briefly special cases of the theorem that take on a particularly simple form.

2. Preliminaries

In this section we set up some of the mathematical machinery that will allow us
to provide combinatorial proofs of the main theorems in this paper. A first point
to note is that the definition of the Fibonacci numbers may in fact be extended to
negative indices, in which case it is straightforward to show that F�n = (�1)n+1Fn

for all n 2 N. Of particular relevance to this paper, F�1 = 1 and F�2 = �1.
Next, it is well-known [1, 2] that the number of ways of tiling a 1 ⇥ n board

using 1 ⇥ 1 squares and 1 ⇥ 2 dominoes is Fn+1. For ease of notation, we use s
and d to denote a square and a domino, respectively. Let T be the set of finite
words in the alphabet {s, d}. Then there is an obvious one-to-one correspondence
between the elements of T and those of the set of finite tilings. For example,
the word ssdsddd comprising 7 letters corresponds to a particular tiling of length
11. In keeping, however, with some previous combinatorial proofs associated with
Fibonacci numbers [1, 2, 3, 12], we take the liberty throughout this paper of calling
both s and d “tiles”, and words comprising them “tilings”. Furthermore, in order
to avoid confusion, “length” is to be interpreted in the sense of tilings, so that both
ssdsddd and its corresponding tiling are said to have length 11.

Definition 1. A tiling T 2 T is, for k � 1, a k-block if, and only if, it is either a
tiling of length k or a tiling of length k + 1 that ends in a domino. For k = 0 and
k = �1, a k-block is defined to be the tiling of length 0, which we denote by t0.

Note that if, from a conceptual point of view, we regard a (�1)-block as a tiling
of length 0 that ends in a domino, it is straightforward to show from Definition 1
that, for k � �1, the total number of possible k-blocks is Fk+2, of which Fk+1 have
length k and Fk have length k+1 but end in a domino. The significance of 0-blocks
and (�1)-blocks is discussed further at various points in the current section.
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Definition 2. We let Bk ✓ T denote the set of k-blocks. Note, from the comments
above, that |Bk| = Fk+1 + Fk = Fk+2. In particular, |B0| = F2 = 1 and |B�1| =
F1 = 1, with the sets B0 and B�1 each containing just t0.

Definition 3. Let K = (k1, k2, . . . , km) denote a fixed, finite sequence of integers
ki such that ki � �1, 1  i  m. Given some T 2 T of su�cient length, we define
both the K-block decomposition of T and its tail as follows: Proceed from the left
of T one tile at a time until the first instance at which the length of the tiling thus
far is at least k1; this gives a k1-block, which we take to be the first block in the
decomposition. Then, starting afresh from the next tile, proceed one tile at a time
until the first point at which the length of the tiling thus far is at least k2, giving a
k2-block; the second block in the decomposition. This process continues until all m
blocks have been constructed. The tail is what remains of T after the mth block,
and the K-block decomposition of T comprises the m blocks and the tail.

By way of an example, the (�1, 3, 5, 2, 0, 5)-block decomposition of

T = dsdddsdssdsdsdds

is given by
t0 | ds | ddd | sd | t0 | ssds | dsdds,

where the tail is dsdds.
Thus far we have been regarding the square tiles as indistinguishable, and sim-

ilarly for the dominoes. We call tilings arising from such squares and dominoes
uncolored. Let us now suppose that each tile may be assigned a color. Consider the
set

Ck = {si : 1  i  Fk+1} [ {di : 1  i  Fk}
comprising Fk+1 distinctly-colored squares and Fk distinctly-colored dominoes. Note
that it is not necessary to assume that si and dj have the same color whenever i = j.
Indeed, for the arguments used in this paper, it makes no di↵erence as to whether or
not the set of colors used for the squares coincides with that used for the dominoes.
From the definitions of Ck and Bk we know that there exists at least one bijection bk

from Ck to Bk such that colored squares and dominoes get mapped to the k-blocks
of lengths k and k + 1, respectively. For example, we see below a possible bijection
for the case k = 4:

s1  ! ssss
s2  ! ssd
s3  ! sds
s4  ! dss
s5  ! dd
d1  ! sssd
d2  ! sdd
d3  ! dsd
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Denoting this bijection by b4 : C4 7! B4, we have b4 (s1) = ssss, b4 (d1) = sssd, and
so on.

Note in the above example, that when using b4 to map a colored square in C4 to
an uncolored tiling in B4, the tiling increases in length by 3. The same increase in
length occurs when b4 is used to map a colored domino C4 to a tiling in B4. It may
be seen in general that when using some bijection bk to map the colored squares
and dominoes to the k-blocks of lengths k and k + 1, respectively, the increase in
length is k � 1 per tile.

It is worth mentioning two particular cases in this regard. First, since C0 = {s1},
the mapping b0 simply maps a colored square to t0, noting that the increase in length
is 0 � 1 = �1 so that we actually lose length 1 here. Second, since F�1 = 1, it
follows that C�1 = {d1}, from which we see that the mapping b�1 simply maps a
colored domino to t0. The increase in length is �1 � 1 = �2, so we in fact lose
length 2 in this case.

3. A Combinatorial Proof of a General Identity

We now state and prove our first result. It generalizes completely all of the identities
given in the Introduction.

Theorem 1. We have
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i=1

Fxi�2 � 1,

where n � 0, r � 1, ai � 0 for 0  i  r and xi � 0 for 1  i  r.

Proof. Consider tiling a 1⇥ (2n� 1) board with 1⇥ 1 squares and 1⇥ 2 dominoes
such that each of the leftmost n tiles is colored in one of

c =
rX

i=1

Fxi

colors. The expression on the right-hand side of (7) enumerates all possible such
tilings. In order to establish the truth of the theorem, we will construct a bijection
between the set of these partially-colored tilings of length 2n�1 and a set of tilings
that, as will be seen in due course, are counted by the expression on the left-hand
side of (7).
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First, the complete set of tile types {s1, . . . , sc, d1, . . . , dc} is partitioned into
disjoint sets Ai for 0  i  r, as follows. We start by letting A0 = {d1, . . . , d�0}
where

�0 =
rX

i=1

Fxi�2.

Then, for 1  i  r, we let Ai =
�
s↵i�1+1, . . . , s↵i , d�i�1+1, . . . , d�i

 
, where ↵0 = 0,

↵i = ↵i�1 + Fxi and �i = �i�1 + Fxi�1. Note that this is indeed a partitioning of
the tile types, since

↵r =
rX

i=1

Fxi = c,

and

�r =
rX

i=1

Fxi�2 +
rX

i=1

Fxi�1 =
rX

i=1

Fxi = c.

For 1  i  r, the structure of each set Ai may be regarded as isomorphic to that
of Cxi�1. It is also worth making the point here that Ai is equal to the singleton
{s↵i} if, and only if, xi = 1. Similarly, Ai is equal to the singleton {d�i} if, and
only if, xi = 0.

Now let (a0, a1, . . . , ar) be a fixed sequence of r + 1 non-negative integers such
that

rX
i=0

ai = n.

We consider words of length n in the alphabet {A0, . . . , Ar} for which Ai appears
exactly ai times, 0  i  r. Suppose that A = Aq1Aq2 . . . Aqn is one such word
of length n, noting that for each i satisfying 0  i  r, it must be the case that
exactly ai terms of the sequence (q1, q2, . . . , qn) are equal to i.

Next, let T be an uncolored tiling of length

rX
i=1

aixi � 1.

We obtain the K-block decomposition of T given by

K = (xq1 � 1, xq2 � 1, . . . , xqn � 1) ,

where x0 is defined to be 0. As mentioned in Section 2, it needs to be borne in mind
that some of the resultant blocks may be t0, namely those for which either xqj = 0
or xqj = 1. Let U denote the tail of this K-block decomposition of T , so that T \U
represents its pre-tail part.

We know, for each k � �1, that there exists a bijection bk from Ck to Bk such
that colored squares and dominoes get mapped to the k-blocks of lengths k and
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k + 1, respectively. Thus, since, for 1  i  r, the structure of Ai may be regarded
as isomorphic to that of Cxi�1, there exists a bijection bi : Bxi�1 7! Ai for which
the (xi � 1)-blocks of lengths xi � 1 and xi in T \U get mapped to colored squares
and colored dominoes, respectively.

Note, however, that A0 is not isomorphic to Cx0�1 = C�1, and hence to B�1,
when �0 > 1. Instead, we may define b0 to be a function from B�1 to A0, mapping
t0 to one of the �0 elements of A0. We thus have �0 possible choices for the function
b0 for each of the a0 appearances of a (�1)-block in T \U .

By way of the bijections bi, 1  i  r, and the possible choices of functions b0,
the pair (A, T ) induces a total of (�0)

a0 distinct mappings from T \U to the set of
colored tilings of length n using elements from the set {s1, . . . , sc, d1, . . . , dc}.

Next, suppose that V denotes the uncolored section that remains of the partially-
colored tiling after the color and type of each of the leftmost n tiles have been
specified via one of the mappings induced by the pair (A, T ). We will show that U
and V have the same length. To this end, let k be the number of squares amongst
the first n tiles of the partially-colored tiling, noting that k must satisfy 1  k  n.
Then, remembering that the partially-colored tiling has length 2n � 1, the length
of V is thus

2n� 1� (k + 2(n� k)) = k � 1.

On the other hand, the length of T \U is given by

nX
i=1

(xqi � 1) =
rX

j=0

aj (xj � 1) + (n� k)

=
rX

j=0

ajxj �
rX

j=0

aj + (n� k)

=
rX

j=0

ajxj � n + (n� k)

=
rX

j=0

ajxj � 1� (k � 1),

from which we see that U has length k� 1. We are thus able to extend our induced
mappings to include the identity mapping from the tail of T to the uncolored section
of the partially-colored tiling.

For any fixed sequence (a0, a1, . . . , ar) of r + 1 non-negative integers satisfyingPr
i=0 ai = n, the number of words of length n in the alphabet {A0, . . . , Ar} for

which Ai appears exactly ai times is given by the multinomial coe�cient
✓

n

a0, . . . , ar

◆
.
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Furthermore, the number of possible uncolored tilings of length
Pr

i=1 aixi � 1 is
equal to F⌃r

i=1aixi . Thus, for a particular sequence (a0, a1, . . . , ar), there are
✓

n
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◆
F⌃r
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possible pairs (A, T ), and hence
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possible mappings. On summing over all possible sequences (a0, a1, . . . , ar) of r + 1
non-negative integers such that

Pr
i=0 ai = n, the result follows.

A specialization of Theorem 1 leads to identity (4), as we now show. On setting
r = 1 and x1 = 5 in Theorem 1, (7) becomes

X
a0+a1=n

✓
n

a0, a1

◆
(F5�2)

a0 F5a1 = (F5)
n F2n.

Then, on noting that F5�2 = F3 = 2 and F5 = 5, result (4) follows. Similarly, (5)
is obtained by setting r = 1 and x1 = 6. Identity (6), which is a generalization of
both (4) and (5), arises when we set r = 1 and x1 = q.

Further specializations of Theorem 1 give rise to identities that would appear to
be new. For example, with r = n and xi = i for i = 1, 2, . . . , n, we obtain

X
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(Fn)a0 F⌃n

i=1iai = (Fn+2 � 1)n F2n,

where use has been made of the identity F1 + F2 + · · · + Fn = Fn+2 � 1 [4].
In the statement and proof of Theorem 1, it was assumed that �0 � 1. However,

it is worth mentioning the special case in which x1 = x2 = · · · = xr = 2, giving
�0 = 0. In this situation the summands on the left-hand side of (7) are each equal
to 0 unless a0 = 0, in which case we define 

rX
i=1

Fxi�2

!a0

to be equal to 1. It may be seen then that this special case corresponds to the
following trivial identity,

X
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F2n = rnF2n,

which will also be discussed briefly at a later point in this paper.
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4. Accounting for Multiplicities

The terms Fxi given in the statement of Theorem 1 are not necessarily distinct.
It is, however, possible to account for any multiplicities explicitly. Suppose, for
example, the sum appearing on the right-hand side of (7) is given by

F7 + F3 + F4 + F3 + F7 + F7 + F7 + F9 + F7 + F12.

This may also be expressed as

2F3 + F4 + 5F7 + F9 + F12 =
5X

i=1

piFxi ,

where x1 = 3, x2 = 4, x3 = 7, x4 = 9, x5 = 12 and pi denotes the multiplicity of
Fxi in this sum. In this particular case, p1 = 2, p2 = 1, p3 = 5, p4 = 1, p5 = 1. We
now give a result, corresponding to Theorem 1, which does indeed incorporate this
potential multiplicity.

Theorem 2. We have
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piFxi�2

!a0  rY
i=1

pai
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F2n,

(8)
when

rX
i=1

piFxi�2 � 1,

where n � 0, r � 1, ai � 0 for 0  i  r, pi � 1 and xi � 0 for 1  i  r.

Proof. We provide merely an outline proof here, since most of the key ideas have
already been encapsulated in the proof of Theorem 1. A 1⇥ (2n� 1) board is tiled
with 1 ⇥ 1 squares and 1 ⇥ 2 dominoes such that each of the leftmost n tiles is
colored in one of

c =
rX

i=1

piFxi

colors. The expression on the right-hand side of (8) enumerates all possible such
tilings.

The complete set of tile types {s1, . . . , sc, d1, . . . , dc} is now partitioned into dis-
joint sets A0 and Ai,j for 1  i  r and 1  j  pi, as follows. We start by letting
A0 = {d1, . . . , d�0} where

�0 =
rX

i=1

piFxi�2.
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Then, with ↵0 = 0, ↵i = ↵i�1 + Fxi , �i = �i�1 + Fxi�1, 1  i  r, we set

A1,1 = {s1, . . . , s↵1 , d1, . . . , d�1} ,

A1,2 = {s↵1+1, . . . , s2↵1 , d�1+1, . . . , d2�1} ,

...
A1,p1 =

�
s(p1�1)↵1+1, . . . , sp1↵1 , d(p1�1)�1+1, . . . , dp1�1

 
,

and, in general,

Ai,j = {si,j(1), . . . , si,j (↵i) , di,j(1), . . . , di,j (�i)} ,

where

si,j(1) =
i�1X
k=1

pk↵k + (j � 1)↵i + 1,

si,j (↵i) =
i�1X
k=1

pk↵k + j↵i,

di,j(1) =
i�1X
k=1

pk�k + (j � 1)�i + 1,

di,j (�i) =
i�1X
k=1

pk�k + j�i.

Note that for any particular i such that 1  i  r, the structure of set Ai,j may be
regarded as isomorphic to that of Cxi�1 for each j satisfying 1  j  pi.

Once more we let (a0, a1, . . . , ar) be a fixed sequence of r+1 non-negative integers
such that

rX
i=0

ai = n.

Now, however, we consider words of length n in the alphabet {A0}[ {Ai,j : 1  i 
r, 1  j  pi} for which A0 appears exactly a0 times, and, for each i such that 1 
i  r, letters of the form Ai,j appear exactly ai times. Let A = Aq1,j1Aq2,j2 . . . Aqn,jn

be one such word. For each k such that 1  k  n, it is the case that if qk = i then
1  jk  pi.

We let T be an uncolored tiling of length
Pr

i=1 aixi � 1, with U denoting the
tail of the K-block decomposition of T , and, as in the proof of Theorem 1, K =
(xq1 � 1, xq2 � 1, . . . , xqn � 1). For each j satisfying 1  j  pi there exists a
bijection bi : Bxi�1 7! Ai,j for which the (xi � 1)-blocks of lengths xi � 1 and xi

in T \U get mapped to colored squares and colored dominoes, respectively. This
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gives pi possible choices for the function bi for each of the ai appearances of a
(xi � 1)-block in T \U , and thus

rY
i=1

pai
i

possible choices in total.
Since A0 is not isomorphic to B�1 when �0 > 1, we may in such cases define b0

to be a function from B�1 to A0, mapping t0, the tiling of zero length, to one of
the �0 elements of A0. This gives �0 possible choices for the function b0 for each of
the a0 appearances of a (�1)-block in T \U .

The pair (A, T ) therefore induces a total of
 

rX
i=1

piFxi�2

!a0  rY
i=1

pai
i

!

distinct mappings from T \U to the set of colored tilings of length n using elements
from the set {s1, . . . , sc, d1, . . . , dc}. The remainder of the proof is identical to the
final two paragraphs of that of Theorem 1.

5. An Algebraic Proof

For the sake of completeness, we now provide an algebraic proof of Theorem 2, and
begin by stating two simple lemmas.

Lemma 1. �m = �Fm + Fm�1, where the golden ratio � is given by

� =
1 +
p

5
2

.

Lemma 2. Let ↵ be irrational. Then a↵+ b = c↵+d for some a, b, c, d 2 Q if, and
only if, a = c and b = d.

Lemma 1 may be found in [9, 10], and is straightforward to prove by induction
using the Fibonacci recurrence relation and the fact that �2 = � + 1. Lemma 2 is
applicable to any irrational number ↵, although we specialize it to � here.
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First, in order to prove the theorem, we obtain
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i=1

pi�
xi +

rX
i=1

piFxi�2

!n

=

 
p1�

x1 + p2�
x2 + · · · + pr�

xr +

 
rX

i=1

piFxi�2

!!n

=
X

⌃r
i=0ai=n

✓
n

a0, . . . , ar

◆ 
rY

i=1

(pi�
xi)ai

! 
rX

i=1

piFxi�2

!a0

=
X

⌃r
i=0ai=n

✓
n

a0, . . . , ar

◆ 
rY

i=1

pi
ai

! 
rX

i=1

piFxi�2

!a0

�s

=
X

⌃r
i=0ai=n
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n

a0, . . . , ar

◆ 
rY

i=1

pi
ai

! 
rX

i=1

piFxi�2

!a0

(�Fs + Fs�1) ,

where s =
Pr

i=1 xiai and use has been made of Lemma 1 in the final step. It is also
the case that 

rX
i=1

pi�
xi +

rX
i=1

piFxi�2

!n

=

 
rX

i=1

pi (�Fxi + Fxi�1) +
rX

i=1

piFxi�2

!n

=

 
�

rX
i=1

piFxi +
rX

i=1

pi (Fxi�1 + Fxi�2)

!n

=

 
�

rX
i=1

piFxi +
rX

i=1

piFxi

!n

=

 
rX

i=1

piFxi

!n

(� + 1)n

=

 
rX

i=1

piFxi

!n

�2n

=

 
rX

i=1

piFxi

!n

(�F2n + F2n�1) ,

where Lemma 1 has been utilized once more. An application of Lemma 2 then
completes the proof of the theorem.
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6. The Zeckendorf Form

The expression
rX

i=1

piFxi

appearing on the right-hand side of (8) is a sum of Fibonacci numbers in which the
summands are not necessarily distinct. At the beginning of Section 4 we gave as an
example the sum

2F3 + F4 + 5F7 + F9 + F12,

which is equal to 250. This may alternatively be written as

4F3 + 3F4 + F7 + 4F10 or F2 + F4 + F7 + F11 + F12 or F2 + F4 + F7 + F13,

and there are clearly many other ways of expressing 250 as a sum of Fibonacci
numbers.

Indeed, as can be seen from the middle and right-most sums above, not only is it
possible to express 250 as a sum of Fibonacci numbers in more than one way, but it
is also possible to find several ways of representing it as a sum of distinct Fibonacci
numbers. This is the case in general. As will be demonstrated in the current section,
this leads to a natural application of a result known as Zeckendorf’s theorem, which
is concerned with the possibility of writing, subject to certain restrictions, each
positive integer as a unique sum of distinct Fibonacci numbers.

Zeckendorf’s theorem states that every m 2 N can be represented uniquely as the
sum of one or more distinct Fibonacci numbers in such a way that the sum does not
include any two consecutive Fibonacci numbers. Somewhat more formally, for any
m 2 N there exists a unique strictly-increasing finite sequence of positive integers of
length k 2 N, (y1, y2, . . . , yk) say, such that y1 � 2, yi � yi�1 + 2 for i = 2, 3, . . . , k,
and

m =
kX

i=1

Fyi .

Proofs of this theorem are given in [4, 13, 14]. Note that no Zeckendorf representa-
tion requires the use of F1. Clearly, if a Zeckendorf representation of m contains F2

then, on replacing F2 with F1, we would still have a representation for m that does
not include any consecutive Fibonacci numbers. This would, however, violate the
uniqueness of these representations. It is thus necessary to stipulate that F1 does
not appear in any Zeckendorf representation.

Continuing with our example, we see that F2 + F4 + F7 + F13 is the Zeckendorf
representation for 2F3 + F4 + 5F7 + F9 + F12. In particular, therefore, we have

rX
i=1

piFxi =
kX

i=1

Fyi ,
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where r = 5, x1 = 3, x2 = 4, x3 = 7, x4 = 9, x5 = 12, p1 = 2, p2 = 1, p3 = 5, p4 =
1, p5 = 1; and k = 4, y1 = 2, y2 = 4, y3 = 7, y4 = 13.

More generally, with
rX

i=1

piFxi =
kX

i=1

Fyi ,

for some k 2 N and (y1, y2, . . . , yk) such that y1 � 2, yi � yi�1+2 for i = 2, 3, . . . , k,
we may transform (8) to what might be regarded as the canonical form of the
identity, namely

 
kX

i=1

Fyi

!n

F2n =
X

⌃k
i=0ai=n

✓
n

a0, . . . , ak

◆ 
kX

i=1

Fyi�2

!a0

F⌃k
i=1yiai

.

7. ‘Powerless’ Forms

It is sometimes possible to express the left-hand sides of (7) and (8) in the particu-
larly simple form X

⌃r
i=0ai=n

✓
n

a0, . . . , ar

◆
F⌃r

i=1aixi ,

that we term a ‘powerless identity’. The trivial case mentioned in Section 3 is in fact
a special case of this. It arises when x1 = x2 = · · · = xr = 2, and the corresponding
identity is given by X

⌃r
i=1ai=n

✓
n

a1, . . . , ar

◆
F2n = rnF2n.

We now consider non-trivial cases. To take an example,

X
⌃3

i=0ai=n

✓
n

a0, a1, a2, a3

◆
F2a0+2a1+3a3 = (F2 + F2 + F3)

n F2n = 4nFn.

In order to obtain a powerless identity in general, we need p1 = p2 = · · · = pr = 1
and

Pr
i=1 Fxi�2 = 1. Therefore, disregarding the order of the su�ces, the number

of non-trivial identities for some fixed value of r is equal to the number of solutions
of the Diophantine equation

rX
i=1

Fxi�2 = 1, (9)

where xi � 0 for 1  i  r.
The number of non-trivial powerless binomial identities of the type we are con-

sidering is equal to the number of solutions to (9) when r = 1. It is easily checked
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that there are exactly 3 such identities. They are given by

X
a0+a1=n

✓
n

a0, a1

◆
Fa1x1 = (Fx1)

n F2n,

on setting x1 equal to 1, 3 and 4. Note that these correspond to the identities (1),
(2) and (3), respectively, given in Section 1.

Similarly, the 4 solutions to (9) when r = 2 correspond to the number of non-
trivial powerless trinomial identities. These are given by

X
a0+a1+a2=n

✓
n

a0, a1, a2

◆
Fa1x1+a2x2 = (Fx1 + Fx2)

n F2n,

on setting the pair (x1, x2) equal to (0,5), (1,2), (2,3) and (2,4). Then, with r = 3,
we find that there are 11 non-trivial powerless quadrinomial identities, and so on.
It is clear that for any particular value of r, there exist only finitely many powerless
identities.
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