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Abstract
Here, we study the set of positive integers n such that with F, being the nth
Fibonacci number, the number F), /d + d is prime for all proper divisors d of F,,.

1. Introduction
In [2], Becheanu, Luca and Shparlinski studied the set of positive integers
N ={n:n/d+ d is prime for all divisors d of n}.

They noted that if p is a prime such that 2p + 1 and p 4+ 2 are both primes, then
n = 2p € N, since in that case, the sums n/d+d for d | n are in the set {2p+1, p+2}.
The main result in [2] is that the subset N is of asymptotic density zero, and in fact
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the estimate #N (x) = O(z/(log x)*) holds. Here and in what follows, for a subset
A of the positive integers and a real number x > 1, we write A(z) = AN[1, z]. Here,
we study the same problem for the Fibonacci numbers F;, given by Fyp =0, F; =1
and Fy o = F,,41 + F, for all n > 0. We start by remarking that for the Fibonacci
numbers we have to slightly modify our requirement that F,,/d + d is always a
prime for all divisors d of F),, because when d = 1 (or d = F},) and n = 4k + 7,
r € {0,1,2,3}, we have the identities

Fu +1 = Fop_1Lok Fypi1+ 1= Fopy1Log
Fypro+1 = FopgoLoy Fypqs3+ 1= Fory1Logyo

for all positive integers k (see [3]), where {L,, },>0 is the companion Lucas sequence
of the Fibonacci sequence given by Lo =2, Ly =1 and Ly49 = Lyy1 + Ly, for all
n > 0. In particular, F,, + 1 is never prime for n > 4. So, we put

M ={n:F,/d+ d is prime for all divisors d with 1 < d < F,, of F,,}.

Note that 9 and 15 are members of M. Indeed, the divisors d of N = Fy = 34 are
1,2,17,34, and the only sum d+N/d with 1 < d < N is 2417 = 19, which is a prime.
Similarly, the only divisors d of N = Fj5 = 610 and 1,2,5,10,61, 122,305,610 and
the only sums of the form d + N/d for 1 < d < N are 2+ 305 = 307, 5+ 122 = 127
and 10+ 61 = 71, which are all prime.

Our main result is the following.

Theorem 1. The set M has asymptotic density zero. Additionally, the estimate
#M(x) = O(x/(loglog x)%/1) holds for all z > 10.

The proof uses an assortment of tools from elementary/analytic number theory,
the most important one being a result of Heath-Brown [6] to the effect that if ¢, r, s
are three different primes, then there exist infinitely many primes p such that one
of g, r, sis a primitive root modulo p.

2. Preliminary Results

The first result, is a sieve result due to Heath-Brown. In order to state it, we need
some definitions. Let a, 0 € (0,1/2) with a4+ ¢ < 1/2. We let Pa(e, §) be the set
of numbers n which are either primes, or n = pyps, where p; < pg are primes and

n® < p; < n'/279. The following result is Lemma 3 in [6]. For an odd prime p and

a
an integer a we write (—) for the Legendre symbol of a with respect to p.
p

Lemma 1. Let q, 7, s be three primes, k € {1,2,3}, u and v be positive integers
such that 16 | v, K = 2% | (u — 1), ged((u — 1)/K,v) = 1 and if p = u (mod v),
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()=C)=G)=G) =

p b p p

Then there exists a € (1/4,1/2) and 6 € (0,1/2 — o) such that for large x, the set
of primes

then

Plzyu,v) = {p<z:p=u (modv),(p—1)/K € Py(a,0), and one of

q, T, s 1s a primitive root modulo p}

has cardinality satisfying
x
Plx;u,v) > —.
The following result is a theorem of Turdn [11] of 1934 (see also inequality (1.2)
in Norton’s paper [8]) and is an upper bound for the number of positive integers
n < z having the number of prime factors from a given set E of prime numbers

away from the expected mean E(z) = > p<z 1/p.
peE

Lemma 2. Let E be an arbitrary set of primes, and define

E(x):Z%, w(mE):Zl.

p<z pln
pEE peEE

Then, given € > 0, we have

e 2%z

#{n<z:|lwn;E)— E(x)| >cE(z)} <€ E)

For every positive integer k we use z(k) for the least positive integer m such that
k| Fin. The number z(k) is sometimes called the index (or order) of appearance
of k in the Fibonacci sequence. It is well-known that this exists for all £ > 1.

Furthermore, for positive integers k and n the divisibility relation k | F,, holds
if and only if z(k) | n. Additionally, if p is a prime, then z(p) divides p — (g)
Furthermore, for a prime number p, let t(p) be the period of the Fibonacci sequence
modulo p. It is well-known that ¢(p) € {z(p),2z(p),4z(p)}. All these properties of

the index of appearance are useful in the proof of our main result.

3. Proof of the Theorem

We start with ¢ =2 = F3, r = 13 = F7 and s = 89 = F};. We find suitable u and
v such that the hypotheses of Lemma 1 are satisfied with k¥ = 2 and additionally
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<§> = 1. We note that if we take

p
(mod 16), p=4 (mod5), p=2 (mod 3),
(mod 13), p=7 (mod 89), (1)

()= ()=G)= ()= ()
p b p p b
Using the Chinese Remainder Theorem to solve congruences (1), we get u = 270389
and v = 277680, for which u — 1 = 22 x 23 x 2939 and v = 2% x 3 x 5 x 13 x 89, so
indeed we may take k = 2, K = 22 and then 16 | v and ged((u — 1)/K,v) = 1.

We next take a large real number x and put y = 0.4(loglog x)1/2. Consider the
set P(y;u,v) defined in Lemma 1 and let ¢; > 0 be that constant such that

then indeed

1y
#P(y;u,v) > oz y 2 (2)
We write P(n) for the largest prime factor of n with the convention that P(1) = 1.
We eliminate from the set P(y;u,v) the primes p such that P(p — 1) t z(p). Let
p be such a prime. Since p = 4 (mod 5), it follows that z(p) | p — 1, and since
(p—1)/4 € Py(a,d), we conclude that z(p) is at most 4y'/>~9. By an argument of
Erdds and Murty [5], the number M of such primes p satisfies

2M < H p < H F; < fyzt§4y1/27‘s t_ eXp(O(yl—Qé))’
z(p)<4yl/2—9 t<dyl/2—6

where v = (14 +/5)/2. Here and in what follows, we use the fact that
Y2 < F, <~*!  holds for all k> 1.

The above argument shows that M < y'=2%. Thus, in the definition of P(y;u,v),
we additionally assume that P(p — 1) | 2(p), and then inequality (2) still holds for
all © > z(, maybe with a slightly smaller ¢;. Observe next that if p € P(t;u,v),
where ¢ is sufficiently large, then p =1 (mod K) and either (p — 1)/K is prime, or

(p —1)/K = p1ps, with py < py and p; > p'/%. By the sieve, it follows that
t
t; t > 10).

Let c2 be the constant implied by the symbol < above and put ¢ = ¢1/(2¢2). We
let
Q = P(ya u, ’U)\P(ng; u, U)v
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and note that the inequality

c

#Q 2 #Pyiu,0) = #P(esyu,0) 2 500 B
holds for all sufficiently large z. We now let T' = Lyl/ SJ and select Q' C Q with T'
elements such that ged((p — 1)/4,(p' — 1)/4) =1 for all p # p' in Q'. To do that,
start with the first (minimal) prime p; € Q. Then (p; — 1)/4 is either prime, or a
product of two primes p; 1p1,2 each exceeding y'/* for z sufficiently large. Assume
that p’ is another member of Q such that (p’ —1)/4 is not coprime to (p —1)/4. If
(p —1)/4 is prime, then p’ — 1 < y is a multiple of (p — 1)/4, and the number of
such multiples is O(1). If (p — 1)/4 = p1,1p1,2, then p’ — 1 < y is divisible either by
p1,1 or by p1 2, and the number of such numbers is O(y/p11 + y/p1,2) = O(y*/).
We eliminate all such potential values of p’ and let py be the smallest remaining
prime in @. We next repeat the argument for ps. Proceeding in this way, we create
a sequence of primes p1, pa, ..., pt, such that (p; —1)/4 and (p; — 1)/4 are coprime
forall i # j in {1,...,t} and such that furthermore, at step ¢, the number of primes
p’ which have been eliminated from Q because (p’ — 1)/4 is not coprime with one
of (p1 —1)/4,...,(pr —1)/4 is O(ty®/*). In particular, if ¢ < T', then the number of
such eliminated primes is

O3/ = 0(y"/®) = o ((logyy)2> as  x — 00,
which validates the above argument.
We write R = {p1,...,pr}
Now we start working on the set M. We assume that x is large and that n < z.
Since there are O(z/logx) numbers n < z/logz, we assume additionally that
n > x/logx. We put

Mi(z)={n<z:p;| F, forsomei=1,...,T}. (3)

Fix i € {1,...,T}. We count the number of n < z such that p; | F,. This is
equivalent to z(p;) | n, and since P(p; —1) | z(p;), we conclude that either (p; —1)/4
is prime and (p; — 1)/4 | n, or (p; — 1)/4 = pipi2, with p;1 < p; 2, and p; 2 | n.
Since p; o > y'/? for large =, it follows that the number of such numbers n < = is
O(xz/P(p; — 1)) = O(x/y"/?). Summing up over all i = 1,...,T, we get that
T T
From now on, we assume that n € M(z)\M;(z).
We now let i € {1,...,T}, let pg € {3,7,11} and put

Epi=E={p=po (mod 4z(p;))}.
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Theorem 1 in [9] shows that

B 1: loglog x
Blay=2, p o(4z2(pi)) +ow.

p<z
pEE

Since z(p;) < p; — 1 <y, and ¢(4z(p;)) < 2z(p;) < 2y, it follows that

loglog x loglog x loglog x
Ex)> —"—+0(1)> ———4+0(1) > ——— >
@) 2z(pi) o) 2y M 3y

Apply Lemma 2 with € = 1/2 to conclude that

2y (x >x0). (5)

-2

g T X
Elo) < y (6)

#{n<z:|lwh, E)— E(@)|>cb)} <

Summing up the above inequality over all py € {3,7,11} and 1 < i < T, it follows
that if we put

Mo@)= | {n<a:w(Bpin) < Epi(x)/2}, (7)
po€{3,7,11}
1<i<T
then . .
#My(x) < Y T (8)
po€{3,7,11}
1<i<T

From now on, we work with n € Ms(x) = M(z)\ (My(x) | M2(z)). Observe that
for all pg € {3,7,11} and all 1 < ¢ < T, we have that

w(n’ Epoﬂ') > Epo,i(x)/Q >y

for all z > xg. In particular, n has at least y distinct primes p in the progression
p=po (mod 4z(p;)). Since the formula

Fy — Fy = Fa_py/2Lavp) /2

holds for all integers a, b which are congruent modulo 4 (see Lemma 2 in [7]), it
follows that n has at least y distinct primes p such that Fj, = F},, (mod p;). In
particular, each one of the sets

S = {pln:F,=2 (modp;)},
{p|n:F,=13 (mod p;)},
{p|In:F,=89 (modp;)}

s R
[l

has at least y > p; elements. In particular, each of

2 pi—1 2 pi—1 2 pi—1
q, ¢, ..., ¢ e et o, P s st s

)
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modulo p; is representable as d = Hpe g Iy for some subset S of prime factors of n,
which in turn is a proper divisor of F},. Since one of the primes ¢, r, s is a primitive
root modulo p;, it follows that the d’s obtained in this way cover all the nonzero
residue classes modulo p;. Note that it is not possible that p; | F,,/d + d for some
divisor d of F},, since then

F,/d+d>2\/F, > 27”/2*1 > 73”/(210“) >y > p;

for x > x( sufficiently large, so that p; is a proper divisor of F,,/d+ d, contradicting
the primality of this last number. Imposing that p; 1 F,,/d+ d for all such d, we get
-1
that F,, # —d? (mod p;), and since p; = 1 (mod 4), so, in particular, (—) =1,
23
F,
we conclude that [ =2 | = —1 for all 1 < i < T. Let 2/(p;) be the largest odd

divisor of z(p;) andpllet t(pi) be the period of the Fibonacci sequence {F},},>0
modulo p;. Since t(p;) € {z(pi),22(ps),42(p;)} and 22||p; — 1, we conclude that
t(pi)/7 (p;) € {1,2,4,8,16}. Fix the residue class of n modulo 16. Note that n is
odd. Indeed, to justify this, observe first that F,, is even, for if not, F,,/d + d will
always be even. Hence, 3 | n. If also 2 | n, it follows that 6 | n, so 8 | F},. Taking
d = 2, we get that F,,/d + d is an even number, a contradiction.

Let ng € {1,3,5,7,9,11,13,15} and let us count the number of n < z in M3(z)
with n = ny (mod 16). For large x, the period of the sequence {Fy,+16n}n>0 iS
Z'(p;) (see Lemma 2.6 in [1]). By a result of Shparlinsky [10],

Zl(pi)fl F 16
> (F0e) —o(m) = o).

n=0

It thus follows that the set

A = {O <n<Z2(p): (%) = —1}

#A = Z(p)/2+ 0% = 2(p)' /2 (1 +0 (y1/2 ))

z(pi)
E— (1 +0 (;)) .

We now loop over all i = 1,...,7T and use the Chinese Remainder Theorem noting
that 2’ (p;) and 2’(p;) are coprime for i # j in {1,...,T} because they are divisors of
(pi —1)/4 and (p; — 1)/4, respectively, which are coprime. We get that the number
n = ng (mod 16) must be in [[._, #4; residue classes modulo N = []/_, 2/ (pi),

satisfies
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and the number of such is at most

[1(£8)e v =5 (10 (4)) vow

=1

T T T
< Texp (—Tln2+0 (E)) < 157 = O (§> .

Summing up over all possibilities for odd ng in [1, 16], we get that

#Ms(z) = O (g) . 9)

From equations (4), (8), and (9), we get that

x X
MO 57 < Goglog /e

which is what we wanted to prove.

4. An Open Problem

The conclusion of our theorem is too weak to deduce that

Z 1

neM "
is finite, a problem which we leave for the reader. In fact, we believe that M is a
finite set. To see why, we first note that if n € M and n > 9, then F), has at least
three prime factors. Indeed, from what we have seen, 2||F,, so n = 3m for some
odd m. If m > 12, then by Carmachael’s primitive divisor theorem (see [4]), we
deduce that each of F;, and F3,, has a primitive prime factor, that is a prime factor
p that did not divide any previous Fibonacci number. This shows that F3,, has at
least three prime factors for all m > 12, and the fact that this is so for m € [5, 11]
can be checked on a case by case basis. Now let p1, p2, ps be three distinct prime
factors of F},. Then each of F}, /p; +p; > 2v/F, > 4™/ is a prime for i = 1,2, 3. By
the Prime Number Theorem, the expectation that F,,/p; + p; is a prime should be
about 1/log(F, /p; + p;) = O(1/n). Since this is true for ¢ = 1,2,3, and assuming
that the above three events are independent, it follows that it is natural to expect
that the probability that a random n € M is of order O(1/n3). Since

S L =on),

n3
n>1

it would seem reasonable to conjecture that M is in fact a finite set.
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