
#A5 INTEGERS 14 (2014)

FIBONACCI NUMBERS WITH PRIME SUMS OF
COMPLEMENTARY DIVISORS

Mohamed Taoufiq Damir
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Abstract
Here, we study the set of positive integers n such that with Fn being the nth
Fibonacci number, the number Fn/d + d is prime for all proper divisors d of Fn.

1. Introduction

In [2], Becheanu, Luca and Shparlinski studied the set of positive integers

N = {n : n/d + d is prime for all divisors d of n}.

They noted that if p is a prime such that 2p + 1 and p + 2 are both primes, then
n = 2p 2 N , since in that case, the sums n/d+d for d | n are in the set {2p+1, p+2}.
The main result in [2] is that the subset N is of asymptotic density zero, and in fact
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the estimate #N (x) = O(x/(log x)3) holds. Here and in what follows, for a subset
A of the positive integers and a real number x � 1, we write A(x) = A\[1, x]. Here,
we study the same problem for the Fibonacci numbers Fn given by F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn for all n � 0. We start by remarking that for the Fibonacci
numbers we have to slightly modify our requirement that Fn/d + d is always a
prime for all divisors d of Fn, because when d = 1 (or d = Fn) and n = 4k + r,
r 2 {0, 1, 2, 3}, we have the identities

F4k + 1 = F2k�1L2k+1 F4k+1 + 1 = F2k+1L2k

F4k+2 + 1 = F2k+2L2k F4k+3 + 1 = F2k+1L2k+2

for all positive integers k (see [3]), where {Ln}n�0 is the companion Lucas sequence
of the Fibonacci sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all
n � 0. In particular, Fn + 1 is never prime for n � 4. So, we put

M = {n : Fn/d + d is prime for all divisors d with 1 < d < Fn of Fn}.

Note that 9 and 15 are members of M. Indeed, the divisors d of N = F9 = 34 are
1, 2, 17, 34, and the only sum d+N/d with 1 < d < N is 2+17 = 19, which is a prime.
Similarly, the only divisors d of N = F15 = 610 and 1, 2, 5, 10, 61, 122, 305, 610 and
the only sums of the form d + N/d for 1 < d < N are 2 + 305 = 307, 5 + 122 = 127
and 10 + 61 = 71, which are all prime.

Our main result is the following.

Theorem 1. The set M has asymptotic density zero. Additionally, the estimate
#M(x) = O(x/(log log x)3/16) holds for all x > 10.

The proof uses an assortment of tools from elementary/analytic number theory,
the most important one being a result of Heath–Brown [6] to the e↵ect that if q, r, s
are three di↵erent primes, then there exist infinitely many primes p such that one
of q, r, s is a primitive root modulo p.

2. Preliminary Results

The first result, is a sieve result due to Heath-Brown. In order to state it, we need
some definitions. Let ↵, � 2 (0, 1/2) with ↵ + � < 1/2. We let P2(↵, �) be the set
of numbers n which are either primes, or n = p1p2, where p1 < p2 are primes and
n↵ < p1 < n1/2��. The following result is Lemma 3 in [6]. For an odd prime p and

an integer a we write
✓

a

p

◆
for the Legendre symbol of a with respect to p.

Lemma 1. Let q, r, s be three primes, k 2 {1, 2, 3}, u and v be positive integers
such that 16 | v, K = 2k | (u � 1), gcd((u � 1)/K, v) = 1 and if p ⌘ u (mod v),
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then ✓
�3
p

◆
=

✓
q

p

◆
=

✓
r

p

◆
=

✓
s

p

◆
= �1.

Then there exists ↵ 2 (1/4, 1/2) and � 2 (0, 1/2� ↵) such that for large x, the set
of primes

P(x;u, v) = {p  x : p ⌘ u (mod v), (p� 1)/K 2 P2(↵, �), and one of
q, r, s is a primitive root modulo p}

has cardinality satisfying
#P(x;u, v) � x

(log x)2
.

The following result is a theorem of Turán [11] of 1934 (see also inequality (1.2)
in Norton’s paper [8]) and is an upper bound for the number of positive integers
n  x having the number of prime factors from a given set E of prime numbers
away from the expected mean E(x) =

P
px
p2E

1/p.

Lemma 2. Let E be an arbitrary set of primes, and define

E(x) =
X
px
p2E

1
p
, !(n,E) =

X
p|n
p2E

1.

Then, given " > 0, we have

#{n  x : |!(n;E)�E(x)| > "E(x)}⌧ "�2x

E(x)
.

For every positive integer k we use z(k) for the least positive integer m such that
k | Fm. The number z(k) is sometimes called the index (or order) of appearance
of k in the Fibonacci sequence. It is well-known that this exists for all k � 1.
Furthermore, for positive integers k and n the divisibility relation k | Fn holds
if and only if z(k) | n. Additionally, if p is a prime, then z(p) divides p �

⇣p

5

⌘
.

Furthermore, for a prime number p, let t(p) be the period of the Fibonacci sequence
modulo p. It is well-known that t(p) 2 {z(p), 2z(p), 4z(p)}. All these properties of
the index of appearance are useful in the proof of our main result.

3. Proof of the Theorem

We start with q = 2 = F3, r = 13 = F7 and s = 89 = F11. We find suitable u and
v such that the hypotheses of Lemma 1 are satisfied with k = 2 and additionally
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✓
5
p

◆
= 1. We note that if we take

p ⌘ 5 (mod 16), p ⌘ 4 (mod 5), p ⌘ 2 (mod 3),
p ⌘ 2 (mod 13), p ⌘ 7 (mod 89), (1)

then indeed ✓
2
p

◆
=

✓
�3
p

◆
=

✓
13
p

◆
=

✓
89
p

◆
= �1 and

✓
5
p

◆
= 1.

Using the Chinese Remainder Theorem to solve congruences (1), we get u = 270389
and v = 277680, for which u� 1 = 22 ⇥ 23⇥ 2939 and v = 24 ⇥ 3⇥ 5⇥ 13⇥ 89, so
indeed we may take k = 2, K = 22 and then 16 | v and gcd((u� 1)/K, v) = 1.

We next take a large real number x and put y = 0.4(log log x)1/2. Consider the
set P(y;u, v) defined in Lemma 1 and let c1 > 0 be that constant such that

#P(y;u, v) >
c1y

(log y)2
. (2)

We write P (n) for the largest prime factor of n with the convention that P (1) = 1.
We eliminate from the set P(y;u, v) the primes p such that P (p � 1) - z(p). Let
p be such a prime. Since p ⌘ 4 (mod 5), it follows that z(p) | p � 1, and since
(p� 1)/4 2 P2(↵, �), we conclude that z(p) is at most 4y1/2��. By an argument of
Erdős and Murty [5], the number M of such primes p satisfies

2M 
Y

z(p)4y1/2��

p 
Y

t4y1/2��

Ft < �
P

t4y1/2�� t = exp(O(y1�2�)),

where � = (1 +
p

5)/2. Here and in what follows, we use the fact that

�k�2  Fk  �k�1 holds for all k � 1.

The above argument shows that M ⌧ y1�2�. Thus, in the definition of P(y;u, v),
we additionally assume that P (p� 1) | z(p), and then inequality (2) still holds for
all x > x0, maybe with a slightly smaller c1. Observe next that if p 2 P(t;u, v),
where t is su�ciently large, then p ⌘ 1 (mod K) and either (p� 1)/K is prime, or
(p� 1)/K = p1p2, with p1  p2 and p1 > p1/4. By the sieve, it follows that

#P(t;u, v) ⌧ t

(log t)2
(t � 10).

Let c2 be the constant implied by the symbol ⌧ above and put c3 = c1/(2c2). We
let

Q = P(y;u, v)\P(c3y;u, v),
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and note that the inequality

#Q � #P(y;u, v)�#P(c3y;u, v) � c1y

2(log y)2

holds for all su�ciently large x. We now let T = by1/8c and select Q0 ✓ Q with T
elements such that gcd((p � 1)/4, (p0 � 1)/4) = 1 for all p 6= p0 in Q0. To do that,
start with the first (minimal) prime p1 2 Q. Then (p1 � 1)/4 is either prime, or a
product of two primes p1,1p1,2 each exceeding y1/4 for x su�ciently large. Assume
that p0 is another member of Q such that (p0 � 1)/4 is not coprime to (p� 1)/4. If
(p � 1)/4 is prime, then p0 � 1  y is a multiple of (p � 1)/4, and the number of
such multiples is O(1). If (p� 1)/4 = p1,1p1,2, then p0 � 1  y is divisible either by
p1,1 or by p1,2, and the number of such numbers is O(y/p1,1 + y/p1,2) = O(y3/4).
We eliminate all such potential values of p0 and let p2 be the smallest remaining
prime in Q. We next repeat the argument for p2. Proceeding in this way, we create
a sequence of primes p1, p2, . . . , pt, such that (pi � 1)/4 and (pj � 1)/4 are coprime
for all i 6= j in {1, . . . , t} and such that furthermore, at step t, the number of primes
p0 which have been eliminated from Q because (p0 � 1)/4 is not coprime with one
of (p1� 1)/4, . . . , (pt� 1)/4 is O(ty3/4). In particular, if t  T , then the number of
such eliminated primes is

O(y1/8+3/4) = O(y7/8) = o

✓
y

(log y)2

◆
as x!1,

which validates the above argument.
We write R = {p1, . . . , pT }.
Now we start working on the set M. We assume that x is large and that n  x.

Since there are O(x/ log x) numbers n  x/ log x, we assume additionally that
n > x/ log x. We put

M1(x) = {n  x : pi | Fn for some i = 1, . . . , T}. (3)

Fix i 2 {1, . . . , T}. We count the number of n  x such that pi | Fn. This is
equivalent to z(pi) | n, and since P (pi�1) | z(pi), we conclude that either (pi�1)/4
is prime and (pi � 1)/4 | n, or (pi � 1)/4 = pi,1pi,2, with pi,1 < pi,2, and pi,2 | n.
Since pi,2 > y1/2 for large x, it follows that the number of such numbers n  x is
O(x/P (pi � 1)) = O(x/y1/2). Summing up over all i = 1, . . . , T , we get that

#M1(x) ⌧ xT

y1/2
=

x

y3/8
. (4)

From now on, we assume that n 2M(x)\M1(x).
We now let i 2 {1, . . . , T}, let p0 2 {3, 7, 11} and put

Ep0,i := E = {p ⌘ p0 (mod 4z(pi))}.
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Theorem 1 in [9] shows that

E(x) =
X
px
p2E

1
p

=
log log x

�(4z(pi))
+ O(1).

Since z(pi)  pi � 1 < y, and �(4z(pi))  2z(pi) < 2y, it follows that

E(x) >
log log x

2z(pi)
+ O(1) >

log log x

2y
+ O(1) >

log log x

3y
> 2y (x > x0). (5)

Apply Lemma 2 with " = 1/2 to conclude that

#{n  x : |!(n,E)�E(x)| > "E(x)}⌧ "�2x

E(x)
⌧ x

y
. (6)

Summing up the above inequality over all p0 2 {3, 7, 11} and 1  i  T , it follows
that if we put

M2(x) =
[

p02{3,7,11}
1iT

{n  x : !(Ep0,i, n) < Ep0,i(x)/2}, (7)

then
#M2(x) ⌧

X
p02{3,7,11}

1iT

x

y
⌧ x

y7/8
. (8)

From now on, we work with n 2M3(x) = M(x)\ (M1(x)
S
M2(x)) . Observe that

for all p0 2 {3, 7, 11} and all 1  i  T , we have that

!(n,Ep0,i) � Ep0,i(x)/2 > y

for all x > x0. In particular, n has at least y distinct primes p in the progression
p ⌘ p0 (mod 4z(pi)). Since the formula

Fa � Fb = F(a�b)/2L(a+b)/2

holds for all integers a, b which are congruent modulo 4 (see Lemma 2 in [7]), it
follows that n has at least y distinct primes p such that Fp ⌘ Fp0 (mod pi). In
particular, each one of the sets

Sq = {p | n : Fp ⌘ 2 (mod pi)},
Sr = {p | n : Fp ⌘ 13 (mod pi)},
Ss = {p | n : Fp ⌘ 89 (mod pi)}

has at least y > pi elements. In particular, each of

q, q2, . . . , qpi�1, r, r2, . . . , rpi�1, s, s2, . . . , spi�1
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modulo pi is representable as d =
Q

p2S Fp for some subset S of prime factors of n,
which in turn is a proper divisor of Fn. Since one of the primes q, r, s is a primitive
root modulo pi, it follows that the d’s obtained in this way cover all the nonzero
residue classes modulo pi. Note that it is not possible that pi | Fn/d + d for some
divisor d of Fn, since then

Fn/d + d � 2
p

Fn > 2�n/2�1 > �x/(2 log x) > y > pi

for x > x0 su�ciently large, so that pi is a proper divisor of Fn/d+d, contradicting
the primality of this last number. Imposing that pi - Fn/d+ d for all such d, we get

that Fn 6⌘ �d2 (mod pi), and since pi ⌘ 1 (mod 4), so, in particular,
✓
�1
pi

◆
= �1,

we conclude that
✓

Fn

pi

◆
= �1 for all 1  i  T . Let z0(pi) be the largest odd

divisor of z(pi) and let t(pi) be the period of the Fibonacci sequence {Fn}n�0

modulo pi. Since t(pi) 2 {z(pi), 2z(pi), 4z(pi)} and 22kpi � 1, we conclude that
t(pi)/z0(pi) 2 {1, 2, 4, 8, 16}. Fix the residue class of n modulo 16. Note that n is
odd. Indeed, to justify this, observe first that Fn is even, for if not, Fn/d + d will
always be even. Hence, 3 | n. If also 2 | n, it follows that 6 | n, so 8 | Fn. Taking
d = 2, we get that Fn/d + d is an even number, a contradiction.

Let n0 2 {1, 3, 5, 7, 9, 11, 13, 15} and let us count the number of n  x in M3(x)
with n ⌘ n0 (mod 16). For large x, the period of the sequence {Fn0+16n}n�0 is
z0(pi) (see Lemma 2.6 in [1]). By a result of Shparlinsky [10],

z0(pi)�1X
n=0

✓
Fn0+16n

pi

◆
= O(

p
pi) = O(y1/2).

It thus follows that the set

Ai =
⇢

0  n < z0(pi) :
✓

Fn0+16n

pi

◆
= �1

�

satisfies

#Ai = z0(pi)/2 + O(y1/2) = z(pi)0/2
✓

1 + O

✓
y1/2

z(pi)

◆◆

= z(pi)0/2
✓

1 + O

✓
1
y�

◆◆
.

We now loop over all i = 1, . . . , T and use the Chinese Remainder Theorem noting
that z0(pi) and z0(pj) are coprime for i 6= j in {1, . . . , T} because they are divisors of
(pi� 1)/4 and (pj � 1)/4, respectively, which are coprime. We get that the number
n ⌘ n0 (mod 16) must be in

QT
i=1 #Ai residue classes modulo N =

QT
i=1 z0(pi),
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and the number of such is at most


TY

i=1

✓
#Ai

z0(pi)

◆
x + N =

x

2T

✓
1 + O

✓
1
y�

◆◆T

+ O(yT )

⌧ x exp
✓
�T ln 2 + O

✓
T

y�

◆◆
⌧ x

1.5T
= O

✓
x

y

◆
.

Summing up over all possibilities for odd n0 in [1, 16], we get that

#M3(x) = O

✓
x

y

◆
. (9)

From equations (4), (8), and (9), we get that

#M(x) ⌧ x

y3/8
⌧ x

(log log x)3/16
,

which is what we wanted to prove.

4. An Open Problem

The conclusion of our theorem is too weak to deduce that
X

n2M

1
n

is finite, a problem which we leave for the reader. In fact, we believe that M is a
finite set. To see why, we first note that if n 2M and n > 9, then Fn has at least
three prime factors. Indeed, from what we have seen, 2kFn so n = 3m for some
odd m. If m > 12, then by Carmachael’s primitive divisor theorem (see [4]), we
deduce that each of Fm and F3m has a primitive prime factor, that is a prime factor
p that did not divide any previous Fibonacci number. This shows that F3m has at
least three prime factors for all m > 12, and the fact that this is so for m 2 [5, 11]
can be checked on a case by case basis. Now let p1, p2, p3 be three distinct prime
factors of Fn. Then each of Fn/pi + pi � 2

p
Fn � �n/2 is a prime for i = 1, 2, 3. By

the Prime Number Theorem, the expectation that Fn/pi + pi is a prime should be
about 1/ log(Fn/pi + pi) = O(1/n). Since this is true for i = 1, 2, 3, and assuming
that the above three events are independent, it follows that it is natural to expect
that the probability that a random n 2M is of order O(1/n3). Since

X
n�1

1
n3

= ⇣(3) = O(1),

it would seem reasonable to conjecture that M is in fact a finite set.
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