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Abstract
We define the multi-poly-Bernoulli-star numbers which generalize classical Bernoulli
numbers. We study the basic properties for these numbers and establish sum formu-
las and a duality theorem, and discuss a connection to the finite multiple zeta-star
values. As an application, we present alternative proofs of some relations on the
finite multiple zeta-star values.

1. Introduction

For any multi-index (ki,...,k,.) with k; € Z, we define two kinds of multi-poly-

Bernoulli-star numbers B,(fi’”"kr), C,(L]fi""’kr) by the following generating series:

Lig, 5 (0—e") i Ukt
1—et N . " n!’

-
Lig, 5, (=€) i Ok T
et —1 B x n!’

n=0

where Li;  ; (2) is the non-strict multiple polylogarithm given by

z™

Liilwnak'r'(z) = Z k1 kr®

my > >m,>1 T

When r = 1, these numbers are poly-Bernoulli numbers studied in [1], [9]. Further,
when r = 1 and k; = 1, both numbers are classical Bernoulli numbers since Lij (1 —
e~t) = t. We note that BY') = C{}) (n # 1) with B%l*) =1/2 and Cfll =-1/2.
We call k = ki + -+ + k, the weight of multi-index (k1,..., k).

We set
I, z/vZ

= m = {(ap)pEQp € Z/pZ}/ ~
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where (ap), ~ (by), is equivalent to the equalities a, = b, for all but finitely many
primes p. The finite multiple zeta-star values are defined by

Calky, ... ky) == (Hy(ky,. .., ky) mod p)p € A,

where H(ky,..., k) is the non-strict multiple harmonic sum defined by

. 1
Hn(kla”-akr): Z T k-

n—1>my > >m,>1 10

For more details on the finite multiple zeta(-star) values, we refer the reader to [7],
[10] and [12]. We use “star” to indicate that the inequalities in the sum are non-
strict in contrast to the strict ones usually adopted in the references above. Each
of these is expressed as a linear combination of the other.

This article is organized as follows. In §2, we give fundamental properties for
the multi-poly-Bernoulli-star numbers. In §3, we describe the sum formula and the
duality relation for the multi-poly-Bernoulli-star numbers. In §4, we study connec-
tions between the finite multiple zeta-star values and the multi-poly-Bernoulli-star
numbers. As a result, we obtain alternative proofs of some relations for the finite
multiple zeta-star values.

2. Basic Properties for the Multi-Poly-Bernoulli-Star Numbers

In this section, we introduce basic results for the multi-poly-Bernoulli-star num-
bers. We first give the recurrence relations for the multi-poly-Bernoulli-star num-
bers Bgfi"”’k"'), C’,(L’fi"‘”k"'). Before stating them, we provide the following identity
for the non-strict multiple polylogarithm, whose proof is straightforward and is

omitted.

Lemma 2.1. For any multi-index (k1,. .., k,) with k; € Z, we have

1.
Zlel—l,kg,...,kr(t) (k1 #1),

d _ ., 1 "
Elel,...,kr (t) = t(l _ t) szg,...,k,,. (t) (kl = 1,7’ 7é 1)7
1
— ky=r=1).
11t (kh=r=1)
Proposition 2.1. For any multi-index (k1,...,k-), we have the following recur-

S10NS:
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(i) When ki # 1,

n—1
(k1yekr) 1 (k1—1,kzky) n (k1)
n—1
(k1yekr) 1 (k1—1,k2,....kr) n+ 1\ (ky,k)
Cn7* - n +1 (Cnv* - Z ( ] C] *
=0

n n—1
pllkennky) _ 1 <n) plkkn) < O\ gk,
s n+1\+4 g . j—1) 7~ ’
j=0 j=1
-1
C(lak27~"’k7') _ 1 C(k27-":k'r~) _ i(_l)n—j n C(_Lkmm,kr)
n,x n+1 n,% P ] 1 o ,

where an empty sum is understood to be 0.

Proof. We prove the relations for B,(lki""’k”: those for C’,(Lki""’kr) are similar.

t
Lit, o (l—e=(1—-e" ZB'“’ ") .

.....

We differentiate both sides of (1): When k; # 1, we obtain

(LHS) = 1_—6_,5Li2171,k2 ..... g (1—e),
s tm tn
(RHS) = o'y Bl (1-c ZBfffﬁl*k)
n=0
So we have
o ( ) ) (
k1 —1,ka,.. K Ky kor k ;g
Z(Bn,i 2 _Bn,i ) ﬁ = € —1 ZBn-‘;l*
n=0
B oo n—1 kl, k,,) t"
= 2B
n=1 j=0

Comparing the coefficients of ¢” /n! on both sides, we obtain (¢). When k; = 1,

1 " _
(LHS) = 1 e- leQ,...,kTﬂ*@ ",

tn
) = S B S (B ) £
n=0
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So we have

i (Bﬁl{;kg,“.,kr) _ By(ll_ﬁ?;m,kr)) ;_T: — et i (Bg?i,“.,k,«) _ BT(#%;.H,M) %

- = n (kayekr) _ p(Lka,ko)) B
- X2 (5) (st =it )

and by this we obtain (7). O

We proceed to describe explicit formulas for the multi-poly-Bernoulli-star num-
bers in terms of the Stirling numbers of the second kind. We recall that the Stirling

n
numbers of the second kind are the integers { } for all integers m,n satisfying
m

the following recursions and the initial values:

{n:f_bl} N {mril}er{:;} (Vn,m € Z),
LY - { {0 =0 tmsn)

Proposition 2.2. For any multi-index (ki,...,k.), k; € Z, we have

(k1yekr) (—1)m1+"_1(m1 — 1)' n
Bn,i - Z k1 k my — 1

PR T
nt1>my >-->m,>1 my mr

and

Olkseks) _ Z (=1)ymatn=L(m; —1)! { n+1 }

% %,
m
nt1>my > >my>1 my mr 1

Proof. Using the following identity (cf. [3, eqn. 7.49])

(et — 1) = ml i{;}% (m > 0), (2)

we have

n=0
sk —t
_ Liy, ',,W(l —eh
1—et
(1 _ eft)mlfl
- Z k1 Fr
my>-2>me>1 my M

= ()™t (my — 1)) j t7
SR I M - N

my2>--2mp2>1j=mi—1
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SRS <_1)m1:_1(m5_1)!{mf1};—]}

“e T
J=0 jH1>my > >m,>1 My

Thus comparing the coefficients of ¢"/n! on both sides, we obtain the explicit for-
mula for Bffi""’k“).

The explicit formula for C’r(lki

eft(l o eft)mfl B 0
(m—1)! N ,:%:_

J

*) is obtained similarly by using the identity

s 1}tj

m |4
1 J:

which follows from (2) by differentiation. O

We finish this section by giving some simple relations among the multi-poly-
Bernoulli-star numbers.

Proposition 2.3. For any multi-index (k1,. .., k.) with k; € Z, we have

i=o M
and .
_i(mn sk
Cv(fi ..... ky) _ Z(_l)n ]( ‘>B](_7k*1, ke )
=0 J
. . (k1yorkir)  o(k1yeonkr) q: t

Proof. The generating functions of By, x , Crox differ by the factor e’, and
the above identities follow immediately. O
Proposition 2.4. For any multi-index (ki,...,k.), we have

Ckrk) _ plkrky) _ o(k=1ka k)
= Dn x .

n,% n—1,x

Proof. By the explicit formula for C’T(l]fi""’k"), we obtain

Okake) Z (—=1)ymtn=l(m; —1)! { n + 1}

5 k1 k
m
n1>my > >m, >1 !

ml . .mTT
B (—1)™+n=Ymy — 1)1 [ n
- Z k1 k my — 1

... T
nt1>my > >m,>1 my mr

Py G

k}lfl "
nt1>mi>-->m.>1 o M my

_ gUknek) _ a(ki=Likak,)

- % n—1,x

The second equality above is by the recursion for the Stirling numbers of the second
kind. O
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3. Main Results

We give the following sum formulas for multi-poly-Bernoulli-star numbers.

Theorem 3.1. We have

r ki,....kr (_1)k n 1
S (Bt = - <k " 1) BY ., (3)
T
and ( )k
71 n
71 T T(Lk?i,...,kr) — (1) . 4
k +Z+:k fk( ren ko \k-1 Cnbr1x (4)
1<r <k by >1

Proof. We multiply both sides of (3) by t"/n! and sums on n. Hence we have

CURED DD D

n=0k,+--+k,.=k
1<r<k,k;>1

kit tkp=k
1<r<k,k;>1
_ (—l)k > n (1) tn
(RHS) - k nZ::O k—1 B’n*k+1,*m
(R VA S e "
= B
k! 7;) n—k+1,x (n k- 1)‘
B (_1)k et 1) tn+k 1
N k! ;Bn’* n!
N kKl 1—et
Since both sides have the same denominator, it suffices to prove the following iden-
tity:
T — (71)]C
S L, (e = (5)
ki+--+ky.=k ’
1<r<k,k;>1

This equality is proved by induction on the weight. When k = 1, the left-hand side
is —Lif(1 — e ?) = —t and is equal to the right-hand side. Next we assume the
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identity holds when the weight is k. Then by differentiating the left-hand side of
the identity of weight k + 1, we obtain

d R _
dt Z (=1) L'Lkl ..... kr(l —¢€ t)

kit tk.=k+1
1<r<k-+1,k;>1

ki4-+k.=k
1<r<k,k;>1

= Y )L, (e

Ktk =k
1<r<k,k;>1

1 k+1
- k)| t.

We used the induction hypothesis in the last equality. Therefore we have

1\ T a* R AN (_1)k+1 k+1

> ()L, g (1—e ) = =t C
ky4e Ak, =k+1 (k+1)!
1<r<k+41,k;>1

with some constant C'; which we find is 0 by putting ¢ = 0. The equation (4) follows
from (5) since the generating function of C,, , differs from that of B, . only by a
factor et O

Next we describe the duality relation for the multi-poly-Bernoulli-star numbers.
We recall the duality operation of Hoffman [6, p. 65]. We define a function S from
the set of multi-indices (k1,...,k,) with k; > 1 and weight k& to the power set of
(1,2,...,k—1} by

S((kl,...,kT)) = {kl,kl + koo ky —|—---—|—kr_1}.

Obviously, the map S is a one-to-one correspondence. Then (k1,...,k;) is said to
be the dual index for (kq,...,k,) in Hoffman’s sense when

Ky, k) =S71{1,2, ...,k — 1} — S((k1, ..., k).

It is easy to see that Hoffman’s duality operation is an involution. Note that k1 > 1
if and only if k] = 1.

Theorem 3.2. For any multi-index (ki,...,k.) with k; > 1(1 <1i <), we have
CT(L’finuykr) — (_1)nBT(L]?i:’kZ)7

where (k1,..., k) is the dual index of (ki,...,k,) in Hoffman’s sense.
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Proof. As in the previous proof, consider the generating functions of both sides:

.....

(LHS) = ZC'“’ ’”t

(RHS) (Kysenk) U

[
D
L
=
3
S5
3
>*
=
!
—
!
9]
&~

n=0

Hence we have to show the following identity:

Lig, g, (L—e™") + Lij, (1 —€')=0.

This identity also follows from induction on the weight. First, it is trivial in the
case k = 1. Thus, we assume the above identity holds when the weight is k. Since
k1 = 1 is equivalent to kll # 1, we may assume k; = 1 by the symmetry of the
identity. Then when the weight is k£ + 1, the derivative of the left-hand side yields

d /. B .
— (L'Ll,k2 p(l—e )+ sziw’kz(l - et)>

dt .....
_ 1 L‘* —t _et L‘* t
T l—et Ukgyk, (1 —€70) + 1— ot 'K =10, k;(l —€)
1 .
= = (LZZQ,...,kT(l —e H) + sz/_l Kok, (1- et))
= 0.
Therefore we obtain
Li‘f,k}z,...,]ﬁ.(l_e )+Ll ’ k/(l et) :C
1ok
with some constant C, and by putting ¢ = 0, we conclude C' = 0. O

4. Connection to the Finite Multiple Zeta-Star Values

In this section, we give alternative proofs for some relations of the finite multiple
zeta-star values using the multi-poly-Bernoulli-star numbers. The following congru-
ence is the “star-version” of the congruence given in [8, Theorem.8], and is proved
in exactly the same manner:

Hy(ky, oo k) = — k1~ Lo,k mod p.

pP—2,%

Thus we find
Calkry k) = (=C 4275 mod p) (6)

p
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Corollary 4.1 (M. Hoffman [7]). For any multi-index (k1,..., k) with k; >
1(1<i <), let (ky,..., k) be the dual index for (ky,. .., k.) in Hoffman’s sense.
Then we have ) /

Cilkr, oo k) = =Ca(ky, .o k).

Proof. Tt is sufficient to prove the case k; = 1. By (6) and the duality relation for
the multi-poly-Bernoulli-star numbers, we obtain

_ (0 k21 ) 7‘)
(LHS) = ( Cploms mod p)p,
(RHS) = <C;k A *1 k2 k) od p)
P

= (0B modp)

Hence we complete the proof if we prove C’ Ok, sker) B(kz’ k) for all n. We
consider the generating functions of these numbers.

chkz, ko t™ Lk, ok, (1—e7)
so=

o0

1 1 .
= o7 X Ewm 2 (=™

-m
T mi=mo

1 —t
= et(et — 1)L222, ~~;k7r(1 —e)
(kayor ko) T
- ZBn’* n'

From this we have

for any odd prime p. O

The following corollary is a weaker version of the sum formula for the finite
multiple zeta-star values proved in [11].

Corollary 4.2. We have

> (=D, k) = (Bp—g mod p),,

kit +kr-=k
r>1,k1>2,k; 21

where B,, is the classical Bernoulli numbers.
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Proof. Equations (4) and (6) yield

—1)k _
Yo UGk k) = (ﬁ(i_f)cﬁk_17*modp)

oy oy =k+1 P
r>1,k1>2,k; >1
1
- (_C;(af)ka* mod p)p .
So replacing k by k — 1, we obtain the desired identity. O]
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